At the time of the study’s design, we lacked previous data on the area of hyperalgesia in the first 24 hours. Therefore, we made only two assumptions. First, the hyperalgesia area distribution should be normal. Second, if there were differences between levobupivacaine and saline groups, it should be at least one standard deviation of that theoretical distribution. Then, we assummed a difference delta = 1 (one sd) in a normal distribution Z(0,1); with a power of 0.95 and a type I error of 0.05:
power.t.test(delta=1, sd = 1, sig.level = 0.05, power=0.95)
##
## Two-sample t test power calculation
##
## n = 26.98922
## delta = 1
## sd = 1
## sig.level = 0.05
## power = 0.95
## alternative = two.sided
##
## NOTE: n is number in *each* group
We selected 27 patients per arm.
First, we loaded the dataset
tabla0<-read_ods(path="/home/rbn/Documentos/manu/cesareas/CRD.ods", sheet = 1)
tabla1<-read_ods(path="/home/rbn/Documentos/manucesarea/Cesareas.ods", sheet = 1)
tabla2<-read_ods(path="/home/rbn/Documentos/manucesarea/Cesareas.ods", sheet = 3)
tabla3<-read_ods(path="/home/rbn/Documentos/manu/cesareas/CRD2.ods", sheet = 1)
dn4<-read_ods(path="/home/rbn/Documentos/manu/cesareas/DN4.ods", sheet = 1)
We generated table 1, group description.
tabmulti(GestacionesPreviasNS + ASA ~ GrupoTto,
data = tabla0,
ymeasures= "freq",
columns=c("xgroups", "p"),
n.headings=TRUE) %>% kable()
Variable | Levobupivacaine (n = 33) | Saline (n = 37) | P |
---|---|---|---|
GestacionesPreviasNS, n (%) | 0.13 | ||
Más de 1 | 11 (33.3) | 19 (51.4) | |
Solo 1 | 22 (66.7) | 18 (48.6) | |
ASA, n (%) | 0.90 | ||
1 | 28 (84.8) | 31 (83.8) | |
2 | 5 (15.2) | 6 (16.2) |
tabmedians(Edad ~ GrupoTto, data=tabla0, columns=c("xgroups", "p"), parenth="q1q3", sep.char = "-")
## Variable Levobupivacaine (n = 33) Saline (n = 37) P
## 1 Edad, Median (Q1-Q3) 33.0 (30.0-36.0) 35.0 (33.0-40.0) 0.02
tabmedians(Peso ~ GrupoTto, data=tabla0, columns=c("xgroups", "p"), parenth="q1q3", sep.char = "-")
## Variable Levobupivacaine (n = 33) Saline (n = 37) P
## 1 Peso, Median (Q1-Q3) 78.0 (70.2-83.0) 77.0 (71.0-87.0) 0.70
tabmedians(Talla ~ GrupoTto, data=tabla0, columns=c("xgroups", "p"), parenth="q1q3", sep.char = "-")
## Variable Levobupivacaine (n = 33) Saline (n = 37) P
## 1 Talla, Median (Q1-Q3) 164.0 (162.0-165.0) 163.0 (158.0-168.0) 0.78
tabmedians(BMI ~ GrupoTto, data=tabla0, columns=c("xgroups", "p"), parenth="q1q3", sep.char = "-")
## Variable Levobupivacaine (n = 33) Saline (n = 37) P
## 1 BMI, Median (Q1-Q3) 29.0 (26.8-31.2) 29.3 (26.6-33.0) 0.54
tabmedians(SemanasGestación ~ GrupoTto, data=tabla0, columns=c("xgroups", "p"), parenth="q1q3", sep.char = "-")
## Variable Levobupivacaine (n = 33) Saline (n = 37)
## 1 SemanasGestación, Median (Q1-Q3) 39.0 (38.6-39.6) 39.0 (38.4-39.8)
## P
## 1 0.98
tabmedians(BloqueoSensitivo ~ GrupoTto, data=tabla0, columns=c("xgroups", "p"), parenth="q1q3", sep.char = "-")
## Variable Levobupivacaine (n = 33) Saline (n = 37)
## 1 BloqueoSensitivo, Median (Q1-Q3) 120.0 (100.0-135.0) 120.0 (100.0-130.0)
## P
## 1 0.73
tabmedians(URPA ~ GrupoTto, data=tabla0, columns=c("xgroups", "p"), parenth="q1q3", sep.char = "-")
## Variable Levobupivacaine (n = 33) Saline (n = 37) P
## 1 URPA, Median (Q1-Q3) 135.0 (120.0-180.0) 180.0 (120.0-180.0) 0.18
Hyperalgesia
tabmedians(AreaHiperalgesia24h ~ Group, data=tabla1, columns=c("xgroups", "p"), parenth="q1q3", sep.char = "-")
## Variable Levobupivacaine (n = 33)
## 1 AreaHiperalgesia24h, Median (Q1-Q3) 43.4 (18.5-80.0)
## Saline (n = 37) P
## 1 68.4 (39.0-136.3) 0.01
tabmedians(AreaHiperalgesia48h ~ Group, data=tabla1, columns=c("xgroups", "p"), parenth="q1q3", sep.char = "-")
## Variable Levobupivacaine (n = 33)
## 1 AreaHiperalgesia48h, Median (Q1-Q3) 45.1 (0.9-89.8)
## Saline (n = 37) P
## 1 67.3 (31.3-175.1) 0.03
tabmedians(AreaHiperalgesia72h ~ Group, data=tabla1, columns=c("xgroups", "p"), parenth="q1q3", sep.char = "-")
## Variable Levobupivacaine (n = 33) Saline (n = 37)
## 1 AreaHiperalgesia72h, Median (Q1-Q3) 57.8 (24.1-104.8) 57.4 (9.5-144.6)
## P
## 1 0.76
And now we calculated group:time interaction
set_theme(base = theme_minimal())
library(reshape2)
library(nparLD)
l<-c("24h", "48h", "72h")
lsign1<-c("24h\np=0.01", "48h\np=0.03", "72h")
lsign2<-c("24h\np=0.001", "48h", "72h")
lsign3<-c("4h", "24h\np=0.003", "48h\np=0.02")
#hay que cambiar vari
#hiperalgesis
vari<-c("AreaHiperalgesia24h",
"AreaHiperalgesia48h",
"AreaHiperalgesia72h")
AreaHiperalgesia<-melt(tabla1,
id.vars=c("Número", "Group"),
measure.vars=vari)
e<-nparLD(value ~ variable * Group, data=AreaHiperalgesia, subject="Número")
## Total number of observations: 210
## Total number of subjects: 70
## Total number of missing observations: 0
##
## Class level information
## -----------------------
## Levels of variable (sub-plot factor time) : 3
## Levels of Group (whole-plot factor group) : 2
##
## Abbreviations
## -----------------------
## RankMeans = Rank means
## Nobs = Number of observations
## RTE = Relative treatment effect
## case2x2 = tests for 2-by-2 design
## Wald.test = Wald-type test statistic
## ANOVA.test = ANOVA-type test statistic with Box approximation
## ANOVA.test.mod.Box = modified ANOVA-type test statistic with Box approximation
## Wald.test.time = Wald-type test statistic for simple time effect
## ANOVA.test.time = ANOVA-type test statistic for simple time effect
## N = Standard Normal Distribution N(0,1)
## T = Student's T distribution with respective degrees of freedom
## pattern.time (time effects) = Test against patterned alternatives in time using normal distribution ( no pattern specified )
## pair.comparison = Tests for pairwise comparisions (without specifying a pattern)
## pattern.pair.comparison = Test for pairwise comparisons with patterned alternatives in time ( no pattern specified )
## pattern.group (group effects) = Test against patterned alternatives in group ( no pattern specified )
## covariance = Covariance matrix
## Note: The description output above will disappear by setting description=FALSE in the input. See the help file for details.
##
## F1 LD F1 Model
## -----------------------
## Check that the order of the time and group levels are correct.
## Time level: AreaHiperalgesia24h AreaHiperalgesia48h AreaHiperalgesia72h
## Group level: Levobupivacaine Saline
## If the order is not correct, specify the correct order in time.order or group.order.
e$ANOVA.test
## Statistic df p-value
## Group 3.109590 1.000000 0.0778325397
## variable 0.130100 1.673347 0.8418924454
## Group:variable 8.982503 1.673347 0.0003414615
And we generated a plot
E<-ggplot(data = AreaHiperalgesia, aes(x = variable, y = value, fill=Group), ) +
geom_boxplot(outlier.shape = NA) +
xlab("time") +
ylab("cm²") +
ylim(0,400)+
scale_fill_manual(values=c("dark grey", "light grey"))+
scale_x_discrete(breaks=vari,
labels=lsign1)+
theme(legend.position = "none")
E <- E + labs(title="Hiperalgesia Area, group:time p < 0.001", tag="A")
E
Now, we repeated the same with pain threshold
tabmedians(UmbralDolor24 ~ Group, data=tabla1, columns=c("xgroups", "p"), parenth="q1q3", sep.char = "-")
## Variable Levobupivacaine (n = 33) Saline (n = 37)
## 1 UmbralDolor24, Median (Q1-Q3) 633.3 (441.3-802.7) 417.3 (300.0-572.0)
## P
## 1 0.001
tabmedians(UmbralDolor48 ~ Group, data=tabla1, columns=c("xgroups", "p"), parenth="q1q3", sep.char = "-")
## Variable Levobupivacaine (n = 33) Saline (n = 37)
## 1 UmbralDolor48, Median (Q1-Q3) 629.7 (391.3-871.7) 490.3 (282.3-830.0)
## P
## 1 0.30
tabmedians(UmbralDolor72 ~ Group, data=tabla1, columns=c("xgroups", "p"), parenth="q1q3", sep.char = "-")
## Variable Levobupivacaine (n = 33) Saline (n = 37)
## 1 UmbralDolor72, Median (Q1-Q3) 393.0 (242.7-800.0) 347.7 (253.7-830.0)
## P
## 1 0.69
vari<-c("UmbralDolor24",
"UmbralDolor48",
"UmbralDolor72")
UmbralDolor<-melt(tabla1,
id.vars=c("Número", "Group"),
measure.vars=vari)
e1<-nparLD(value ~ variable * Group, data=UmbralDolor, subject="Número")
## Total number of observations: 210
## Total number of subjects: 70
## Total number of missing observations: 0
##
## Class level information
## -----------------------
## Levels of variable (sub-plot factor time) : 3
## Levels of Group (whole-plot factor group) : 2
##
## Abbreviations
## -----------------------
## RankMeans = Rank means
## Nobs = Number of observations
## RTE = Relative treatment effect
## case2x2 = tests for 2-by-2 design
## Wald.test = Wald-type test statistic
## ANOVA.test = ANOVA-type test statistic with Box approximation
## ANOVA.test.mod.Box = modified ANOVA-type test statistic with Box approximation
## Wald.test.time = Wald-type test statistic for simple time effect
## ANOVA.test.time = ANOVA-type test statistic for simple time effect
## N = Standard Normal Distribution N(0,1)
## T = Student's T distribution with respective degrees of freedom
## pattern.time (time effects) = Test against patterned alternatives in time using normal distribution ( no pattern specified )
## pair.comparison = Tests for pairwise comparisions (without specifying a pattern)
## pattern.pair.comparison = Test for pairwise comparisons with patterned alternatives in time ( no pattern specified )
## pattern.group (group effects) = Test against patterned alternatives in group ( no pattern specified )
## covariance = Covariance matrix
## Note: The description output above will disappear by setting description=FALSE in the input. See the help file for details.
##
## F1 LD F1 Model
## -----------------------
## Check that the order of the time and group levels are correct.
## Time level: UmbralDolor24 UmbralDolor48 UmbralDolor72
## Group level: Levobupivacaine Saline
## If the order is not correct, specify the correct order in time.order or group.order.
e1$ANOVA.test
## Statistic df p-value
## Group 1.923724 1.00000 0.165446697
## variable 5.829538 1.75201 0.004451472
## Group:variable 6.624395 1.75201 0.002188580
E1<-ggplot(data = UmbralDolor, aes(x = variable, y = value, fill=Group), ) +
geom_boxplot(outlier.shape = NA) +
xlab("time") +
ylab("g/mm²") +
scale_fill_manual(values=c("dark grey", "light grey"))+
scale_x_discrete(breaks=vari, labels=lsign2)+
theme(legend.position = "none")+
ylim(0,1000)
E1 <- E1 + labs(title="Mechanical pain threshold, group:time p = 0.002", tag="B")
E1
Cumulative Morphine
tabmedians(NumeroBolosMorfina4h ~ Group, data=tabla1, columns=c("xgroups", "p"), parenth="q1q3", sep.char = "-")
## Variable Levobupivacaine (n = 33)
## 1 NumeroBolosMorfina4h, Median (Q1-Q3) 1.00 (0.00-2.00)
## Saline (n = 37) P
## 1 2.00 (0.00-4.00) 0.10
tabmedians(NumeroBolosMorfina24h ~ Group, data=tabla1, columns=c("xgroups", "p"), parenth="q1q3", sep.char = "-")
## Variable Levobupivacaine (n = 33)
## 1 NumeroBolosMorfina24h, Median (Q1-Q3) 4.0 (2.0-11.0)
## Saline (n = 37) P
## 1 11.0 (6.0-23.0) 0.003
tabmedians(NumeroBolosMorfina48h ~ Group, data=tabla1, columns=c("xgroups", "p"), parenth="q1q3", sep.char = "-")
## Variable Levobupivacaine (n = 33)
## 1 NumeroBolosMorfina48h, Median (Q1-Q3) 9.0 (4.0-16.0)
## Saline (n = 37) P
## 1 18.0 (9.0-34.0) 0.02
vari<-c("NumeroBolosMorfina4h",
"NumeroBolosMorfina24h",
"NumeroBolosMorfina48h")
BolosMorfina<-melt(tabla1,
id.vars=c("Número", "Group"),
measure.vars=vari)
h<-nparLD(value ~ variable * Group, BolosMorfina, subject="Número")
## Total number of observations: 210
## Total number of subjects: 70
## Total number of missing observations: 0
##
## Class level information
## -----------------------
## Levels of variable (sub-plot factor time) : 3
## Levels of Group (whole-plot factor group) : 2
##
## Abbreviations
## -----------------------
## RankMeans = Rank means
## Nobs = Number of observations
## RTE = Relative treatment effect
## case2x2 = tests for 2-by-2 design
## Wald.test = Wald-type test statistic
## ANOVA.test = ANOVA-type test statistic with Box approximation
## ANOVA.test.mod.Box = modified ANOVA-type test statistic with Box approximation
## Wald.test.time = Wald-type test statistic for simple time effect
## ANOVA.test.time = ANOVA-type test statistic for simple time effect
## N = Standard Normal Distribution N(0,1)
## T = Student's T distribution with respective degrees of freedom
## pattern.time (time effects) = Test against patterned alternatives in time using normal distribution ( no pattern specified )
## pair.comparison = Tests for pairwise comparisions (without specifying a pattern)
## pattern.pair.comparison = Test for pairwise comparisons with patterned alternatives in time ( no pattern specified )
## pattern.group (group effects) = Test against patterned alternatives in group ( no pattern specified )
## covariance = Covariance matrix
## Note: The description output above will disappear by setting description=FALSE in the input. See the help file for details.
##
## F1 LD F1 Model
## -----------------------
## Check that the order of the time and group levels are correct.
## Time level: NumeroBolosMorfina4h NumeroBolosMorfina24h NumeroBolosMorfina48h
## Group level: Levobupivacaine Saline
## If the order is not correct, specify the correct order in time.order or group.order.
h$ANOVA.test
## Statistic df p-value
## Group 7.842040 1.000000 5.104497e-03
## variable 178.873628 1.386686 2.390925e-55
## Group:variable 5.365765 1.386686 1.158632e-02
H<-ggplot(data = BolosMorfina, aes(x = variable, y = value, fill=Group), ) +
geom_boxplot(outlier.shape = NA) +
xlab("time") +
ylab("boluses") +
scale_fill_manual(values=c("dark grey", "light grey"))+
scale_x_discrete(breaks=vari,
labels=lsign3)+
theme(legend.position = "top")+
ylim(0,50)
E2 <- H + labs(title="Total of Morphine Boluses, group:time p = 0.012", tag="C")
E2
and finnaly Cumulative Acetaminophen
tabla1$AcumPara4<-tabla3$AcumPara4
tabla1$AcumPara24<-tabla3$AcumPara24
tabla1$AcumPara48<-tabla3$AcumPara48
tabmedians(AcumPara4 ~ Group, data=tabla1, columns=c("xgroups", "p"), parenth="q1q3", sep.char = "-")
## Variable Levobupivacaine (n = 33) Saline (n = 37) P
## 1 AcumPara4, Median (Q1-Q3) 0 (0-0) 0 (0-0) 0.22
tabmedians(AcumPara24 ~ Group, data=tabla1, columns=c("xgroups", "p"), parenth="q1q3", sep.char = "-")
## Variable Levobupivacaine (n = 33) Saline (n = 37) P
## 1 AcumPara24, Median (Q1-Q3) 0 (0-0) 0 (0-1) 0.10
tabmedians(AcumPara48 ~ Group, data=tabla1, columns=c("xgroups", "p"), parenth="q1q3", sep.char = "-")
## Variable Levobupivacaine (n = 33) Saline (n = 37) P
## 1 AcumPara48, Median (Q1-Q3) 0 (0-0) 0 (0-1) 0.18
vari<-c("AcumPara4",
"AcumPara24",
"AcumPara48")
AcumPara<-melt(tabla1,
id.vars=c("Número", "Group"),
measure.vars=vari)
v<-nparLD(value ~ variable * Group, AcumPara, subject="Número")
## Total number of observations: 210
## Total number of subjects: 70
## Total number of missing observations: 0
##
## Class level information
## -----------------------
## Levels of variable (sub-plot factor time) : 3
## Levels of Group (whole-plot factor group) : 2
##
## Abbreviations
## -----------------------
## RankMeans = Rank means
## Nobs = Number of observations
## RTE = Relative treatment effect
## case2x2 = tests for 2-by-2 design
## Wald.test = Wald-type test statistic
## ANOVA.test = ANOVA-type test statistic with Box approximation
## ANOVA.test.mod.Box = modified ANOVA-type test statistic with Box approximation
## Wald.test.time = Wald-type test statistic for simple time effect
## ANOVA.test.time = ANOVA-type test statistic for simple time effect
## N = Standard Normal Distribution N(0,1)
## T = Student's T distribution with respective degrees of freedom
## pattern.time (time effects) = Test against patterned alternatives in time using normal distribution ( no pattern specified )
## pair.comparison = Tests for pairwise comparisions (without specifying a pattern)
## pattern.pair.comparison = Test for pairwise comparisons with patterned alternatives in time ( no pattern specified )
## pattern.group (group effects) = Test against patterned alternatives in group ( no pattern specified )
## covariance = Covariance matrix
## Note: The description output above will disappear by setting description=FALSE in the input. See the help file for details.
##
## F1 LD F1 Model
## -----------------------
## Check that the order of the time and group levels are correct.
## Time level: AcumPara4 AcumPara24 AcumPara48
## Group level: Levobupivacaine Saline
## If the order is not correct, specify the correct order in time.order or group.order.
v$ANOVA.test
## Statistic df p-value
## Group 2.8044515 1.000000 0.0940029909
## variable 11.9316913 1.216307 0.0002105459
## Group:variable 0.8798906 1.216307 0.3677845403
H<-ggplot(data = AcumPara, aes(x = variable, y = value, fill=Group), ) +
geom_boxplot(outlier.shape = NA) +
xlab("time") +
ylab("g") +
scale_fill_manual(values=c("dark grey", "light grey"))+
scale_x_discrete(breaks=vari,
labels=l)+
theme(legend.position = "top")+
ylim(0,4)
E3 <- H + labs(title="Acetaminophen (Cumulative), group:time p = 0.274", tag="D")
E3
Now, we finish table 2:
tabmulti(DormirDecubitoLateral ~ GrupoTto,
data = tabla0,
ymeasures= "freq",
columns=c("xgroups", "p"),
n.headings=TRUE) %>% kable()
Variable | Levobupivacaine (n = 33) | Saline (n = 37) | P |
---|---|---|---|
DormirDecubitoLateral, n (%) | 0.02 | ||
No | 13 (39.4) | 25 (67.6) | |
Yes | 20 (60.6) | 12 (32.4) |
tabmedians(AmbulacionHora ~ GrupoTto, data=tabla3, columns=c("xgroups", "p"), parenth="q1q3", sep.char = "-")
## Variable Levobupivacaine (n = 33) Saline (n = 37)
## 1 AmbulacionHora, Median (Q1-Q3) 4.00 (2.00-22.00) 2.00 (1.00-12.00)
## P
## 1 0.48
tabmedians(ToleranciaOralHora ~ GrupoTto, data=tabla3, columns=c("xgroups", "p"), parenth="q1q3", sep.char = "-")
## Variable Levobupivacaine (n = 33) Saline (n = 37)
## 1 ToleranciaOralHora, Median (Q1-Q3) 4.00 (1.00-23.00) 3.00 (1.00-13.00)
## P
## 1 0.94
And we calculate DN4 and interaction
tabmedians(DN4_1 ~ Group, data=dn4, columns=c("xgroups", "p"), parenth="q1q3", sep.char = "-")
## Variable Levobupivacaine (n = 33) Saline (n = 37) P
## 1 DN4_1, Median (Q1-Q3) 2.00 (0.00-3.00) 2.00 (1.00-3.00) 0.82
tabmedians(DN4_4 ~ Group, data=dn4, columns=c("xgroups", "p"), parenth="q1q3", sep.char = "-")
## Variable Levobupivacaine (n = 33) Saline (n = 37) P
## 1 DN4_4, Median (Q1-Q3) 1.00 (1.00-3.00) 2.00 (0.00-2.00) 0.33
tabmedians(DN4_6 ~ Group, data=dn4, columns=c("xgroups", "p"), parenth="q1q3", sep.char = "-")
## Variable Levobupivacaine (n = 33) Saline (n = 37) P
## 1 DN4_6, Median (Q1-Q3) 0.00 (0.00-2.00) 1.00 (0.00-1.00) 0.75
tabmedians(DN4_12 ~ Group, data=dn4, columns=c("xgroups", "p"), parenth="q1q3", sep.char = "-")
## Variable Levobupivacaine (n = 33) Saline (n = 37) P
## 1 DN4_12, Median (Q1-Q3) 0 (0-1) 0 (0-1) 0.54
l<-c("1m", "4m", "6m", "12m")
vari<-c("DN4_1", "DN4_4", "DN4_6", "DN4_12")
DN4<-melt(dn4,
id.vars=c("Numero", "Group"),
measure.vars=vari)
y<-nparLD(value ~ variable * Group, data=DN4, subject="Numero")
## Total number of observations: 280
## Total number of subjects: 70
## Total number of missing observations: 0
##
## Class level information
## -----------------------
## Levels of variable (sub-plot factor time) : 4
## Levels of Group (whole-plot factor group) : 2
##
## Abbreviations
## -----------------------
## RankMeans = Rank means
## Nobs = Number of observations
## RTE = Relative treatment effect
## case2x2 = tests for 2-by-2 design
## Wald.test = Wald-type test statistic
## ANOVA.test = ANOVA-type test statistic with Box approximation
## ANOVA.test.mod.Box = modified ANOVA-type test statistic with Box approximation
## Wald.test.time = Wald-type test statistic for simple time effect
## ANOVA.test.time = ANOVA-type test statistic for simple time effect
## N = Standard Normal Distribution N(0,1)
## T = Student's T distribution with respective degrees of freedom
## pattern.time (time effects) = Test against patterned alternatives in time using normal distribution ( no pattern specified )
## pair.comparison = Tests for pairwise comparisions (without specifying a pattern)
## pattern.pair.comparison = Test for pairwise comparisons with patterned alternatives in time ( no pattern specified )
## pattern.group (group effects) = Test against patterned alternatives in group ( no pattern specified )
## covariance = Covariance matrix
## Note: The description output above will disappear by setting description=FALSE in the input. See the help file for details.
##
## F1 LD F1 Model
## -----------------------
## Check that the order of the time and group levels are correct.
## Time level: DN4_1 DN4_4 DN4_6 DN4_12
## Group level: Levobupivacaine Saline
## If the order is not correct, specify the correct order in time.order or group.order.
y$ANOVA.test
## Statistic df p-value
## Group 0.2464455 1.000000 6.195891e-01
## variable 30.2330638 2.740712 4.580421e-18
## Group:variable 0.4280706 2.740712 7.149840e-01
Now, we analyze pain (visceral / somatic, rest, movement)
Somatic Pain at Rest
tabmulti(EVADolorSReposo0 + EVADolorSReposo30m + EVADolorSReposo1h + EVADolorSReposo2h + EVADolorSReposo4h + EVADolorSReposo24h + EVADolorSReposo48h + EVADolorSReposo72h ~ Group,
data = tabla1,
ymeasures= "median",
columns=c("xgroups", "p"),
n.headings=TRUE) %>% kable()
Variable | Levobupivacaine (n = 33) | Saline (n = 37) | P |
---|---|---|---|
EVADolorSReposo0, Median (IQR) | 0 (0) | 0 (0) | 0.36 |
EVADolorSReposo30m, Median (IQR) | 0 (0) | 0 (0) | 0.94 |
EVADolorSReposo1h, Median (IQR) | 0 (0) | 0 (0) | 0.47 |
EVADolorSReposo2h, Median (IQR) | 0.00 (2.00) | 1.00 (2.00) | 0.18 |
EVADolorSReposo4h, Median (IQR) | 1.00 (3.00) | 2.00 (3.00) | 0.19 |
EVADolorSReposo24h, Median (IQR) | 0 (1) | 0 (2) | 0.13 |
EVADolorSReposo48h, Median (IQR) | 0 (0) | 0 (0) | 0.91 |
EVADolorSReposo72h, Median (IQR) | 0 (0) | 0 (0) | 0.60 |
Visceral Pain at Rest
Variable | Overall (n = 70) | Levobupivacaine (n = 33) | Saline (n = 37) | P |
---|---|---|---|---|
EVADolorVReposo0, Median (IQR) | 0 (0) | 0 (0) | 0 (0) | 0.49 |
EVADolorVReposo30m, Median (IQR) | 0 (0) | 0 (0) | 0 (0) | 0.66 |
EVADolorVReposo1h, Median (IQR) | 0 (0) | 0 (0) | 0 (1) | 0.22 |
EVADolorVReposo2h, Median (IQR) | 0.00 (2.00) | 0.00 (1.00) | 1.00 (3.00) | 0.24 |
EVADolorVReposo4h, Median (IQR) | 2.00 (4.00) | 2.00 (3.00) | 2.00 (4.00) | 0.22 |
EVADolorVReposo24h, Median (IQR) | 0 (1) | 0 (1) | 0 (1) | 0.68 |
EVADolorVReposo48h, Median (IQR) | 0 (0) | 0 (0) | 0 (0) | 0.99 |
EVADolorVReposo72h, Median (IQR) | 0 (0) | 0 (0) | 0 (0) | 0.52 |
Somatic Pain at Movement
tabmulti(EVADolorSMovimiento0 + EVADolorSMovimiento30m + EVADolorSMovimiento1h + EVADolorSMovimiento2h + EVADolorSMovimiento4h + EVADolorSMovimiento24h + EVADolorSMovimiento48h + EVADolorSMovimiento72h ~ Group,
data = tabla1,
ymeasures= "median",
columns=c("overall", "xgroups", "p"),
n.headings=TRUE) %>% kable()
Variable | Overall (n = 70) | Levobupivacaine (n = 33) | Saline (n = 37) | P |
---|---|---|---|---|
EVADolorSMovimiento0, Median (IQR) | 0 (0) | 0 (0) | 0 (0) | 0.22 |
EVADolorSMovimiento30m, Median (IQR) | 0 (1) | 0 (1) | 0 (0) | 0.37 |
EVADolorSMovimiento1h, Median (IQR) | 0 (1) | 0 (2) | 0 (1) | 0.87 |
EVADolorSMovimiento2h, Median (IQR) | 2.00 (3.00) | 1.00 (3.00) | 2.00 (3.00) | 0.51 |
EVADolorSMovimiento4h, Median (IQR) | 3.00 (2.75) | 3.00 (3.00) | 3.00 (3.00) | 0.30 |
EVADolorSMovimiento24h, Median (IQR) | 4.00 (3.00) | 2.00 (3.00) | 4.00 (3.00) | 0.11 |
EVADolorSMovimiento48h, Median (IQR) | 2.00 (3.00) | 2.00 (3.00) | 2.00 (3.00) | 0.56 |
EVADolorSMovimiento72h, Median (IQR) | 1.00 (3.00) | 1.00 (3.00) | 1.00 (3.00) | 0.99 |
visceral pain at movement
Variable | Overall (n = 70) | Levobupivacaine (n = 33) | Saline (n = 37) | P |
---|---|---|---|---|
EVADolorVMovimiento0, Median (IQR) | 0 (0) | 0 (0) | 0 (0) | 0.25 |
EVADolorVMovimiento30m, Median (IQR) | 0 (0) | 0 (0) | 0 (0) | 0.64 |
EVADolorVMovimiento1h, Median (IQR) | 0 (1) | 0 (0) | 0 (1) | 0.22 |
EVADolorVMovimiento2h, Median (IQR) | 1.00 (3.00) | 0.00 (2.00) | 1.00 (3.00) | 0.45 |
EVADolorVMovimiento4h, Median (IQR) | 3.00 (4.75) | 3.00 (4.00) | 3.00 (5.00) | 0.36 |
EVADolorVMovimiento24h, Median (IQR) | 0 (4) | 0 (3) | 0 (4) | 0.75 |
EVADolorVMovimiento48h, Median (IQR) | 0 (0) | 0 (0) | 0 (0) | 0.65 |
EVADolorVMovimiento72h, Median (IQR) | 0 (0) | 0 (0) | 0 (0) | 0.62 |
After that, we generate 4 plots:
## Total number of observations: 560
## Total number of subjects: 70
## Total number of missing observations: 0
##
## Class level information
## -----------------------
## Levels of variable (sub-plot factor time) : 8
## Levels of Group (whole-plot factor group) : 2
##
## Abbreviations
## -----------------------
## RankMeans = Rank means
## Nobs = Number of observations
## RTE = Relative treatment effect
## case2x2 = tests for 2-by-2 design
## Wald.test = Wald-type test statistic
## ANOVA.test = ANOVA-type test statistic with Box approximation
## ANOVA.test.mod.Box = modified ANOVA-type test statistic with Box approximation
## Wald.test.time = Wald-type test statistic for simple time effect
## ANOVA.test.time = ANOVA-type test statistic for simple time effect
## N = Standard Normal Distribution N(0,1)
## T = Student's T distribution with respective degrees of freedom
## pattern.time (time effects) = Test against patterned alternatives in time using normal distribution ( no pattern specified )
## pair.comparison = Tests for pairwise comparisions (without specifying a pattern)
## pattern.pair.comparison = Test for pairwise comparisons with patterned alternatives in time ( no pattern specified )
## pattern.group (group effects) = Test against patterned alternatives in group ( no pattern specified )
## covariance = Covariance matrix
## Note: The description output above will disappear by setting description=FALSE in the input. See the help file for details.
##
## F1 LD F1 Model
## -----------------------
## Check that the order of the time and group levels are correct.
## Time level: EVADolorSReposo0 EVADolorSReposo30m EVADolorSReposo1h EVADolorSReposo2h EVADolorSReposo4h EVADolorSReposo24h EVADolorSReposo48h EVADolorSReposo72h
## Group level: Levobupivacaine Saline
## If the order is not correct, specify the correct order in time.order or group.order.
##
##
## Warning(s):
## The covariance matrix is singular.
Statistic | df | p-value | |
---|---|---|---|
Group | 2.4365116 | 1.000000 | 0.1185396 |
variable | 24.8695273 | 5.029738 | 0.0000000 |
Group:variable | 0.7630498 | 5.029738 | 0.5770395 |
## Total number of observations: 560
## Total number of subjects: 70
## Total number of missing observations: 0
##
## Class level information
## -----------------------
## Levels of variable (sub-plot factor time) : 8
## Levels of Group (whole-plot factor group) : 2
##
## Abbreviations
## -----------------------
## RankMeans = Rank means
## Nobs = Number of observations
## RTE = Relative treatment effect
## case2x2 = tests for 2-by-2 design
## Wald.test = Wald-type test statistic
## ANOVA.test = ANOVA-type test statistic with Box approximation
## ANOVA.test.mod.Box = modified ANOVA-type test statistic with Box approximation
## Wald.test.time = Wald-type test statistic for simple time effect
## ANOVA.test.time = ANOVA-type test statistic for simple time effect
## N = Standard Normal Distribution N(0,1)
## T = Student's T distribution with respective degrees of freedom
## pattern.time (time effects) = Test against patterned alternatives in time using normal distribution ( no pattern specified )
## pair.comparison = Tests for pairwise comparisions (without specifying a pattern)
## pattern.pair.comparison = Test for pairwise comparisons with patterned alternatives in time ( no pattern specified )
## pattern.group (group effects) = Test against patterned alternatives in group ( no pattern specified )
## covariance = Covariance matrix
## Note: The description output above will disappear by setting description=FALSE in the input. See the help file for details.
##
## F1 LD F1 Model
## -----------------------
## Check that the order of the time and group levels are correct.
## Time level: EVADolorVReposo0 EVADolorVReposo30m EVADolorVReposo1h EVADolorVReposo2h EVADolorVReposo4h EVADolorVReposo24h EVADolorVReposo48h EVADolorVReposo72h
## Group level: Levobupivacaine Saline
## If the order is not correct, specify the correct order in time.order or group.order.
## Statistic df p-value
## Group 0.6511926 1.00000 4.196866e-01
## variable 32.1342002 4.51179 6.390016e-30
## Group:variable 0.9419341 4.51179 4.459718e-01
## Total number of observations: 560
## Total number of subjects: 70
## Total number of missing observations: 0
##
## Class level information
## -----------------------
## Levels of variable (sub-plot factor time) : 8
## Levels of Group (whole-plot factor group) : 2
##
## Abbreviations
## -----------------------
## RankMeans = Rank means
## Nobs = Number of observations
## RTE = Relative treatment effect
## case2x2 = tests for 2-by-2 design
## Wald.test = Wald-type test statistic
## ANOVA.test = ANOVA-type test statistic with Box approximation
## ANOVA.test.mod.Box = modified ANOVA-type test statistic with Box approximation
## Wald.test.time = Wald-type test statistic for simple time effect
## ANOVA.test.time = ANOVA-type test statistic for simple time effect
## N = Standard Normal Distribution N(0,1)
## T = Student's T distribution with respective degrees of freedom
## pattern.time (time effects) = Test against patterned alternatives in time using normal distribution ( no pattern specified )
## pair.comparison = Tests for pairwise comparisions (without specifying a pattern)
## pattern.pair.comparison = Test for pairwise comparisons with patterned alternatives in time ( no pattern specified )
## pattern.group (group effects) = Test against patterned alternatives in group ( no pattern specified )
## covariance = Covariance matrix
## Note: The description output above will disappear by setting description=FALSE in the input. See the help file for details.
##
## F1 LD F1 Model
## -----------------------
## Check that the order of the time and group levels are correct.
## Time level: EVADolorSMovimiento0 EVADolorSMovimiento30m EVADolorSMovimiento1h EVADolorSMovimiento2h EVADolorSMovimiento4h EVADolorSMovimiento24h EVADolorSMovimiento48h EVADolorSMovimiento72h
## Group level: Levobupivacaine Saline
## If the order is not correct, specify the correct order in time.order or group.order.
## Statistic df p-value
## Group 0.6949119 1.000000 4.044987e-01
## variable 52.3545166 4.322238 1.651518e-47
## Group:variable 0.7214322 4.322238 5.875186e-01
## Total number of observations: 560
## Total number of subjects: 70
## Total number of missing observations: 0
##
## Class level information
## -----------------------
## Levels of variable (sub-plot factor time) : 8
## Levels of Group (whole-plot factor group) : 2
##
## Abbreviations
## -----------------------
## RankMeans = Rank means
## Nobs = Number of observations
## RTE = Relative treatment effect
## case2x2 = tests for 2-by-2 design
## Wald.test = Wald-type test statistic
## ANOVA.test = ANOVA-type test statistic with Box approximation
## ANOVA.test.mod.Box = modified ANOVA-type test statistic with Box approximation
## Wald.test.time = Wald-type test statistic for simple time effect
## ANOVA.test.time = ANOVA-type test statistic for simple time effect
## N = Standard Normal Distribution N(0,1)
## T = Student's T distribution with respective degrees of freedom
## pattern.time (time effects) = Test against patterned alternatives in time using normal distribution ( no pattern specified )
## pair.comparison = Tests for pairwise comparisions (without specifying a pattern)
## pattern.pair.comparison = Test for pairwise comparisons with patterned alternatives in time ( no pattern specified )
## pattern.group (group effects) = Test against patterned alternatives in group ( no pattern specified )
## covariance = Covariance matrix
## Note: The description output above will disappear by setting description=FALSE in the input. See the help file for details.
##
## F1 LD F1 Model
## -----------------------
## Check that the order of the time and group levels are correct.
## Time level: EVADolorVMovimiento0 EVADolorVMovimiento30m EVADolorVMovimiento1h EVADolorVMovimiento2h EVADolorVMovimiento4h EVADolorVMovimiento24h EVADolorVMovimiento48h EVADolorVMovimiento72h
## Group level: Levobupivacaine Saline
## If the order is not correct, specify the correct order in time.order or group.order.
## Statistic df p-value
## Group 0.4897076 1.000000 4.840578e-01
## variable 27.5290758 4.763447 9.015586e-27
## Group:variable 0.7058735 4.763447 6.121294e-01
And with the plot, we can generate Figure 2`
Figure2<-ggarrange(E,E1, E2, E3, A, B, C, D, ncol=2, nrow=4, common.legend = TRUE, legend = "top")
Figure2
Kaplan Meier: Morphine free time
library(gridExtra)
library(ggpubr)
tabla1$Libremorfina<-(tabla1$HorasMorfina1*60+tabla1$MinutosMorfina1)/60
tabla1$censormorfina[tabla1$NumeroBolosMorfina48h==0]<-0
tabla1$censormorfina[tabla1$NumeroBolosMorfina48h!=0]<-1
fit <-survfit(Surv(time=tabla1$Libremorfina, event=tabla1$censormorfina) ~ tabla1$Group)
G<-ggsurvplot(fit,
data = tabla1,
pval = TRUE,
legend = c(0.8,0.8),
risk.table = "abs_pct",
xlim = c(0,48),
break.time.by=12,
palette=c("black", "dark grey"),
xlab = "Hours",
ylab = "Morphine-free Patients (%)",
surv.scale="percent",
risk.table.title = "Number of Morphine-free Patients (%)")
Figure3 <- G
Figure3
Biochemical parameters
**** ANALITICAS
Variable | Overall (n = 70) | Levobupivacaine (n = 37) | Saline (n = 33) | P |
---|---|---|---|---|
PCRPre, M (SD) | 0.82 (1.04) | 0.87 (1.31) | 0.77 (0.63) | 0.71 |
PCRPost, M (SD) | 0.76 (0.95) | 0.79 (1.20) | 0.73 (0.56) | 0.81 |
PCR8h, M (SD) | 1.61 (2.17) | 1.90 (2.87) | 1.28 (0.83) | 0.22 |
PCR1d, M (SD) | 9.8 (3.8) | 10.0 (4.4) | 9.6 (3.0) | 0.66 |
PCR2d, M (SD) | 8.88 (3.66) | 9.11 (4.33) | 8.63 (2.76) | 0.57 |
Variable | Overall (n = 70) | Levobupivacaine (n = 37) | Saline (n = 33) | P |
---|---|---|---|---|
AlfaGAPre, M (SD) | 57.7 (12.9) | 56.9 (12.0) | 58.6 (14.0) | 0.60 |
AlfaGAPost, M (SD) | 50.8 (12.1) | 50.5 (11.4) | 51.2 (13.0) | 0.82 |
AlfaGA8h, M (SD) | 52.7 (19.9) | 53.4 (25.1) | 51.8 (12.0) | 0.73 |
AlfaGA1d, M (SD) | 79.3 (18.3) | 79.2 (20.5) | 79.4 (15.7) | 0.96 |
AlfaGA2d, M (SD) | 108.7 (20.1) | 108.2 (23.5) | 109.3 (15.7) | 0.82 |
Variable | Overall (n = 70) | Levobupivacaine (n = 37) | Saline (n = 33) | P |
---|---|---|---|---|
GlucosaPre, M (SD) | 73.0 (10.7) | 73.0 (18.5) | 71.2 (10.3) | 0.54 |
GlucosaPost, M (SD) | 76.1 (7.8) | 74.2 (8.1) | 78.8 (8.2) | 0.07 |
Glucosa8h, M (SD) | 77.7 (21.4) | 73.5 (13.3) | 93.4 (27.8) | <0.001 |
Glucosa1d, M (SD) | 93.9 (13.9) | 92.0 (17.4) | 102.3 (21.3) | 0.04 |
Glucosa2d, M (SD) | 92.8 (23.9) | 96.6 (37.2) | 103.5 (20.5) | 0.28 |
Variable | Overall (n = 70) | Levobupivacaine (n = 37) | Saline (n = 33) | P |
---|---|---|---|---|
InsulinaPre, M (SD) | 3.13 (0.49) | 3.07 (0.56) | 3.19 (0.39) | 0.30 |
InsulinaPost, M (SD) | 3.27 (0.65) | 2.94 (0.54) | 3.65 (0.55) | <0.001 |
Insulina8h, M (SD) | 1.41 (0.66) | 0.94 (0.39) | 1.94 (0.48) | <0.001 |
Insulina1d, M (SD) | 7.54 (2.99) | 5.89 (2.17) | 9.39 (2.71) | <0.001 |
Insulina2d, M (SD) | 8.2 (3.9) | 5.8 (2.7) | 10.9 (3.4) | <0.001 |
Variable | Overall (n = 70) | Levobupivacaine (n = 37) | Saline (n = 33) | P |
---|---|---|---|---|
CortisolPre, M (SD) | 27.9 (5.7) | 28.0 (6.3) | 27.8 (5.0) | 0.93 |
CortisolPost, M (SD) | 34.1 (9.0) | 35.6 (10.4) | 32.5 (7.0) | 0.14 |
Cortisol8h, M (SD) | 17.4 (7.8) | 16.1 (7.8) | 18.8 (7.7) | 0.15 |
Cortisol1d, M (SD) | 20.0 (8.0) | 19.6 (7.4) | 20.6 (8.7) | 0.60 |
Cortisol2d, M (SD) | 17.7 (6.3) | 18.1 (7.5) | 17.3 (4.7) | 0.58 |
Variable | Overall (n = 70) | Levobupivacaine (n = 37) | Saline (n = 33) | P |
---|---|---|---|---|
ProlactinaPre, M (SD) | 405.3 (198.8) | 391.3 (154.0) | 421.0 (241.0) | 0.55 |
ProlactinaPost, M (SD) | 318.9 (124.8) | 322.2 (111.9) | 315.1 (139.5) | 0.82 |
Prolactina8h, M (SD) | 195.3 (82.4) | 198.8 (85.6) | 191.3 (79.8) | 0.70 |
Prolactina1d, M (SD) | 206.2 (85.7) | 204.9 (68.6) | 207.7 (102.6) | 0.89 |
Prolactina2d, M (SD) | 182.4 (79.8) | 194.2 (86.7) | 169.1 (70.2) | 0.19 |
Variable | Overall (n = 70) | Levobupivacaine (n = 37) | Saline (n = 33) | P |
---|---|---|---|---|
GHPre, M (SD) | 0.60 (1.05) | 0.49 (0.61) | 0.71 (1.38) | 0.40 |
GHPost, M (SD) | 0.27 (0.37) | 0.32 (0.44) | 0.21 (0.28) | 0.24 |
GH8h, M (SD) | 0.52 (0.86) | 0.48 (0.80) | 0.56 (0.92) | 0.71 |
GH1d, M (SD) | 1.42 (2.47) | 1.09 (1.11) | 1.80 (3.39) | 0.26 |
GH2d, M (SD) | 0.70 (1.37) | 0.50 (0.70) | 0.93 (1.84) | 0.21 |
Variable | Overall (n = 70) | Levobupivacaine (n = 37) | Saline (n = 33) | P |
---|---|---|---|---|
IL6Pre, M (SD) | 6.29 (12.16) | 7.75 (14.00) | 4.65 (9.66) | 0.28 |
IL6Post, M (SD) | 8.49 (11.66) | 9.82 (14.46) | 7.00 (7.31) | 0.30 |
IL68h, M (SD) | 64.8 (38.1) | 69.6 (43.1) | 59.3 (31.4) | 0.25 |
IL61d, M (SD) | 37.2 (22.7) | 37.3 (21.1) | 37.1 (24.7) | 0.97 |
IL62d, M (SD) | 21.6 (21.1) | 24.5 (22.7) | 18.4 (19.0) | 0.23 |
## Total number of observations: 350
## Total number of subjects: 70
## Total number of missing observations: 0
##
## Class level information
## -----------------------
## Levels of variable (sub-plot factor time) : 5
## Levels of Group (whole-plot factor group) : 2
##
## Abbreviations
## -----------------------
## RankMeans = Rank means
## Nobs = Number of observations
## RTE = Relative treatment effect
## case2x2 = tests for 2-by-2 design
## Wald.test = Wald-type test statistic
## ANOVA.test = ANOVA-type test statistic with Box approximation
## ANOVA.test.mod.Box = modified ANOVA-type test statistic with Box approximation
## Wald.test.time = Wald-type test statistic for simple time effect
## ANOVA.test.time = ANOVA-type test statistic for simple time effect
## N = Standard Normal Distribution N(0,1)
## T = Student's T distribution with respective degrees of freedom
## pattern.time (time effects) = Test against patterned alternatives in time using normal distribution ( no pattern specified )
## pair.comparison = Tests for pairwise comparisions (without specifying a pattern)
## pattern.pair.comparison = Test for pairwise comparisons with patterned alternatives in time ( no pattern specified )
## pattern.group (group effects) = Test against patterned alternatives in group ( no pattern specified )
## covariance = Covariance matrix
## Note: The description output above will disappear by setting description=FALSE in the input. See the help file for details.
##
## F1 LD F1 Model
## -----------------------
## Check that the order of the time and group levels are correct.
## Time level: PCRPre PCRPost PCR8h PCR1d PCR2d
## Group level: Saline Levobupivacaine
## If the order is not correct, specify the correct order in time.order or group.order.
## Statistic df p-value
## Group 0.06189984 1.000000 8.035180e-01
## variable 495.68226271 2.493272 2.317233e-268
## Group:variable 0.17586117 2.493272 8.817169e-01
data_summary <- function(data, varname, groupnames){
require(plyr)
summary_func <- function(x, col){
c(mean = mean(x[[col]], na.rm=TRUE),
sd = sd(x[[col]], na.rm=TRUE))
}
data_sum<-ddply(data, groupnames, .fun=summary_func,
varname)
data_sum <- rename(data_sum, c("mean" = varname))
return(data_sum)
}
prueba <- data_summary(data=PCR , varname="value", groupnames=c("Group", "variable"))
K<-ggplot(prueba, aes(x=variable, y=value, group=Group, shape=Group, linetype=Group)) +
geom_errorbar(aes(ymin=value-sd, ymax=value+sd), width=.1, position=position_dodge(0.05)) +
geom_line() + geom_point()+ theme_classic() +
xlab("time") +
ylab(expression(paste(mu,"g/dL"))) +
scale_fill_manual(labels=c("Levobupivacaine", "Saline"))+
scale_x_discrete(breaks=vari,labels=l)+
theme(legend.position = "none")
K <- K + labs(title="C-Reactive Protein, ANOVA test p = 0.881", tag="A")
K
#AlfaGA
vari<-c("AlfaGAPre",
"AlfaGAPost",
"AlfaGA8h",
"AlfaGA1d",
"AlfaGA2d")
AlfaGA<-melt(tabla2,
id.vars=c("Número", "Group"),
measure.vars=vari)
l1<-nparLD(value ~ variable * Group, data=AlfaGA, subject="Número")
## Total number of observations: 350
## Total number of subjects: 70
## Total number of missing observations: 0
##
## Class level information
## -----------------------
## Levels of variable (sub-plot factor time) : 5
## Levels of Group (whole-plot factor group) : 2
##
## Abbreviations
## -----------------------
## RankMeans = Rank means
## Nobs = Number of observations
## RTE = Relative treatment effect
## case2x2 = tests for 2-by-2 design
## Wald.test = Wald-type test statistic
## ANOVA.test = ANOVA-type test statistic with Box approximation
## ANOVA.test.mod.Box = modified ANOVA-type test statistic with Box approximation
## Wald.test.time = Wald-type test statistic for simple time effect
## ANOVA.test.time = ANOVA-type test statistic for simple time effect
## N = Standard Normal Distribution N(0,1)
## T = Student's T distribution with respective degrees of freedom
## pattern.time (time effects) = Test against patterned alternatives in time using normal distribution ( no pattern specified )
## pair.comparison = Tests for pairwise comparisions (without specifying a pattern)
## pattern.pair.comparison = Test for pairwise comparisons with patterned alternatives in time ( no pattern specified )
## pattern.group (group effects) = Test against patterned alternatives in group ( no pattern specified )
## covariance = Covariance matrix
## Note: The description output above will disappear by setting description=FALSE in the input. See the help file for details.
##
## F1 LD F1 Model
## -----------------------
## Check that the order of the time and group levels are correct.
## Time level: AlfaGAPre AlfaGAPost AlfaGA8h AlfaGA1d AlfaGA2d
## Group level: Saline Levobupivacaine
## If the order is not correct, specify the correct order in time.order or group.order.
l1$ANOVA.test
## Statistic df p-value
## Group 0.2144365 1.000000 6.433121e-01
## variable 394.3515165 2.582871 4.551915e-221
## Group:variable 0.1034942 2.582871 9.405562e-01
prueba <- data_summary(data=AlfaGA , varname="value", groupnames=c("Group", "variable"))
L<-ggplot(prueba, aes(x=variable, y=value, group=Group, shape=Group, linetype=Group)) +
geom_errorbar(aes(ymin=value-sd, ymax=value+sd), width=.1, position=position_dodge(0.05)) +
geom_line() + geom_point()+ theme_classic() +
xlab("time") +
ylab("mg/mL") +
scale_fill_manual(labels=c("Levobupivacaine", "Saline"))+
scale_x_discrete(breaks=vari,labels=l)+
theme(legend.position = "none")
L <- L + labs(title=expression(paste(alpha[1],"-Acid Glycoprotein, ANOVA test p = 0.940")), tag="B")
L
#Glucosa
vari<-c("GlucosaPre",
"GlucosaPost",
"Glucosa8h",
"Glucosa1d",
"Glucosa2d")
Glucosa<-melt(tabla2,
id.vars=c("Número", "Group"),
measure.vars=vari)
m<-nparLD(value ~ variable * Group, data=Glucosa, subject="Número")
## Total number of observations: 350
## Total number of subjects: 70
## Total number of missing observations: 0
##
## Class level information
## -----------------------
## Levels of variable (sub-plot factor time) : 5
## Levels of Group (whole-plot factor group) : 2
##
## Abbreviations
## -----------------------
## RankMeans = Rank means
## Nobs = Number of observations
## RTE = Relative treatment effect
## case2x2 = tests for 2-by-2 design
## Wald.test = Wald-type test statistic
## ANOVA.test = ANOVA-type test statistic with Box approximation
## ANOVA.test.mod.Box = modified ANOVA-type test statistic with Box approximation
## Wald.test.time = Wald-type test statistic for simple time effect
## ANOVA.test.time = ANOVA-type test statistic for simple time effect
## N = Standard Normal Distribution N(0,1)
## T = Student's T distribution with respective degrees of freedom
## pattern.time (time effects) = Test against patterned alternatives in time using normal distribution ( no pattern specified )
## pair.comparison = Tests for pairwise comparisions (without specifying a pattern)
## pattern.pair.comparison = Test for pairwise comparisons with patterned alternatives in time ( no pattern specified )
## pattern.group (group effects) = Test against patterned alternatives in group ( no pattern specified )
## covariance = Covariance matrix
## Note: The description output above will disappear by setting description=FALSE in the input. See the help file for details.
##
## F1 LD F1 Model
## -----------------------
## Check that the order of the time and group levels are correct.
## Time level: GlucosaPre GlucosaPost Glucosa8h Glucosa1d Glucosa2d
## Group level: Saline Levobupivacaine
## If the order is not correct, specify the correct order in time.order or group.order.
m$ANOVA.test
## Statistic df p-value
## Group 13.8302958 1.000000 2.000839e-04
## variable 30.1562700 3.309549 3.095740e-21
## Group:variable 0.9514672 3.309549 4.210281e-01
prueba <- data_summary(data=Glucosa , varname="value", groupnames=c("Group", "variable"))
M<-ggplot(prueba, aes(x=variable, y=value, group=Group, shape=Group, linetype=Group)) +
geom_errorbar(aes(ymin=value-sd, ymax=value+sd), width=.1, position=position_dodge(0.05)) +
geom_line() + geom_point()+ theme_classic() +
xlab("time") +
ylab("mg/mL") +
scale_fill_manual(labels=c("Levobupivacaine", "Saline"))+
scale_x_discrete(breaks=vari,labels=lsign1)+
theme(legend.position = "none")
M <- M + labs(title="Glucose, ANOVA test p = 0.025", tag="C")
M
#Insulina
vari<-c("InsulinaPre",
"InsulinaPost",
"Insulina8h",
"Insulina1d",
"Insulina2d")
Insulina<-melt(tabla2,
id.vars=c("Número", "Group"),
measure.vars=vari)
n<-nparLD(value ~ variable * Group, data=Insulina, subject="Número")
## Total number of observations: 350
## Total number of subjects: 70
## Total number of missing observations: 0
##
## Class level information
## -----------------------
## Levels of variable (sub-plot factor time) : 5
## Levels of Group (whole-plot factor group) : 2
##
## Abbreviations
## -----------------------
## RankMeans = Rank means
## Nobs = Number of observations
## RTE = Relative treatment effect
## case2x2 = tests for 2-by-2 design
## Wald.test = Wald-type test statistic
## ANOVA.test = ANOVA-type test statistic with Box approximation
## ANOVA.test.mod.Box = modified ANOVA-type test statistic with Box approximation
## Wald.test.time = Wald-type test statistic for simple time effect
## ANOVA.test.time = ANOVA-type test statistic for simple time effect
## N = Standard Normal Distribution N(0,1)
## T = Student's T distribution with respective degrees of freedom
## pattern.time (time effects) = Test against patterned alternatives in time using normal distribution ( no pattern specified )
## pair.comparison = Tests for pairwise comparisions (without specifying a pattern)
## pattern.pair.comparison = Test for pairwise comparisons with patterned alternatives in time ( no pattern specified )
## pattern.group (group effects) = Test against patterned alternatives in group ( no pattern specified )
## covariance = Covariance matrix
## Note: The description output above will disappear by setting description=FALSE in the input. See the help file for details.
##
## F1 LD F1 Model
## -----------------------
## Check that the order of the time and group levels are correct.
## Time level: InsulinaPre InsulinaPost Insulina8h Insulina1d Insulina2d
## Group level: Saline Levobupivacaine
## If the order is not correct, specify the correct order in time.order or group.order.
n$ANOVA.test
## Statistic df p-value
## Group 91.401909 1.000000 1.172633e-21
## variable 298.665953 3.102983 1.903294e-200
## Group:variable 7.171013 3.102983 6.554885e-05
prueba <- data_summary(data=Insulina , varname="value", groupnames=c("Group", "variable"))
N<-ggplot(prueba, aes(x=variable, y=value, group=Group, shape=Group, linetype=Group)) +
geom_errorbar(aes(ymin=value-sd, ymax=value+sd), width=.1, position=position_dodge(0.05)) +
geom_line() + geom_point()+ theme_classic() +
xlab("time") +
ylab(expression(paste(mu,"UI/mL"))) +
scale_fill_manual(labels=c("Levobupivacaine", "Saline"))+
scale_x_discrete(breaks=vari,labels=lsign2)+
theme(legend.position = "none")
N <- N + labs(title="Insulin, ANOVA test p = 0.002", tag="D")
N
#Cortisol
vari<-c("CortisolPre",
"CortisolPost",
"Cortisol8h",
"Cortisol1d",
"Cortisol2d")
Cortisol<-melt(tabla2,
id.vars=c("Número", "Group"),
measure.vars=vari)
o<-nparLD(value ~ variable * Group, data=Cortisol, subject="Número")
## Total number of observations: 350
## Total number of subjects: 70
## Total number of missing observations: 0
##
## Class level information
## -----------------------
## Levels of variable (sub-plot factor time) : 5
## Levels of Group (whole-plot factor group) : 2
##
## Abbreviations
## -----------------------
## RankMeans = Rank means
## Nobs = Number of observations
## RTE = Relative treatment effect
## case2x2 = tests for 2-by-2 design
## Wald.test = Wald-type test statistic
## ANOVA.test = ANOVA-type test statistic with Box approximation
## ANOVA.test.mod.Box = modified ANOVA-type test statistic with Box approximation
## Wald.test.time = Wald-type test statistic for simple time effect
## ANOVA.test.time = ANOVA-type test statistic for simple time effect
## N = Standard Normal Distribution N(0,1)
## T = Student's T distribution with respective degrees of freedom
## pattern.time (time effects) = Test against patterned alternatives in time using normal distribution ( no pattern specified )
## pair.comparison = Tests for pairwise comparisions (without specifying a pattern)
## pattern.pair.comparison = Test for pairwise comparisons with patterned alternatives in time ( no pattern specified )
## pattern.group (group effects) = Test against patterned alternatives in group ( no pattern specified )
## covariance = Covariance matrix
## Note: The description output above will disappear by setting description=FALSE in the input. See the help file for details.
##
## F1 LD F1 Model
## -----------------------
## Check that the order of the time and group levels are correct.
## Time level: CortisolPre CortisolPost Cortisol8h Cortisol1d Cortisol2d
## Group level: Saline Levobupivacaine
## If the order is not correct, specify the correct order in time.order or group.order.
o$ANOVA.test
## Statistic df p-value
## Group 0.1047257 1.000000 7.462306e-01
## variable 92.8389901 3.070992 1.978511e-61
## Group:variable 1.3759972 3.070992 2.474368e-01
prueba <- data_summary(data=Cortisol , varname="value", groupnames=c("Group", "variable"))
O<-ggplot(prueba, aes(x=variable, y=value, group=Group, shape=Group, linetype=Group)) +
geom_errorbar(aes(ymin=value-sd, ymax=value+sd), width=.1, position=position_dodge(0.05)) +
geom_line() + geom_point()+ theme_classic() +
xlab("time") +
ylab(expression(paste(mu,"g/dL"))) +
scale_fill_manual(labels=c("Levobupivacaine", "Saline"))+
scale_x_discrete(breaks=vari,labels=l)+
theme(legend.position = "none")
O <- O + labs(title="Cortisol, ANOVA test p = 0.247", tag="E")
O
#Prolactine
vari<-c("ProlactinaPre",
"ProlactinaPost",
"Prolactina8h",
"Prolactina1d",
"Prolactina2d")
Prolactina<-melt(tabla2,
id.vars=c("Número", "Group"),
measure.vars=vari)
p<-nparLD(value ~ variable * Group, data=Prolactina, subject="Número")
## Total number of observations: 350
## Total number of subjects: 70
## Total number of missing observations: 0
##
## Class level information
## -----------------------
## Levels of variable (sub-plot factor time) : 5
## Levels of Group (whole-plot factor group) : 2
##
## Abbreviations
## -----------------------
## RankMeans = Rank means
## Nobs = Number of observations
## RTE = Relative treatment effect
## case2x2 = tests for 2-by-2 design
## Wald.test = Wald-type test statistic
## ANOVA.test = ANOVA-type test statistic with Box approximation
## ANOVA.test.mod.Box = modified ANOVA-type test statistic with Box approximation
## Wald.test.time = Wald-type test statistic for simple time effect
## ANOVA.test.time = ANOVA-type test statistic for simple time effect
## N = Standard Normal Distribution N(0,1)
## T = Student's T distribution with respective degrees of freedom
## pattern.time (time effects) = Test against patterned alternatives in time using normal distribution ( no pattern specified )
## pair.comparison = Tests for pairwise comparisions (without specifying a pattern)
## pattern.pair.comparison = Test for pairwise comparisons with patterned alternatives in time ( no pattern specified )
## pattern.group (group effects) = Test against patterned alternatives in group ( no pattern specified )
## covariance = Covariance matrix
## Note: The description output above will disappear by setting description=FALSE in the input. See the help file for details.
##
## F1 LD F1 Model
## -----------------------
## Check that the order of the time and group levels are correct.
## Time level: ProlactinaPre ProlactinaPost Prolactina8h Prolactina1d Prolactina2d
## Group level: Saline Levobupivacaine
## If the order is not correct, specify the correct order in time.order or group.order.
p$ANOVA.test
## Statistic df p-value
## Group 0.6150311 1.000000 4.328998e-01
## variable 144.6674571 3.197379 1.053340e-99
## Group:variable 0.3371213 3.197379 8.110872e-01
prueba <- data_summary(data=Prolactina , varname="value", groupnames=c("Group", "variable"))
P<-ggplot(prueba, aes(x=variable, y=value, group=Group, shape=Group, linetype=Group)) +
geom_errorbar(aes(ymin=value-sd, ymax=value+sd), width=.1, position=position_dodge(0.05)) +
geom_line() + geom_point()+ theme_classic() +
xlab("time") +
ylab("ng/dL") +
scale_fill_manual(labels=c("Levobupivacaine", "Saline"))+
scale_x_discrete(breaks=vari,labels=l)+
theme(legend.position = "none")
P <- P + labs(title="Prolactin, ANOVA test p = 0.811", tag="F")
P
#GH
vari<-c("GHPre",
"GHPost",
"GH8h",
"GH1d",
"GH2d")
GH<-melt(tabla2,
id.vars=c("Número", "Group"),
measure.vars=vari)
q<-nparLD(value ~ variable * Group, data=GH, subject="Número")
## Total number of observations: 350
## Total number of subjects: 70
## Total number of missing observations: 0
##
## Class level information
## -----------------------
## Levels of variable (sub-plot factor time) : 5
## Levels of Group (whole-plot factor group) : 2
##
## Abbreviations
## -----------------------
## RankMeans = Rank means
## Nobs = Number of observations
## RTE = Relative treatment effect
## case2x2 = tests for 2-by-2 design
## Wald.test = Wald-type test statistic
## ANOVA.test = ANOVA-type test statistic with Box approximation
## ANOVA.test.mod.Box = modified ANOVA-type test statistic with Box approximation
## Wald.test.time = Wald-type test statistic for simple time effect
## ANOVA.test.time = ANOVA-type test statistic for simple time effect
## N = Standard Normal Distribution N(0,1)
## T = Student's T distribution with respective degrees of freedom
## pattern.time (time effects) = Test against patterned alternatives in time using normal distribution ( no pattern specified )
## pair.comparison = Tests for pairwise comparisions (without specifying a pattern)
## pattern.pair.comparison = Test for pairwise comparisons with patterned alternatives in time ( no pattern specified )
## pattern.group (group effects) = Test against patterned alternatives in group ( no pattern specified )
## covariance = Covariance matrix
## Note: The description output above will disappear by setting description=FALSE in the input. See the help file for details.
##
## F1 LD F1 Model
## -----------------------
## Check that the order of the time and group levels are correct.
## Time level: GHPre GHPost GH8h GH1d GH2d
## Group level: Saline Levobupivacaine
## If the order is not correct, specify the correct order in time.order or group.order.
q$ANOVA.test
## Statistic df p-value
## Group 0.03567876 1.000000 8.501804e-01
## variable 27.06864715 3.501681 5.237010e-20
## Group:variable 0.63207512 3.501681 6.185049e-01
prueba <- data_summary(data=GH , varname="value", groupnames=c("Group", "variable"))
Q<-ggplot(prueba, aes(x=variable, y=value, group=Group, shape=Group, linetype=Group)) +
geom_errorbar(aes(ymin=value-sd, ymax=value+sd), width=.1, position=position_dodge(0.05)) +
geom_line() + geom_point()+ theme_classic() +
xlab("time") +
ylab("ng/dL") +
scale_fill_manual(labels=c("Levobupivacaine", "Saline"))+
scale_x_discrete(breaks=vari,labels=l)+
theme(legend.position = "none")
Q <- Q + labs(title="GH, ANOVA test p = 0.618", tag="G")
Q
#IL6
vari<-c("IL6Pre",
"IL6Post",
"IL68h",
"IL61d",
"IL62d")
IL6<-melt(tabla2,
id.vars=c("Número", "Group"),
measure.vars=vari)
s<-nparLD(value ~ variable * Group, data=IL6, subject="Número")
## Total number of observations: 350
## Total number of subjects: 70
## Total number of missing observations: 0
##
## Class level information
## -----------------------
## Levels of variable (sub-plot factor time) : 5
## Levels of Group (whole-plot factor group) : 2
##
## Abbreviations
## -----------------------
## RankMeans = Rank means
## Nobs = Number of observations
## RTE = Relative treatment effect
## case2x2 = tests for 2-by-2 design
## Wald.test = Wald-type test statistic
## ANOVA.test = ANOVA-type test statistic with Box approximation
## ANOVA.test.mod.Box = modified ANOVA-type test statistic with Box approximation
## Wald.test.time = Wald-type test statistic for simple time effect
## ANOVA.test.time = ANOVA-type test statistic for simple time effect
## N = Standard Normal Distribution N(0,1)
## T = Student's T distribution with respective degrees of freedom
## pattern.time (time effects) = Test against patterned alternatives in time using normal distribution ( no pattern specified )
## pair.comparison = Tests for pairwise comparisions (without specifying a pattern)
## pattern.pair.comparison = Test for pairwise comparisons with patterned alternatives in time ( no pattern specified )
## pattern.group (group effects) = Test against patterned alternatives in group ( no pattern specified )
## covariance = Covariance matrix
## Note: The description output above will disappear by setting description=FALSE in the input. See the help file for details.
##
## F1 LD F1 Model
## -----------------------
## Check that the order of the time and group levels are correct.
## Time level: IL6Pre IL6Post IL68h IL61d IL62d
## Group level: Saline Levobupivacaine
## If the order is not correct, specify the correct order in time.order or group.order.
s$ANOVA.test
## Statistic df p-value
## Group 2.0662882 1.000000 1.505876e-01
## variable 159.0570298 3.682364 8.264881e-126
## Group:variable 0.1720685 3.682364 9.433193e-01
prueba <- data_summary(data=IL6 , varname="value", groupnames=c("Group", "variable"))
S<-ggplot(prueba, aes(x=variable, y=value, group=Group, shape=Group, linetype=Group)) +
geom_errorbar(aes(ymin=value-sd, ymax=value+sd), width=.1, position=position_dodge(0.05)) +
geom_line() + geom_point()+ theme_classic() +
xlab("time") +
ylab("pg/dL") +
scale_fill_manual(labels=c("Levobupivacaine", "Saline"))+
scale_x_discrete(breaks=vari,labels=l)+
theme(legend.position = "none")
S <- S + labs(title="Interleukin-6, ANOVA test p = 0.943", tag="H")
S
Figure4<-ggarrange(K,L,M,N,O,P,Q,S, ncol=2, nrow=4, common.legend = TRUE, legend = "top")
Figure4