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METHODS 

Nuclear Magnetic Resonance data acquisition 

Intact lung tissue samples (weighing approx. 10 mg) were examined using HR-

MAS 1H-NMR spectroscopy operating at 4 ºC to reduce metabolic degradation. 

1H-NMR spectroscopy was performed at 500.13 MHz using a Bruker AMX500 

spectrometer 11.7 T (Bruker, Rivas-Vaciamadrid, Spain). The samples were 

placed into a 50 μl zirconium oxide rotor using a rinsed cylindrical insert, 

together with 15 µl of 0.1mM solution of Trimethylsilyl propanoic acid (TSP) in 

deuterium water (D2O), and spun at 4000 Hz spinning rate to remove the effects 

of spinning side bands from the acquired spectra. Additionally, bronchoalveolar 

lavage (BAL) fluid lyophilized samples were diluted with 100 µl of D2O and 100 

µl of solution of TSP in D2O and examined using a Bruker AV500 spectrometer 

operating at 4ºC. 

Shimming and 1H-NMR preparation time were reduced to a minimum, 

meanwhile the temperature for performing the 1H-NMR analysis was chilled to 4 

ºC to minimize metabolic changes. A number of bidimensional homonuclear 

experiments were performed to carry out the components assignments. 

Between consecutive 2D spectra, a control 1H-NMR spectrum was always 

measured. No gross degradation was noted in the signals of multiple spectra 

acquired under the same conditions. 

Standard solvent suppressed spectra were grouped into 16,000 data points for 

tissue samples analyses and into 32,000 data points for BAL analyses, 



 

 

averaged over 256 acquisitions. The data acquisition lasted in total 13 min 

using a sequence based on the first increment of the Nuclear Overhauser Effect 

Spectroscopy (NOESY) pulse sequence to effect suppression of the water 

resonance and limit the effect of B0 and B1 inhomogeneities in the spectra 

(relaxation delay-90º-t1-90º-tm-90º-acquire Free Induction Decay signal) in 

which a secondary radio frequency irradiation field was applied at the water 

resonance frequency during the relaxation delay of 2 s and during the mixing 

period (tm = 150 ms), with t1 fixed at 3 s. Tissue samples acquisitions were 

performed using a spectral width of 8333.33 Hz and BAL fluid acquisitions were 

acquired using a spectral width of 7507.5 Hz. Prior to Fourier transformation, 

the Free Induction Decay signals were multiplied by an exponential weight 

function corresponding to a line broadening of 0.3 Hz. Spectra were referenced 

to the TSP singlet at 0 ppm chemical shift. 

A standard gradient-enhanced Correlation Spectroscopy protocol was acquired 

under the following conditions: water presaturation during relaxation delay, 

spectral with of 5122.95 Hz in both dimensions, 2000 data points in f2 and 256 

increments in f1. An unshifted sinusoidal window function was applied in both 

dimensions and zero filling in f1 dimension. 1H-1H Total Correlated 

Spectroscopy experiment was registered in the Time-Proportional Phase 

Incrementation phase sensitive mode, water pre-saturation during 1s relaxation 

delay, a spectral with of 5122.95 Hz in both dimensions, 60 ms mixing time, 

2000 data points in f2 and 256 increments in f1. Zero filling in f1 and unshifted 

squared sinusoidal window function in both dimensions were applied before 

Fourier transformation. 



 

 

Gradient-selected Heteronuclear Single Quantum Correlation experiments of 

serum and tissue samples were registered with the following parameters: 95 µs 

for Globally Optimized Alternating Phase Rectangular Pulse 13C decoupling, 

8333Hz and 21 kHz spectral widths in the 1H and 13C dimensions, respectively, 

2000 data points in f2 and 256 increments in f1. Zero filling in f1 and unshifted 

squared sinusoidal window function in both dimensions were applied before 

Fourier transformation. 

In order to remove the random effects of variation in the water resonance 

suppression, the chemical shift regions between 4.90 and 5.30 ppm of tissue 

spectra, 5.00-5.20 ppm of serum spectra and 4.85-5.00 of BAL spectra, were 

excluded from the analysis. Similarly, the chemical shift region from 0 to 0.04 

ppm containing the internal reference (TSP) was also excluded. The baseline 

correction (method by Rocke and Xi) (1) was automatically performed with the 

baseline correction tool of the Metabonomic R package (2). The Metabonomic 

R package is a graphical environment for the metabolomic analysis developed 

and maintained by our group in the public domain R framework (rel. 2.11.1) (3). 

1H-NMR spectra were automatically data-reduced to integral segments or 

buckets of equal length (δ0.01 ppm for BAL spectra and δ0.04 ppm for tissue 

and serum spectra) in order to compensate for variations in resonance positions 

(4) and they were normalized to the total sum of the spectral regions. 2D 

spectral processing and editing was performed with MestRenova v. 6.03 

(Mestrelab Research S.L., Santiago de Compostela, Spain). 

NMR data treatment  

Principal Components Analysis (PCA) is the fundamental method in 

chemometrics (5). In PCA the data collected on a set of samples is resolved 



 

 

into principal components. The first principal component is defined by the 

spectral profile (loading) in the data which describes most of the variation, the 

second principal component, orthogonal to the first one, is the second best 

profile describing the variation, and so on. The principal components are 

composed of so-called scores and loadings. Loadings contain information about 

the variables (chemical shifts) in the data set and the scores hold information on 

samples (concentrations) in the data set. Prior to PCA, the data were centered 

and Pareto scaled.  

A Partial Least Squares (PLS) analysis (6) is a commonly used multivariate 

method for analyzing high-dimensional data. PLS analysis was applied to these 

data to investigate the significant differences between groups. The potential 

biomarkers selected from PCA loading plots were confirmed from PLS 

correlation plots by Hotteling’s T2 tests (7). Using the selected metabolites or 

chemical shifts, a PLS-Discriminant Analysis (PLS-DA) was developed as 

classificatory model. We have used the algorithm proposed by Ding and 

Gentleman

 (tolerance for convergence=1e-03, maximum number of iteration 

allowed = 100). The number of PLS components used was chosen by the 

percentage of variance explained, the R2 and the Mean Squared Error of Cross 

Validation graphics. PLS-DA models were trained with a number of random 

testing subjects and used afterwards to classify the rest of subjects as an 

internal validation. This process was repeated 200 times with random 

                                                      

 Ding B, Gentleman R: The gpls package: Classification using generalized partial least 

squares, version 1.3.1. Available at: 

ftp://ftp.auckland.ac.nz/pub/software/CRAN/doc/packages/gpls.pdf. Accessed October 

7, 2013. 



 

 

permutations of the data to reduce type I error. The percentages of correct 

classification were calculated as a measure of the model performance. The 

statistical computing and spectral processing described above were also 

performed with the Metabonomic package (rel.3.3.1). 

Mass Spectrometry (MS) serum sample preparation 

Protein precipitation and metabolite extraction was performed by adding 1 part 

of serum to 3 parts of cold (-20 °C) mixture of methanol and ethanol (1:1). 

Samples were then vortex-mixed and stored at -20 °C for 5 min. The 

supernatant was collected by centrifuging at 16 000× g for 10 min at 4 °C, and 

then the supernatant was filtered through a 0.22 μm nylon filter.  

Quality control (QC) samples were prepared by pooling equal volumes of serum 

from each of the 23 samples. Five samples were independently prepared from 

this pooled serum following the same procedure as for the rest of samples. QC 

samples were analyzed throughout the run to provide a measurement not only 

of the system’s stability and performance (8) but also of the reproducibility of the 

sample treatment procedure.  

MS data acquisition 

The High Performance Liquid Cromatography system consisted of a degasser, 

two binary pumps, and autosampler (1200 series, Agilent, Santa Clara, CA); 10 

μL of extracted serum sample was applied to a reversed-phase column 

(Discovery HS C18 15 cm × 2.1 mm, 3 μm; Supelco, St. Louis, MO) with a 

guard column (Discovery HS C18 2 cm × 2.1 mm, 3 μm; Supelco). The system 

was operated in positive ion mode at the flow rate 0.6 mL/ min with solvent A 

composed of water with 0.1% formic acid, and solvent B composed of 



 

 

acetonitrile with 0.1% formic acid. The gradient started from 25% B to 95% B in 

35 min, and returned to starting conditions in 1 min, keeping the re-equilibration 

at 25% B for 9 min. Data were collected in positive electrospray ionization mode 

in separate runs on a quadrupole time-of-flight (QTOF) (Agilent 6520) operated 

in full scan mode from 50 to 1000 m/z. The capillary voltage was 3000 V with a 

scan rate of 1.02 scan per second; the nebulizer gas flow rate was 10.5 L/min.  

The resulting data file was cleaned of extraneous background noise and 

unrelated ions by the molecular feature extraction tool in the MassHunter 

Qualitative Analysis Software U (Agilent). The molecular feature extraction then 

created a listing of all possible components as represented by the full QTOF 

mass spectral data. Exact mass databases quoted below were then searched 

for hits to identify the compounds.  

MS data treatment 

To avoid the risk of over-fitting for a PLS-DA model used for selection of 

statistically significant metabolites according to jack-knifed confidence intervals, 

the model was validated  by use of a cross-validation tool (9), using a 1/3 out  

approach which has been described elsewhere (10). In brief, the dataset was 

divided into three parts, 1/3 of samples were excluded, and a model was built 

using the remaining 2/3 of samples. Excluded samples were then predicted by 

this new model, and the procedure was repeated until all samples had been 

predicted at least once. Each time the percentage of correctly classified samples 

was calculated. 

QC of the MS methodology 



 

 

QCs were checked along with the two other groups, VILI and control. For these 

three groups a PLS-DA model was built taking all variables (without any scaling) 

generated after molecular feature extraction in the mass spectrum (15016 

variables in total). The robustness of the analytical procedure was evident by 

the tight clustering of QC samples obtained by mixing equal volumes of all 

samples. QCs were located in the center of the plot when sent to be classified 

by the model proving that separation between groups is not random, but due to 

real variability. The quality of the model built for three components was good 

(variance explained R2 = 0.907, and variance predicted Q2 = 0.383). 

Compound identification 

The nuclear magnetic resonance signals were identified according to the 

Human Metabolome Database (11), and characteristic cross-peaks from 2D 

spectra to help in the unequivocal assignation of these metabolites. 

The identity of MS signals that were found to be significant in class separation 

was confirmed by liquid cromatography-MS/MS by using a QTOF (model 6520, 

Agilent). Experiments were repeated with identical chromatographic conditions 

as in the primary analysis. Ions were targeted for collision induced dissociation 

fragmentation on the fly based on the previously determined accurate mass and 

retention time. Comparison of the structure of the proposed compound with the 

fragments obtained can confirm the identity. Accurate mass data and isotopic 

distributions for the precursor and product ions can be studied and compared to 

spectral data of reference compounds, if available, obtained under identical 

conditions for final confirmation (HMDB, METLIN).  
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