Supplemental materials

Table of contents

Secti	ion title	Page
1.	Study protocol	2
2.	PRISMA flow diagram	26
3.	Countries contributing to the included trials	27
4.	Studies characteristics table	28
5.	Risk of bias assessment using Cochrane tool	62
6.	Network geometries	68
7.	Treatment efficacy (league) tables	79
8.	SUCRA tables for primary outcomes	100
9.	Heterogeneity of all outcomes` NMA	103
10.	Inconsistency plots, node-splitting assessment (with paired-wise	
	meta-analyses)	104
11.	Sensitivity analyses	146
12.	GRADE analyses	148
13.	Mean duration of hospital stay by year	160
14.	STATA commands	161
15.	References	163

Study protocol

Background

Knee replacement, or total knee arthroplasty (TKA), is among the most common orthopedic procedures. TKA aims to relieve pain, improve quality of life, and improve or maintain knee function.¹

In the United States, about 4 million adults have had a TKA, representing 4.2% of the population exceeding fifty years of age. Over half of adults in the U.S. diagnosed with knee osteoarthritis will eventually have a total knee replacement. The prevalence of TKA among older adults in the U.S. far exceeds that of rheumatoid arthritis, and is almost as prevalent as congestive heart failure.² Nearly 700,000 TKA procedures are performed annually in the US. This number is expected to increase to 3.5 million procedures per year by 2030.³

Inadequate postoperative analgesia impairs rehabilitation, prolongs hospitalization, and increases the risk of adverse events including myocardial ischemia and infarction, pulmonary dysfunction, paralytic ileus, urinary retention, thromboembolism, impaired immune functions, and anxiety.⁴ Importantly, inadequate postoperative pain control is strongly associated with development of persistent postsurgical pain.⁴ Postoperative pain may also worsen postoperative blood loss after TKA.⁵

Chang and Cho⁶ conducted a survey to evaluate various analgesic approaches to TKA, comparing pain intensity and analgesic efficacy in 424 patients who had a TKA in 14 hospitals. They found that pain management protocols and pain intensity varied greatly, particularly during the initial two postoperative days. Differences in pain intensity were greatest the first postoperative night, with mean visual analog scores ranging from 17 to 94 mm on a 100-mm scale. Combined use of periarticular infiltration and femoral nerve blocks provided better analgesia than other methods during the first two postoperative days. Furthermore, patients

who had either periarticular injection along with a femoral nerve block, or epidural analgesia, reported being most satisfied two weeks after TKA.

Perioperative management of TKA pain has evolved rapidly in recent decades. Before the1990s, nurse-administered systemic opioid was practically the only analgesic approach. Nurse-administered opioids were gradually replaced by patient-controlled opioids (PCA) in 1990s. Soon thereafter, epidural analgesia became more common. In early 21st century, peripheral nerve blocks and peri-articular local anesthetic infiltration gained popularity.^{4, 7, 8} In recent decades, there has been great interest in defining the optimal peripheral nerve block and periarticular) local anesthetic infiltration techniques — although the best approach remain unclear. Multimodal analgesia (that is, combining a peripheral nerve block with peri-articular local anesthetic infiltration or oral analgesia and pregabalin has also proven effective.

Options for peripheral nerves blocks include: lumber (psoas) plexus, femoral, sciatic, obturator, 3-in-1, fascia iliaca, and adductor canal. Each can be performed as a single injection or provided as a continuous infusion.⁴

A recent Cochrane review (2014) found that femoral nerve blocks (with or without concurrent treatments including PCA opioid) after TKA provided better analgesia than PCA opioid alone, similar analgesia to epidural blocks, and less nausea/vomiting than PCA alone or PCA with epidural analgesia.⁹ The review also found that continuous femoral nerve blocks provided better analgesia than single-shot blocks. The authors did not found sufficient evidence to support definitive conclusions regarding the comparison between femoral nerve block and local infiltration analgesia or oral analgesia.⁹

Another 2014 pairwise meta-analysis evaluated the efficacy of local anesthetic infiltration versus placebo, no infiltration, or femoral nerve block. These investigators found significantly improved analgesia in the initial 24 postoperatrive hours in patients who given local anesthetic infiltration instead of placebo, but similar analgesia with local anesthetic infiltration and femoral nerve blocks.¹⁰

Another systematic review in 2014 evaluated the efficacy of high-volume multimodal wound (peri-articluar) infiltration (single dose or continuous infusion) versus no infiltration,

femoral nerve block, or epidural analgesia. They observed that better acute analgesia after wound infiltration, without definitive evidence that infiltration reduced opioid consumption, achievement of early milestones, or shortened hospitalization. The authors could not come to definitive conclusions regarding the precise role of individual agents or in the use of a percutaneous wound catheter for postoperative administration in providing pain relief.¹¹

Finally, Anderson and Kehlet¹² conducted another systematic review in 2014 assessing the analgesic efficacy of local infiltration analgesia in TKA. They found, with sparse evidence, that local infiltration analgesia provided better analgesia than placebo, equal effect to femoral nerve block, and similar or better efficacy than epidural analgesia. Most of the assessed trials had a high risk of bias and did not use sufficient pain management protocol in the control group, which restrict firm conclusions.

Many surgeons and anesthesiologists avoid femoral nerve blocks for fear of associated motor weakness and consequent risk of patient falls. But whether femoral nerve blocks actually increase the risk of patient falls remains unclear. In a retrospective study of 2,197 patients, Wasserstein et al.¹³ found only that a continuous femoral nerve block, but not single shot block, was an independent risk factor for falls. In another retrospective study that involved 191,570 patients from the national Premier Perspective database, Memtsoudis et al. did not found an association between femoral nerve blocks and falls.¹⁴

Recently, a long-acting liposomal formulation of bupivacaine (EXPERAL[®]) was approved by the U.S. Food and Drug Administration for single-dose injection into the surgical site.¹⁵ While this may seem a to be an optimal drug in TKA, a recent review found insufficient evidence to support its efficacy.⁴ Furthermore, a recent retrospective study showed liposomal bupivacaine provided inferior pain control than a traditional multimodal analgesic approach in patients recovering from TKA.¹⁶

The gold standard for postoperative analgesia remains unclear. The optimal modality should achieve effective pain control with less opioid consumption and the best rehabilitation profile.¹⁷ There are now more than ten competing pain management strategies for TKA. It would be prohibitively expensive and impractical to conduct a randomized trial simultaneously comparing them all. We therefore propose to compare available interventional analgesic

methods using a network meta-analysis approach. The advantage of this approach is that network meta-analysis extends the concept of the traditional meta-analysis to produce pairwise comparisons and relative treatment effects across a range of interventions.¹⁸

Objectives

- 1. To assess the available interventional pain management modalities for TKA in terms of:
 - a) Efficacy: analgesia, opioid consumption, and rehabilitation;
 - b) Safety: side effects and duration of hospitalization.
- 2. To generate a clinically useful ranking of available pain management modalities according to their efficacy and safety.

Methodology

The study registered in PROSPERO 2015: CRD42015015870. Available at: http://www.crd.york.ac.uk/PROSPERO/display_record.asp?ID=CRD42015015870

Criteria for considering studies for this review

Inclusion criteria:

We will only include randomized clinical trials that evaluated pain management efficacy, quality of recovery (e.g., nausea and vomiting), and rehabilitation profile after unilateral total knee arthroplasy using any of the following interventional techniques:

- 1) Neuraxial analgesia: epidural and spinal analgesia.
- 2) Peripheral nerve blocks (single dose or continuous infusion):
 - a. 3-in-1 nerve block
 - b. Femoral nerve
 - c. Fascia iliaca compartment block
 - d. Sciatic nerve
 - e. Obturator nerve
 - f. Lumbar plexus (psoas) block
 - g. Adductor-canal-block
- Intra-articular and periarticular local anesthetic infiltration. All intra-articular, subcutaneous, and peri-articular infiltration has been referred in the literature as "local anesthetic infiltration".
- 4) *Auricular acupuncture;* although it is considered non-invasive, but we intended to include it as it is an interesting growing eastern pain management modality.
- 5) Intravenous patient control analgesia (PCA)
- 6) Placebo (systematic opioid will be considered placebo when not given via PCA).

Exclusion criteria:

- 1) Oral pain medications.
- Retrospective studies, case reports, case series, abstracts, pilot studies, and nonrandomized prospective studies.
- 3) Arthroscopy.
- 4) Studies that included both knee and hip patients, without separate presentation of the results for each.
- 5) Combinations of more than one intervention category: epidural with peripheral nerve block, epidural with local infiltration, or peripheral nerve block with local infiltration. The combination of more than one intervention from the same category (e.g., femoral with sciatic nerves blocks) is not an exclusion criterion.

We assume that patients who meet inclusion criteria are, in principle, equally likely to be randomized to any of the eligible interventions as a starting point. We will also explore deviations from this assumption.

Type of outcome measures:

- **Primary outcomes:** (1) acute postoperative pain (during rest and movement); (2) intraand post-operative opioid consumption; and, (3) quality of early postoperative rehabilitation (functional assessments).
- Secondary outcomes: postoperative complications (e.g., nausea, vomiting, falls), duration of hospitalization, amount of blood loss, incidence of procedure failure, and patient withdrawal.

Definition of relevant outcome

- 1. Postoperative acute pain during hospitalization.
- 2. Intraoperative and postoperative opioid consumption during hospitalization.
- 3. Postoperative nausea and vomiting during hospitalization.
- 4. Duration of hospital stay; usually counted after discharge from post-anesthesia care unit (PACU).
- 5. Patient satisfaction

- 6. Blood loss
- 7. Complications; e.g., nausea, vomiting
- 8. Incidence of postoperative in-hospital falls
- 9. Quality of early rehabilitation which can include any of the following validated physicalperformance-based measures:¹⁹
 - a) Range of motion (ROM): these might be reported as continuous or dichotomous variables. ROM is a measure of combined flexion/extension of the operated knee, either actively or passively with assistance. Ninety degrees is considered the minimum range required to navigate steps, while 110 degrees is necessary for adequate performance of activities-of-daily-living (ASLs). Typically, range is measured with a goniometer.
 - b) Quadriceps strength (QS): Strengh is typically measured with an electromechanical dynamometer, and often reported as maximum voluntary isovolumetric contraction (MVIC) in Newtons normalized to body mass index.
 - c) Six-minute walk test (6MWT): the maximum distance ambulated on level ground (in meter) with standardized encouragement.
 - d) Timed Up and Go (TUG): the time taken to stand up from a standard-height armchair, walk 3 meters, walk back to the chair, and sit down. It is meant to assess patient's balance and risk of falling.
 - e) Stair time (ST): the time necessary to ascend and descend standard-height 20cm steps.
 - f) Self-paced walk test (SPWT): timing patients walking a 20-meter course bidirectionally.

Since there is no currently evidence to show superiority for any of these measures over others, and we are not sure how consistent the studies are reporting them, we will ultimately use the ones most commonly reported to reflect the quality of early rehabilitation. If comparably reported, we will use ROM as the main parameter.

Reporting functional outcomes after TKA:

Choi et al. did a systematic review to assess the quality of reporting functional outcome assessment after TKA in patients underwent regional anesthesia.¹⁹ Table 1 summarizes their findings.

Two broad categories are commonly used to assess functional outcome (rehabilitation) after TKA:¹⁹ (1) Physical-Performance Measures which includes Range of Motion, Quadriceps Strength, Six-Minute Walk Test, Timed Up and Go, Stair Time, and Self-paced Walk Test; and, (2) Self-reported Measures which includes Western Ontario and McMaster Universities Osteoarthritis Index, Knee Outcomes Severity Score, and the Lower-Extremity Functional Scale.

Choi et al.¹⁹ defined the appropriate duration of functional outcome evaluation into early (initial 2 weeks), intermediate (6-12 weeks), and late (6-12 months) — and recommended that specific tests to be included for each period. They identified only two studies that reported long-term functional outcomes per their specifications and will thus limit our evaluation of rehabilitation to the early period. To the extent practical, we will focus on the tests that Choi et al. recommend.

Functional Outcome	Suggested Assessment Intervals	Minimal Detectable Change	Time to Administer	Usage Restrictions	Comments
Physical-perfe	ormance-based outcomes				
ROM	Preoperative, 2 and 12 wk, 6 and 12 mo	9.6 degrees	<1 min	None	· Encompasses both flexion and extension
					 Minimum range to navigate steps 90 degrees, ADLs 110 degrees
					 Measurement error 5 degrees
					 Maximal change ~12 wk, maximum range ~12 mo
MVIC	Preoperative, 4 wk; 3, 6, 12, 24 mo	0.33 N · m/kg	1 min	None	 Greatly reduced immediate postoperative period (~62%)
					 Continued dysfunction up to 2 y postoperatively
6MWT	Preoperative, 6 and 12 wk, 6 mo	61.3 m	6 min	None	300 m required to perform ADL
					 Maximal change between wk 6–9 with plateau at 26 wk
TUG	Preoperative, immediate postoperative period, 6 and 12 wk	2.5 s	<2 min	None	Assesses balance and risk of falls
	o and 12 or				 Independent <10 s, able to perform ADL <20 s, mostly dependent >30 s
					· Best utilized as a categorical variable
ST	Preoperative, 6 wk	5.5 s	<2 min	None	 Not routinely administered immediately postoperatively
					 Increases >100% at <1 wk
SPWT	Preoperative, 6 wk	4.0 s	<5 min	None	 More easily completed by patients in the immediate postoperative period than 6MWT
1. State 1. State 1. State 1. State	ased outcomes				
WOMAC	Preoperative, 6 and 12 wk, 6 and 12 mo	9.1 points	12 min	Adults	 Reported in three subsections (pain, stiffness, functional limitation) or summated with maximum total score of 96
					 Available in > 90 languages
					· Greatest change wk 9-13 postoperatively
KOOS	Preoperative, 6 and 12 mo	10 points*	10 min	Adults	 Five subsections (pain, symptoms, ADL, sports, QOL) each with a maximum score of 100
					Incorporates WOMAC
					 Superior to WOMAC in young (<60 y), active patients
					 Available in 45 languages
					Most sensitive to change between 6 and 12 mo
LEFS	Preoperative, 6 and 12 wk, 6 mo	9 points*	5 min	Adults	 Comparable validity and reliability to WOMAC
					Maximal change between 4 and 12 wk Plateaus at 6 mo

Table 1. Functional outcome measures validated for use after TKA. From Choi et al.¹⁹

Search strategy:

The search will be conducted as recommended by the (ISPOR) International Society for Pharmacoeconomics and Outcomes Research 2011 Task Force.²⁰

The following databases will be searched: MEDLINE via PubMed, Embase, the Cochrane Library, and Web of Science's Core Collection (excluding MEDLINE) and SciELO Citation Index. The search will not be limited by language or date. We will search <u>www.clinicaltrials.gov</u> for ongoing studies and contacted the authors of the ongoing studies. We will also search the major anesthesiology and orthopedic journals for online first publications after the date of conducting the literature search.

The following search terms will be used:

PubMed:

(((((Arthroplasty, Replacement, Knee[mesh]) OR Knee replacement*) OR Knee arthroplast*))) AND (((Injections, Intra-Articular[mesh] OR Femoral Nerve[mesh] OR Nerve Block[mesh] OR Sciatic Nerve[mesh] OR Lumbosacral Plexus[mesh] OR Analgesia, Epidural[mesh] OR Analgesia, Patient-Controlled[mesh] OR Obturator Nerve[mesh] OR Acupuncture, Ear[mesh] OR Anesthesia, Local[mesh] OR Anesthetics, Local[mesh] OR Analgesics[mesh] OR Analgesia[mesh])) OR (Peri articular injection* OR Periarticular injection* OR "Local infiltration analgesia" OR "Local anesthetic infiltration analgesia" OR "Local infusion analgesia" OR "Local infiltration" OR Femoral nerve block* OR Femoral catheter* OR Adductor canal block* OR Sciatic nerve block* OR Three in one block* OR Three in one femoral nerve block* OR 3 in 1 nerve block* OR Lumbar plexus block* OR Lumbosacral plexus block* OR Lumbar plexus nerve block* OR Lumbar plexus infusion* OR Lumbar plexus catheter* OR "Epidural analgesia" OR "Patient controlled analgesia" OR Fascia iliaca compartment block* OR Obturator nerve block* OR "Auricular acupressure" OR "Auricular acupuncture" OR "Local anesthesia" OR Local anesthetic* OR Local anaesthe* OR Analgesic* OR Regional analgesia* OR "Regional analgesia/anesthesia" OR "Regional analgesia/anaesthesia" OR "Regional analgesia anesthesia" OR "Regional analgesia anaesthesia" OR Peripheral nerve block* OR Spinal anesthe* OR Spinal anaesthe* OR Opioid analgesia*)).

Cochrane Library search available at:

http://onlinelibrary.wiley.com/cochranelibrary/search/advanced/shared/searches/142275716657723064 96

Web Of Science:

"Peri articular injection*" OR "Periarticular injection*" OR "Local infiltration analgesia" OR "Local anesthetic infiltration analgesia" OR "Local infusion analgesia" OR "Local infiltration" OR "Femoral

nerve block*" OR "Femoral catheter*" OR "Adductor canal block*" OR "Sciatic nerve block*" OR "Three in one block*" OR "Three in one femoral nerve block*" OR "3 in 1 nerve block*" OR "Lumbar plexus block*" OR "Lumbosacral plexus block*" OR "Lumbar plexus nerve block*" OR "Lumbar plexus infusion*" OR "Lumbar plexus catheter*" OR "Epidural analgesia" OR "Patient controlled analgesia" OR "Fascia iliaca compartment block*" OR "Obturator nerve block*" OR "Auricular acupressure" OR "Auricular acupuncture" OR "Local anesthesia" OR "Local anesthetic*" OR "Local anaesthe*" OR "Analgesic*" OR "Regional analgesia*" OR "Regional analgesia/anesthesia" OR "Regional analgesia/anaesthesia" OR "Regional analgesia anesthesia" OR "Regional analgesia anaesthesia" OR "Peripheral nerve block*" OR "Spinal anesthe*" OR "Spinal anaesthe*" OR "Opioid analgesia*"

EMBASE strategy:

MeSH headings (for PubMed)	"translation" to EMBASE Subject Headings
Arthroplasty, Replacement, Knee	knee arthroplasty/ or total knee replacement/
Injections, Intra-Articular [auto-explosion]	intraarticular drug administration/ or intrasynovial drug administration/
Femoral Nerve	femoral nerve/
Nerve Block [auto-explosion]	nerve block/ or brachial plexus anesthesia/ or ganglion block/ or intercostal nerve block/ or lumbar plexus block/ or paracervical block/ or retrobulbar anesthesia/ or stellate ganglion block/ or transversus abdominis plane block/
Sciatic Nerve [auto-explosion]	sciatic nerve/
Lumbosacral Plexus [auto-explosion]	lumbosacral plexus/
Analgesia, Epidural	epidural anesthesia/ or caudal anesthesia/ or continuous epidural anesthesia/ or thorax epidural anesthesia/
Analgesia, Patient-Controlled	patient controlled analgesia/
Obturator Nerve	obturator nerve/
Acupuncture, Ear	acupuncture/ or acupressure/ or acupuncture analgesia/ or catgut embedding/ or electroacupuncture/ AND ear/
Anesthesia, Local	local anesthesia/ or topical anesthesia/
Anesthetics, Local [auto-explosion]	local anesthetic agent/ or 1 methyl 4 phenyl 3 piperidinemethanol acetate/ or "1' [3 (diethylamino)propyl] 3,4 dihydrospiro[naphthalene 1(2h),3' pyrrolidine] 2',5' dione"/ or "3 phenyl 8 azabicyclo[3.2.1]octane 2 carboxylic acid methyl ester"/ or adrenalin hydrogen tartrate plus articaine/ or adrenalin hydrogen tartrate plus articaine/ or adrenalin hydrogen tartrate plus bupivacaine/ or adrenalin hydrogen tartrate plus etidocaine/ or adrenalin hydrogen tartrate plus lidocaine/ or adrenalin hydrogen tartrate plus lidocaine/ or adrenalin plus prilocaine/ or adrenalin plus bupivacaine/ or adrenalin plus butethamine plus procaine/ or adrenalin plus lidocaine/ or adrenalin plus metabutethamine/ or adrenalin plus procaine/ or adrenalin plus pyrrocaine/ or allantoin plus benzocaine plus sulfadiazine/ or aluminum hydroxide plus magnesium trisilicate plus oxetacaine/ or aslavital/ or bacitracin zinc plus benzalkonium chloride plus benzocaine plus neomycin plus polymyxin b/ or bacitracin zinc plus lidocaine plus neomycin plus polymyxin b/ or benzocaine/ or benzocaine plus

	butylcaine plus tetracaine/ or benzocaine plus camphor plus
	methapyrilene plus zinc oxide/ or benzocaine plus cetrimide
	plus hexachlorophene plus mepyramine maleate/ or benzocaine
	plus domiphen bromide/ or benzocaine plus erythromycin
	glucoheptonate plus polymyxin b/ or benzocaine plus
	gramicidin plus neomycin/ or benzocaine plus gramicidin plus
	neomycin plus polymyxin b/ or benzocaine plus oxytetracycline
	plus polymyxin b/ or benzocaine plus phenazone plus
	phenylephrine/ or benzocaine plus tetracaine/ or benzocaine
	plus zirconium oxide/ or benzofurocaine/ or benzoxiquine plus
	diperodon/ or benzyl alcohol/ or benzyl alcohol plus
	cetylpyridinium salt/ or bucricaine/ or bumecaine/ or
	bupivacaine/ or bupivacaine plus glucose/ or bupivacaine plus
	lidocaine/ or butacaine/ or butanilicaine/ or butethamine/ or
	butoxycaine/ or butylcaine/ or calamine plus chlorcyclizine
	plus pramocaine plus zinc oxide/ or camphor plus eucalyptus oil
	plus gum benzoin plus menthol plus polidocanol/ or
	carbisocaine/ or carcainium chloride/ or ceftriaxone plus
	lidocaine/ or centbucridine/ or cetacaine/ or chloroprocaine/
	or chloroxylenol plus hydrocortisone plus pramocaine/ or
	cinchocaine/ or cocaine/ or cyclomethycaine/ or
	cyclomethycaine plus methapyrilene/ or dexamethasone
	sodium phosphate plus lidocaine/ or dihydroergotamine
	mesilate plus heparin plus lidocaine/ or dimethocaine/ or
	diperodon/ or diperodon plus gramicidin plus neomycin/ or
	diperodon plus hydrocortisone plus neomycin plus polymyxin b/
	or diperodon plus pramocaine/ or dyclonine/ or emla/ or
	etidocaine/ or eugenol/ or euprocin/ or euprocin plus
	zolamine/ or fluorescein sodium plus oxybuprocaine/ or
	fluorescein sodium plus proxymetacaine/ or fluress/ or
	fomocaine/ or gramicidin plus neomycin plus propylcaine/ or
	guafecainol/ or heptacaine/ or hexacycline plus lidocaine/ or
	hexathricin/ or hexylcaine/ or hydrocortisone acetate plus
	neomycin plus polymyxin b plus pramocaine/ or hydrocortisone
	acetate plus pramocaine/ or instillagel/ or ipravacaine/ or
	isobutamben/ or ketocaine/ or levobupivacaine/ or lidamidine/
	or lidocaine/ or lidocaine ethobromide/ or lidocaine plus
	neomycin/ or lidocaine plus oxytetracycline/ or lidocaine plus
	polymyxin b/ or lidocaine plus rolitetracycline/ or lidocaine
	plus tetracaine/ or mepivacaine/ or mepivacaine plus
	neocobefrin/ or meprylcaine/ or metabutethamine/ or
	methoxamine plus procaine/ or myrtecaine/ or "n [(2,6
	dimethylphenyl)carbamoylmethyl]trimethylammonium"/ or "n
	methyl n [2 (1 pyrrolidinyl)cyclohexyl]benzo[b]thiophene 4
	acetamide"/ or neocobefrin plus procaine plus propoxycaine/ or
	neocobefrin plus procaine plus tetracaine/ or noradrenalin
	bitartrate plus procaine plus propoxycaine/ or noradrenalin
	plus procaine plus propoxycaine/ or noradrenalin plus procaine
	plus tetracaine/ or oxetacaine/ or oxybuprocaine/ or
	oxytetracycline plus procaine/ or oxytetracycline plus
	tetracaine/ or pentacaine/ or pentobarbital plus procaine/ or
	phenacaine/ or phenol/ or piperocaine/ or polidocanol/ or
	pramocaine/ or prilocaine/ or procaine/ or procaine
	isobutyrate/ or procaine plus tetracycline/ or propanocaine/ or
	propipocaine/ or propoxycaine/ or propylcaine/ or propylcaine
	plus tyrothricin/ or proxymetacaine/ or pseudococaine/ or
	pseudotropine benzoate/ or pyrrocaine/ or quinisocaine/ or
	ropivacaine/ or tanax/ or tetracaine/ or tolycaine/ or tricaine/
	or trimecaine/ or xyloproct/ or zolamine/
Analgesics [auto-explosion]	analgesic agent/ or "(5 tert butyl 2,3 dihydro 1h inden 1 yl) 3
	(1h indazol 4 yl)urea"/ or "1 (2 bromophenyl) 3 [1 (5

	trifluoromethyl 2 pyridinyl) 3 pyrrolidinyl]urea"/ or "1 (2,3
	dichlorobenzoyl) 5 methoxy 2 methyl 3 (2
	morpholinoethyl)indole"/ or "1 (3 cyclohexylpropionyl) 4 (2
	ethoxyphenyl)piperazine"/ or "1 (3 pyridinyl) 3
	pyrrolidinamine"/ or "1 [2 (3,3 dimethylbutyl) 4
	(trifluoromethyl)benzyl] 3 (1 methyl 4 indazolyl)urea"/ or "2 [5
	(4 dimethylsulfamoylphenyl) 6,7,8,9 tetrahydro 8 methyl 2 oxo
	1h pyrrolo[3,2 h]isoquinolin 3 yliminoxy] 4 hydroxybutyric
	acid"/ or "2 amino 6 (4 fluorobenzylamino) 3 pyridinecarbamic
	acid allyl ester"/ or "3 (2 bromophenyl)octahydroindolizine"/ or
	"3 (difluoromethyl) 1 (4 methoxyphenyl) 5 [4
	(methylsulfinyl)phenyl]pyrazole"/ or "3 [[5 (2,3 dichlorophenyl)
	1h tetrazol 1 yl]methyl]pyridine"/ or "4 amino 5 (3
	bromophenyl) 7 (6 morpholino 3 pyridinyl)pyrido[2,3
	d]pyrimidine"/ or "4 chloro n (3 methoxyphenyl)cinnamamide"/
	or "5 [[(3 phenoxybenzyl)(1,2,3,4 tetrahydro 1
	naphthyl)amino]carbonyl]trimellitic acid"/ or "8 chloro n2 [3
	(furfurylthio)propionyl]dibenz[b,f][1,4]oxazepine 10(11h)
	carbohydrazide"/ or ajulemic acid/ or anbesol/ or anpirtoline/
	or antinociceptive agent/ or antipyretic analgesic agent/ or
	antrafenine/ or auralgan/ or axomadol/ or befiradol/ or
	bicifadine/ or brivaracetam/ or bromadoline/ or bromadoline
	maleate/ or capsaicin/ or cebranopadol/ or cis capsaicin/ or
	cizolirtine/ or crobenetine/ or dasolampanel/ or davasaicin/ or
	desensitizing agent/ or dimiracetam/ or dizatrifone/ or
	doxpicomine/ or drinidene/ or ecopladib/ or edronocaine/ or
	efipladib/ or embelate potassium/ or epibatidine/ or
	equagesic/ or ethoheptazine/ or fadolmidine/ or fasinumab/ or
	floctafenic acid/ or floctafenine/ or flunixin/ or flunixin
	meglumine/ or flupirtine/ or frakefamide/ or fulranumab/ or
	funapide/ or gabapentin/ or gabapentin enacarbil/ or
	giripladib/ or glafenic acid/ or glafenine/ or gw 493838/ or gw
	842166/ or harkoseride/ or hasamal/ or ibudilast/ or
	indantadol/ or lappaconitine/ or letimide/ or lexanopadol/ or
	mavatrep/ or "n (1,4 benzodioxan 6 yl) 3 (4 tert
	butylphenyl)acrylamide"/ or "n (4 isopropylphenyl) 2 (1,2,3,6
	tetrahydro 1,3 dimethyl 2,6 dioxo 7h purin 7 yl)acetamide"/ or
	n deacetyllappaconitine/ or narcotic analgesic agent/ or
	nefopam/ or neurotropin/ or nuvanil/ or olvanil/ or omega
	conotoxin cvid/ or omega conotoxin mviia/ or panidex/ or pf
	3557156/ or pf 4136309/ or pf 4480682/ or pf 592379/ or pf
	738502/ or pravadoline/ or pregabalin/ or ralfinamide/ or
	retigabine/ or ruzadolane/ or sampirtine/ or senrebotase/ or
	short acting analgesic agent/ or strascogesic/ or tanezumab/ or
	tazadolene/ or tazadolene succinate/ or tebanicline/ or
	traxoprodil/ or tylox/ or vedaclidine/ or xen 402/
Analgesia [auto-explosion]	analgesia/ or acupuncture analgesia/ or antinociception/ or
	diffuse noxious inhibitory control/ or electroanalgesia/ or
	hypoalgesia/ or interpleural analgesia/ or neuroleptanalgesia/
	or obstetric analgesia/ or patient controlled analgesia/ or
	postoperative analgesia/

ClinicalTrials.gov search available at:

https://clinicaltrials.gov/ct2/results?term=Knee+Arthroplasty&cond=pain

Selection of studies: Two independent authors will screen the resultant search for eligible studies. The studies selections and the data collections will be done after multiple calibration exercises.

Assessment for risk of bias

Two independent authors will assess the risk of bias for each study using the Cochrane Collaboration's risk of bias assessment tool.²¹ A third reviewer will adjudicate disagreements.

The areas that will be evaluated are:

- Random sequence generation: Was there adequate sequence generation (selection bias)?
- Allocation concealment: Was allocation adequately concealed (selection bias)?
- Blinding: Was knowledge of the allocated intervention adequately prevented during the study (detection bias)?
 - Participants and personnel
 - Outcome assessors
- Incomplete outcome data: Were incomplete outcome data adequately addressed (attrition bias)?
- Selective outcome reporting: Are reports of the study free of possible selective outcome reporting (reporting bias)?

We will evaluate the aforementioned items within each study, and in each pairwise comparison. We will classify each piece of direct evidence in the network as having low, moderate, or high risk of bias. If significant discrepancies are found between treatment comparisons, we will illustrate these assessments in the network plot for the primary outcome with colored edges according to the risk of bias.²² We will also produce the contribution matrix which gives the percentage contribution of each direct estimate to the network meta-analysis estimates.²³ This will help to delineate the contribution of direct and indirect evidence to each network meta-analysis estimate.

Data collection

Data extraction and management

Using a standardized data collection form, four researchers will review and extract data from the filtered articles. We will collect the following data: first author; year of publication; study title; journal; study country and language; randomization (e.g., parallel, or crossover); type of intervention with details on each group; number of patients in each group; demographic characteristics of each group; whether patients on chronic opioid use were included or not and their number; anesthesia, analgesia, and anti-emetic protocol used; technique of surgery; pain scores at rest and movement; intraoperative and postoperative opioid consumption; in-hospital rehabilitation profile; incidence of fall, nausea, and vomiting; duration of hospital stay; and Cochrane Collaboration's risk of bias assessment.

Data extraction:

A team from four investigators will extract the data independently. Two investigators will extract data from each article, independently, and a third investigator will confirm the extracted data.

Pain scores are usually presented in a numeric rating scale (NRS), ranging from 0 to 10, but it may, less frequently, presented as visual analogue scale (VAS), ranging from 0 to 100, in this situation we will convert the VAS to NRS by dividing the results by 10.

Opioids will be converted to morphine equivalent in mg using a standardized conversion calculator <u>http://clincalc.com/Opioids/</u>.

If the pain scores and opioid consumptions are not reported numerically, they will be estimated from manual measurements of the corresponding figures.

For studies in which incidences of nausea and/or vomiting is not reported separately, but reported as incidences of postoperative nausea and vomiting (PONV), we will consider PONV to represent the nausea incidence since nausea is about ten times as common as vomiting, and vomiting without concomitant nausea is rare. In studies in which the number of antiemetics used is reported instead of incidences of nausea and/or vomiting, we will use that as the incidences of vomiting.

Data analysis

Measures of treatment effect

We will estimate the pairwise relative treatment effects of the competing interventions using standardized mean differences (SMD) for continuous outcomes and odds ratios (OR) for dichotomous outcomes. Effect sizes will always be accompanied by 95% confidence intervals.

Results from NMA will be presented as summary relative effect sizes (SMD or OR) for each possible pair of treatments. We will interpret the results and place confidence in the output of the network meta analysis using the methods suggested by Salanti et al.²⁴ that are based on the methodology developed by the Grading of Recommendations Assessment, Development and Evaluation (GRADE) Working Group for pairwise meta-analyses.

Relative treatment ranking

We will estimate the ranking probabilities for all treatments of being at each possible rank for each intervention using the *network* command in STATA.²⁵ We will obtain a hierarchy of the competing interventions using rankograms.²⁶ We use the surface under the cumulative ranking curve (SUCRA) and mean ranks to obtain a treatment hierarchy.²² We will produce the relevant plots using the suite of STATA commands by Chaimani et al.²²

Unit of analysis issues

We expect that some studies will not report mean values and standard deviations (SD) but instead report quintiles or similar measures. If a study reports the median, minimum, and maximum values, we will use the methodology from Hozo et al.²⁷ to estimate the respective mean and SD of the study population. We will include also studies that report the median and the interquartile range (IQR), assuming that data are normally distributed and the standard deviation would be SD=IQR/1.35 with the mean equaling the median. However, reporting of medians and IQRs usually indicates a non-normal data distribution.²⁸ We will therefore repeat the analysis excluding these studies as a sensitivity analysis for the main network. If we find studies reporting effect sizes but not standard deviation, we estimate the unreported standard deviation, if possible, using the methods found in the Cochrane Handbook.²⁸ Similarly, if means and sample sizes are reported in each arm, but not the standard deviations,

we will estimate the standard deviations, if possible, using the methodology described in the Cochrane handbook.²⁸

Studies with multiple treatment groups

We will take into account the correlations between effect sizes measured within a single trial.

Assessment of reporting biases

For each pairwise comparison that includes at least 10 trials, we will draw contour-enhanced funnel plots and compute Egger's test to test visually and statistically for small-study effects.²⁹ For these comparisons we will draw contour-enhanced funnel plots to distinguish small study effects from publication bias.³⁰ We will also draw a comparison-adjusted funnel plot to explore for small study effects assuming that small study effects favor the novel treatment.²²

Dealing with missing data

Missing data and dropouts will be assessed in all included studies. Details and characteristics of dropouts will be investigated and reported. We will explore if reasons for missing data are related to the actual outcome and if missing data are balanced in the intervention arms. If it appears that data may not be missing-at-random, we will use pattern mixture models to allow for uncertainty in the summary estimate due to missing data.³¹

Assessment of clinical and methodological heterogeneity within treatment comparisons

There are three different types of heterogeneity, namely clinical, methodological, and statistical.³² To evaluate the presence of clinical heterogeneity we will generate descriptive statistics for trial and study population characteristics across all eligible trials that compare each pair of interventions. We will assess the presence of clinical heterogeneity within each pairwise comparison by comparing these characteristics (mentioned in details on the "Investigation of heterogeneity and inconsistency via subgroup analysis and meta-regressions" section). We will assess methodological heterogeneity by evaluating the design of the studies. Statistical heterogeneity refers to differences in true effect sizes.

Assessment of transitivity across treatment comparisons

Although participants are randomized within a study, treatment strategy comparisons are not randomized across studies. We assume that an intervention is missing from a trial for reasons not associated with its relative effectiveness and any patient that meets the inclusion criteria is, in principle, equally likely to be randomized to any of the eligible interventions.³³ This is a key assumption in network meta-analysis called transitivity. It states that we can genuinely learn about the relative effectiveness between two treatments via an indirect route.

If, for example, the treatments "femoral nerve block" and "peri-articular infiltration" are both directly compared to "epidural analgesia", then we can assess "femoral nerve block" vs. "peri-articular infiltration" indirectly through "epidural analgesia". This assumption is that "epidural analgesia" is similar when it appears in "epidural analgesia" vs. "femoral nerve block" and "epidural analgesia" vs. "peri-articular infiltration" trials, and also that the distribution of effect modifiers is similar in "epidural analgesia" vs. "femoral nerve block" and "epidural analgesia" vs. "peri-articular infiltration" trials.

The assumption of transitivity will be evaluated for all treatment comparisons. Specifically, we will assess the transitivity assumption by comparing the distribution of the potential effect modifiers across various pairwise comparisons. We suspect that year of study publication and sample size of the trial will be effect modifiers, and we will explore whether the distribution of these potential modifiers differs across treatment comparisons. We will assume that the most common treatment (epidural analgesia, in this example) used for indirect comparisons is itself similar when it appears in different trials.

Data synthesis

Methods for direct treatment comparisons

We will conduct pairwise meta-analyses in STATA, using random effects models³⁴ for each treatment comparison with at least two studies.

Methods for indirect and mixed comparisons

We will use network meta-analysis to compare various pain management interventions for TKA. Network meta-analysis synthesizes both direct and indirect evidence, estimates the relative effectiveness amongst pairs of interventions, even if specific interventions have never been compared directly in RCT's, and provides a ranking of interventions.³⁵⁻³⁸ For example, femoral nerve block vs. epidural analgesia, direct evidence would be provided by trials directly comparing these two interventions whereas indirect evidence would be provided by an indirect path linking these two treatments.

By combining direct and indirect evidence we obtain estimates with increased precision. We will perform network meta-analysis in STATA using the *network* command²⁵ and selfprogrammed STATA routines available at <u>http://www.mtm.uoi.gr/index.php/stata-routines-for-</u> <u>network-meta-analysis</u>.²²

Assessment of statistical heterogeneity

Assumptions when estimating heterogeneity

In standard pairwise meta-analyses, we assume different heterogeneity estimates for different comparisons. In network meta-analysis we assume that heterogeneity is the same for all treatment comparisons. We estimate heterogeneity using restricted maximum likelihood both in pairwise and network meta-analysis.

Measures and tests for heterogeneity

We will assess statistical heterogeneity visually by inspecting the forest plot for each pairwise comparison. We will compute the I^2 index and the chi-square statistic within each pairwise comparison.³⁹ Both these two measures can be unreliable and the chi-square statistic has low power to detect heterogeneity. For dichotomous outcomes, we will compare the estimated values for heterogeneity to their empirical distribution derived by Turner et al.⁴⁰

Assessment of statistical inconsistency

Local approaches for evaluating inconsistency

To evaluate the presence of inconsistency locally [i.e., within a specific closed loop of evidence (e.g. if there are studies comparing A vs B, B vs C and A vs C then treatments A, B and C form a closed loop of evidence)] we will use the loop-specific approach.⁴¹ This method evaluates the

consistency assumption in each closed loop of the network separately as the difference between direct and indirect estimates for a specific comparison in the loop (inconsistency factor). Then, the magnitude of the inconsistency factors and their uncertainty expressed by 95% confidence intervals are used to infer about the presence of inconsistency in each loop. We will assume a common heterogeneity estimate within each loop.⁴² We will present the results of this approach graphically in a forest plot using the *ifplot* command in STATA.²² We will use the node-splitting approach to evaluate if there is a difference, particular comparison, between 'direct' and 'indirect' evidence.⁴³

Global approaches for evaluating inconsistency

We will use the 'design-by-treatment' model as described by Higgins and colleagues to check the assumption of inconsistency in the entire network for each outcome.⁴⁴ This method accounts for different source of inconsistency that can occur when studies with different designs (two-arm trials vs. three-arm trials) give different results as well as disagreement between direct and indirect evidence. The design-by-treatment model will be performed in STATA using the *mvmeta* command.

Investigation of heterogeneity and inconsistency via subgroup analysis and metaregressions

If we find important heterogeneity or/and inconsistency, we will explore possible sources. If sufficient studies are available, we will perform meta-regression or subgroup analyses for the primary outcome by using the following effect modifiers as possible sources of inconsistency and or heterogeneity:

- 1. Year of publication: older studies were done at the time where more invasive surgical techniques were used.
- 2. Patients age
- 3. Patients gender
- Surgical technique (minimal invasive versus standard): minimally invasive surgery (MIS) total knee arthroplasty (TKA) approaches were introduced as an alternative approaches than the standard TKA approach. These include; the limited

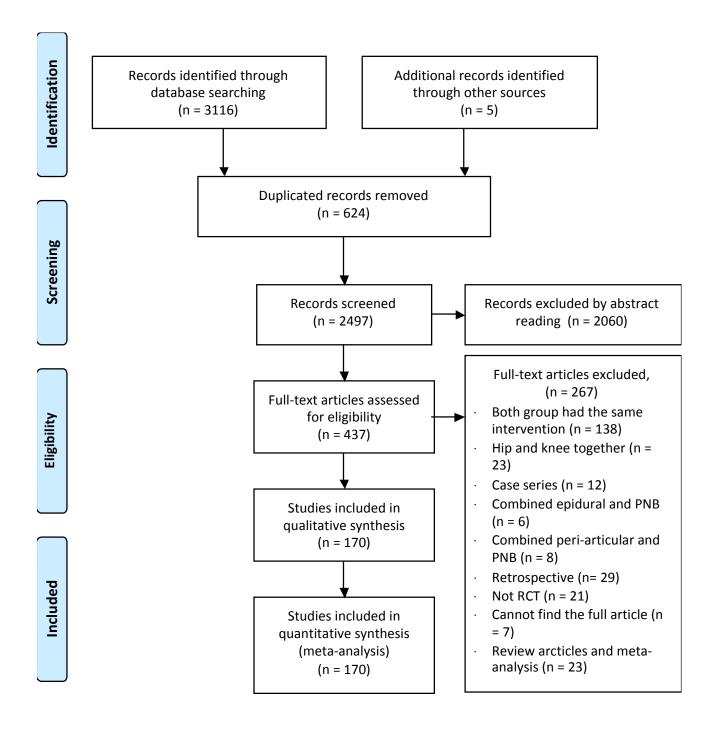
parapatellar, limited midvastus, limited subvastus, and quadriceps-sparing approaches.⁴⁵

- 5. Whether the study was funded or not, and whether it was founded by a pharmaceutical company.
- Duration of hospitalization, which might be shorter in hospitals with fast-track discharge protocols.⁴⁶
- 7. Variations in the drug type, dose, concentration that used
- 8. Whether or not non-local anesthetic drugs were used as an adjuvants in the mixture of the medications (e.g., opioids, ketamine)
- 9. The use of concomitant analgesic regimen (e.g., nonsteriodal anti-inflammatory drugs, acetaminophen, or gabapentin)
- 10. Type of anesthesia: general (total intravenous anesthesia vs. volatile anesthesia with or without nitrous oxide), and neuroaxial anesthesia (spinal vs. epidural).
- 11. Preoperative chronic pain treated chronically with opioids.
- 12. Whether the procedure is for the first or second knee in staged bilateral total knee arthroplasty. Recent study suggest that patients having staged bilateral TKA experience more postoperative pain with the second procedure, perhaps because of hyperalgesia extending beyond the initial injury site and/or central sensitization.⁴⁷

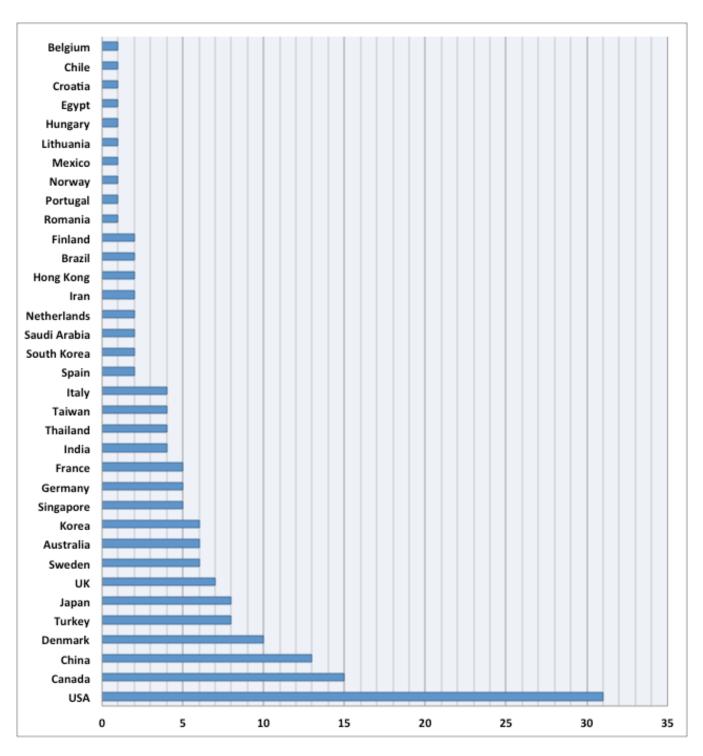
Sensitivity analyses

For the primary outcome and the main network we will repeat the analysis excluding those studies that are at high or unclear risk of bias. If there are large missing rates and suspicions that data are missing not at random, we will apply pattern mixture models to account for missing outcome data.³¹ We will also repeat the analysis including studies with bilateral one-stage total knee arthroplasy.

References


- 1. Martin GM. Patient information: Total knee replacement (arthroplasty) (Beyond the Basics). UpToDate 2014. Available at http://www.uptodate.com/contents/total-knee-replacement-arthroplasty-beyond-the-basics accessed in December 3, 2014.
- 2. Weinstein AM, Rome BN, Reichmann WM, et al. Estimating the burden of total knee replacement in the United States. The Journal of bone and joint surgery American volume 2013; 95: 385-392.
- 3. Grishko V, Xu M, Wilson G, Pearsall AWt. Apoptosis and mitochondrial dysfunction in human chondrocytes following exposure to lidocaine, bupivacaine, and ropivacaine. The Journal of bone and joint surgery American volume 2010; 92: 609-618.
- 4. Baratta JL, Gandhi K, Viscusi ER. Perioperative pain management for total knee arthroplasty. Journal of surgical orthopaedic advances 2014; 23: 22-36.
- 5. Guay J. Postoperative pain significantly influences postoperative blood loss in patients undergoing total knee replacement. Pain medicine 2006; 7: 476-482.
- 6. Chang CB, Cho WS. Pain management protocols, peri-operative pain and patient satisfaction after total knee replacement: a multicentre study. The Journal of bone and joint surgery British volume 2012; 94: 1511-1516.
- 7. Bauer MC, Pogatzki-Zahn EM, Zahn PK. Regional analgesia techniques for total knee replacement. Current opinion in anaesthesiology 2014; 27: 501-506.
- 8. Horlocker TT. Pain management in total joint arthroplasty: a historical review. Orthopedics 2010; 33: 14-19.
- 9. Chan EY, Fransen M, Parker DA, Assam PN, Chua N. Femoral nerve blocks for acute postoperative pain after knee replacement surgery. The Cochrane database of systematic reviews 2014; 5: CD009941.
- 10. Marques EM, Jones HE, Elvers KT, Pyke M, Blom AW, Beswick AD. Local anaesthetic infiltration for peri-operative pain control in total hip and knee replacement: systematic review and meta-analyses of short- and long-term effectiveness. BMC musculoskeletal disorders 2014; 15: 220.
- 11. Banerjee P, Rogers BA. Systematic review of high-volume multimodal wound infiltration in total knee arthroplasty. Orthopedics 2014; 37: 403-412.
- 12. Andersen LO, Kehlet H. Analgesic efficacy of local infiltration analgesia in hip and knee arthroplasty: a systematic review. British journal of anaesthesia 2014; 113: 360-374.
- 13. Wasserstein D, Farlinger C, Brull R, Mahomed N, Gandhi R. Advanced age, obesity and continuous femoral nerve blockade are independent risk factors for inpatient falls after primary total knee arthroplasty. The Journal of arthroplasty 2013; 28: 1121-1124.
- 14. Memtsoudis SG, Danninger T, Rasul R, et al. Inpatient falls after total knee arthroplasty: the role of anesthesia type and peripheral nerve blocks. Anesthesiology 2014; 120: 551-563.
- 15. Lombardi AV, Jr. Recent advances in incorporation of local analgesics in postsurgical pain pathways. American journal of orthopedics 2014; 43: S2-5.
- 16. Bagsby DT, Ireland PH, Meneghini RM. Liposomal bupivacaine versus traditional periarticular injection for pain control after total knee arthroplasty. The Journal of arthroplasty 2014; 29: 1687-1690.
- 17. Al-Zahrani T, Doais KS, Aljassir F, Alshaygy I, Albishi W, Terkawi AS. Randomized Clinical Trial of Continuous Femoral Nerve Block Combined with Sciatic Nerve Block Versus

Epidural Analgesia for Unilateral Total Knee Arthroplasty. The Journal of arthroplasty 2014.


- 18. Jansen JP, Fleurence R, Devine B, et al. Interpreting indirect treatment comparisons and network meta-analysis for health-care decision making: report of the ISPOR Task Force on Indirect Treatment Comparisons Good Research Practices: part 1. Value in health : the journal of the International Society for Pharmacoeconomics and Outcomes Research 2011; 14: 417-428.
- 19. Choi S, Trang A, McCartney CJ. Reporting functional outcome after knee arthroplasty and regional anesthesia: a methodological primer. Regional anesthesia and pain medicine 2013; 38: 340-349.
- 20. Hoaglin DC, Hawkins N, Jansen JP, et al. Conducting indirect-treatment-comparison and network-meta-analysis studies: report of the ISPOR Task Force on Indirect Treatment Comparisons Good Research Practices: part 2. Value in health : the journal of the International Society for Pharmacoeconomics and Outcomes Research 2011; 14: 429-437.
- 21. Higgins JP, Altman DG, Gotzsche PC, et al. The Cochrane Collaboration's tool for assessing risk of bias in randomised trials. Bmj 2011; 343: d5928.
- 22. Chaimani A, Higgins JP, Mavridis D, Spyridonos P, Salanti G. Graphical tools for network meta-analysis in STATA. PloS one 2013; 8: e76654.
- 23. Krahn U, Binder H, Konig J. A graphical tool for locating inconsistency in network metaanalyses. BMC medical research methodology 2013; 13: 35.
- 24. Salanti G, Del Giovane C, Chaimani A, Caldwell DM, Higgins JP. Evaluating the quality of evidence from a network meta-analysis. PloS one 2014; 9: e99682.
- 25. White IR. Multivariate random-effects meta-analysis. The Stata Journal 2009; 9: 40-56.
- 26. Salanti G, Ades AE, Ioannidis JP. Graphical methods and numerical summaries for presenting results from multiple-treatment meta-analysis: an overview and tutorial. Journal of clinical epidemiology 2011; 64: 163-171.
- 27. Hozo SP, Djulbegovic B, Hozo I. Estimating the mean and variance from the median, range, and the size of a sample. BMC medical research methodology 2005; 5: 13.
- 28. Julian PT Higgins SG. Cochrane Handbook for Systematic Reviews of Interventions Version 5.1.0 (updated March 2011). The Cochrane Collaboration. 2011.
- 29. Egger M, Davey Smith G, Schneider M, Minder C. Bias in meta-analysis detected by a simple, graphical test. Bmj 1997; 315: 629-634.
- 30. Peters JL, Sutton AJ, Jones DR, Abrams KR, Rushton L. Contour-enhanced meta-analysis funnel plots help distinguish publication bias from other causes of asymmetry. Journal of clinical epidemiology 2008; 61: 991-996.
- 31. Mavridis D, White IR, Higgins JP, Cipriani A, Salanti G. Allowing for uncertainty due to missing continuous outcome data in pairwise and network meta-analysis. Statistics in medicine 2014.
- 32. Julian PT Higgins SG. Analysing data and undertaking meta-analyses. Chapter 7. Cochrane Handbook for Systematic Reviews of Interventions Version 510 (updated March 2011). The Cochrane Collaboration, 2011.
- 33. Salanti G. Indirect and mixed-treatment comparison, network, or multiple-treatments meta-analysis: many names, many benefits, many concerns for the next generation evidence synthesis tool. Research Synthesis Methods 2012; 3: 80-97.
- 34. DerSimonian R, Laird N. Meta-analysis in clinical trials. Controlled clinical trials 1986; 7: 177-188.

- 35. Cipriani A, Higgins JP, Geddes JR, Salanti G. Conceptual and technical challenges in network meta-analysis. Ann Intern Med 2013; 159: 130-137.
- 36. Salanti G, Higgins JP, Ades AE, Ioannidis JP. Evaluation of networks of randomized trials. Stat Methods Med Res 2008; 17: 279-301.
- 37. Caldwell DM, Ades AE, Higgins JP. Simultaneous comparison of multiple treatments: combining direct and indirect evidence. BMJ 2005; 331: 897-900.
- 38. Lu G, Ades AE. Combination of direct and indirect evidence in mixed treatment comparisons. Stat Med 2004; 23: 3105-3124.
- 39. Higgins JP, Thompson SG. Quantifying heterogeneity in a meta-analysis. Statistics in medicine 2002; 21: 1539-1558.
- 40. Turner RM, Davey J, Clarke MJ, Thompson SG, Higgins JP. Predicting the extent of heterogeneity in meta-analysis, using empirical data from the Cochrane Database of Systematic Reviews. International journal of epidemiology 2012; 41: 818-827.
- 41. Bucher HC, Guyatt GH, Griffith LE, Walter SD. The results of direct and indirect treatment comparisons in meta-analysis of randomized controlled trials. Journal of clinical epidemiology 1997; 50: 683-691.
- 42. Veroniki AA, Vasiliadis HS, Higgins JP, Salanti G. Evaluation of inconsistency in networks of interventions. International journal of epidemiology 2013; 42: 332-345.
- 43. Dias S, Welton NJ, Caldwell DM, Ades AE. Checking consistency in mixed treatment comparison meta-analysis. Statistics in medicine 2010; 29: 932-944.
- 44. Higgins JP JD BJ, Lu G, Ades AE, White R. Consistency and inconsistency in network metaanalysis: concepts and models for multi-arm studies. Research Synthesis Methods 2012; 3: 98-110.
- 45. Scuderi GR. Minimally invasive total knee arthroplasty: surgical technique. American journal of orthopedics 2006; 35: 7-11.
- 46. Glassou EN, Pedersen AB, Hansen TB. Risk of re-admission, reoperation, and mortality within 90 days of total hip and knee arthroplasty in fast-track departments in Denmark from 2005 to 2011. Acta orthopaedica 2014; 85: 493-500.
- 47. Kim MH, Nahm FS, Kim TK, Chang MJ, Do SH. Comparison of postoperative pain in the first and second knee in staged bilateral total knee arthroplasty: clinical evidence of enhanced pain sensitivity after surgical injury. Pain 2014; 155: 22-27.

PRISMA flow diagram

Countries were studies conducted

Countries contributing to the included trials, data presented as number.

			Type of	Adjuvant analgesia			
ID	Authors (year)	Management description	Anesthesia	Opioids	NSAIDs	Gabapentin / others	
1	Raj P (1987)	Group A (15 patients): Placebo; received conventional parenteral narcotics; morphine or meperidine Group B (15 patients): Epidural - started before surgery; Infusions were started with 0.25% bupivacaine at an infusion rate of 6-15 ml/hr.	GA (volatile)	Yes	No	No	
2	Nielsen P (1989)	Group A (11 patients): Epidural - started after surgery; Mepivacain 2% with morohine (2-6mg) three times daily Group B (11 patients): Placebo; Systematic IM Ketobemidon (5- 7.5mg four times daily and 5-7.5mg as required)	GA (volatile)	No	Yes	No	
3	Pettine K (1989)	Group A (14 patients): Placebo; meperidine 1mg/kg + hydroxyzine HCl 25mg IM every 3 to 4 hr or Acetaminophen with codeine (Tylenol) 30mg PRN Group B (14 patients): Epidural; 0.125% bupivacaine at rate of 10ml/hr	Epidural Anesthesia	Yes	Yes	No	
4	Mahoney O (1990)	Group A (43 patients): Placebo; systemic opioids Group B (62 patients): Epidural; boluses of 2-6 mg of morphine as needed Group C (57 patients): Epidural; continuous bupivacaine with duramorph	NA	Yes	NA	No	
5	Serpell M (1991)	 Group A (13 patients): Femoral nerve block using a nerve stimulator After the end of surgery; A dose of 0.3 ml/kg 0.5% bupivacaine with Epi was administered in 5-ml increments. Topups of the same dose of bupivacaine at 6-8 hour intervals during the next 48 hours. Group B (16 patients): PCA; Morphine in 2-mg intravenous boluses to a maximum of 12 mg/hour with a lockout interval of 9 minutes. If pain relief was inadequate, intramuscular morphine 10 mg or paracetamol 1 g orally was administered. 	Spinal Anesthesia (with sedation)	Yes	Yes	No	
6	Edwards N (1992)	 Group A (18 patients): Placebo; All patients received IM papaveretum (10-20 mg every 4 h) was prescribed to be given on patient request. Group B (19 patients): Femoral; 3-in-1 nerve block (continuous infusion), before surgery, Initially, 30 mL of 0.25% bupivacaine was injected into the catheter to obtain a 3-in-1 block. This was immediately followed by an infusion of 0.125% bupivacaine at 6 mL/h, which was then continued into the postoperative period for 24 h. 	GA (volatile + Nitrous oxide)	Yes	No	No	

7	Sharrock (1994) Bilateral TKA	Group A (26 patients): Epidural; Bupivacaine 0.5% and Fentanyl 10 mcg/ml at 3-5 ml/hr for 36 hr, with boluses of 2 ml as needed Group B (25 patients): Placebo; Fentanyl 100 mcg/hr for 36 hr, with boluses of 20 to 50 as needed	Epidural Anesthesia (with sedation)	Yes - IM morphine	NA	NA
8	Badner N (1996)	Group A (28 patients): Periarticular; Intra-articular (single dose), before surgery, 30ml of 0.5% bupivacaine and Epi in saline solution before the skin incision was made and 30ml of plain saline solution after the wound was closed. Group B (27 patients): Periarticular; Intra-articular (single dose), after surgery, 30ml of plain saline solution before the incision and 30ml of 0.5% bupivacaine and Epi in saline solution after closure. Group C (27 patients): PCA; 30 ml plan saline before and after	GA (volatile)	Yes	No	No
9	Hirst G (1996)	 Group A (11 patients): control group; femoral catheter normal saline infusion for 48 hr. Group B (11 patients): Femoral; 3-in-1 femoral nerve block, single dose, with nerve stimulator guidance with nerve stimulator guidance then catheter. 20ml of 0.5% bupivacaine with Epi then normal saline infusion for 48 hr. Group B (11 patients): Femoral; 3-in-1 femoral nerve block, with nerve stimulator guidance then catheter, continues infusion, 20ml of 0.5% bupivacaine with Epi followed by 0.125% bupivacaine infusion at 6 ml/hr for 48 hr 	GA (volatile + Nitrous oxide)	Yes – PCA; Morphine 1.5mg, lockout interval 7min, 4-hour dose limit = 30mg	No	No
10	Williams-Russo (1996)	 Group A (81 patients): PCA; At the first year of the study patients recieved systematic opioids then after that they had PCA in the study. Group B (97 patients): Epidural; Lidocaine 2% or Bupivacaine 0.75%, then infusion for 48 to 72hr. They also received systematic narcotic as needed postoperatively 	GA (volatile + Nitrous oxide)	Yes	NA	NA
11	Mauerhan D (1997)	 Group A (27 patients): PCA; 30ml Saline + PCA deliver a dose of 1 mg/mL morphine sulfate. There was a lockout time period of 5 minutes and a 4-hour limit of 30 mg/mL. Thus, the 24-hour limit was 180 mg/mL. Group B (26 patients): Periarticular; Morphine 5mg on 30ml saline Intra-articular injection Group C (24 patients): Periarticular; Bupivacaine 50mg on 30ml saline Intra-articular injection Group D (28 patients): Periarticular; Morphine + Bupivacaine on 30ml saline Intra-articular injection 	Spinal Anesthesia	Yes - PCA	No	No
12	Allen H (1998)	Group A (12 patients): control group; Sham femoral (3-in-1) and sciatic block, Morphine bolus of 1 mg and a lockout interval of 10 min with no limit or background infusion. Group B (12 patients): Femoral block; 3-in-1 femoral nerve block, with nerve stimulator guidance with nerve stimulator guidance +	Spinal Anesthesia	Yes - PCA	Yes	No

		Sham sciatic; after surgery (single dose), Bupivacaine 0.25% 30ml with Epi. Group C (12 patients): 3-in-1 femoral nerve block + sciatic block, with nerve stimulator guidance with nerve stimulator guidance; after surgery, single dose. Bupivacaine 0.25% 30ml with Epi (for each block)				
13	Singelyn F (1998)	Group A (15 patients): PCA Group B (15 patients): 3-in-1 femoral block with continuous infusion, guided by nerve stimulator; before surgery. 37 mL of 0.25% bupivacaine with Epi followed by infusion of 0.125% bupivacaine with sufentanil 0.1 mcg/mL and clonidine 1 mcg/mL at the rate of 10 mL/h. Group C (15 patients): Epidural; Bolus of 3 mL of 0.25% bupivacaine with Epi of the same solution and 10 mcg of sufentanil were injected, followed by infusion of 0.125% bupivacaine with sufentanil 0.1 mcg/mL and clonidine 1 mcg/mL at the rate of 10 mL/h.		Yes – PCA, concentration 2 mg/mL, dose 1.5 mg, lockout 8 min	Yes	IM piritramide (DIPI), a synthetic p- agonist opioid
14	Tarkkila P (1998)	Group A (20 patients): spinal with intra-thecal morphine, 0.3 mg morphine Group B (18 patients): Femoral, infusion, nerve stimulator, 3-in-1 technique. Bupivacaine 0.25% at 0.1 mL/kg/hr until next morning	Spinal Anesthesia	NA	NA	NA
15	Capdevlla X (1999)	Group A (19 patients): control group; no intervention. Group B (17 patients): epidural; Bolus 2 mg morphine and 5-ml doses of 2% lidocaine with Epi, via the epidural catheter, until a TI0 level was determined using the pinprick method followed by infusion of 1% lidocaine, 0.03 mg/d morphine, and 2 mcg/d clonidine administered at 0.1 ml/kg/ h for 72 hr started postoperatively Group C (20 patients): 3-in-1 femoral nerve block, with nerve stimulator guidance then catheter. 25-ml bolus of 2% lidocaine with Epi and 2 mg morphine followed by 1% lidocaine, 0.03 mg/d morphine, and 2 mcg/d clonidine administered at 0.1 ml/kg/ h for 72 hr started postoperatively	GA (volatile + Nitrous oxide)	Yes – PCA, Morphine dose, 1 mg; lockout interval, 7 min; maximum dose, 30 mg/4 h	Yes	No
16	Ganapathy S (1999)	 Group A (20 patients): control group; Sham femoral (3-in-1) block Group B (20 patients): 3-in-1 femoral nerve block, with nerve stimulator guidance then catheter; at the end of surgery. Bupivacaine 0.1% bolus of 30ml then infusion at a rate of 10 mL/h and continued for 48 h Group C (22 patients): 3-in-1 femoral nerve block, with nerve stimulator guidance then catheter; at the end of surgery. Bupivacaine 0.2% bolus of 30ml then infusion at a rate of 10 mL/h and continued for 48 h. 	Spinal Anesthesia	Yes - PCA (Morphine dose of 1.5 mg with a lockout time of 6 min)	Yes	No
17	Klasen J (1999)	Group A (10 patients): control group; no intervention	Spinal	Yes – PCA Bolus	No	No

		Group B (10 patients): Epidural; Bolus of 2.5mg of morphine in 10ml then infusion with morphine Group C (10 patients): Intra-articular single injection, bolus of 1mg morphine diluted in 20ml of saline	Anesthesia	dose of 2.5mg of morphine with a lockout interval of 15min, maximum 20mg within 4 hr		
18	Ritter M (1999)	 Group A (109 patients): Intra-articular (single dose), 10 mg of morphine (1 ml) and 9 ml of saline. Group B (114 patients): Intra-articular (single dose), 10 ml of bupivacaine (2.5 mg/ml) Group C (97 patients): control group; no intervention. Group D (117 patients): Intra-articular (single dose), 10 mg of morphine (1 ml) and 9 ml of bupivacaine (2.5 mg/ml) 	GA (volatile)	Yes - PCA	Yes	No
19	Chelly J (2001)	Group A (33 patients): control group; no intervention. Group B (29 patients): 3-in-1 femoral (with infusion) + anterior sciatic block, both with nerve stimulator assistance; before surgery. Bolus of 15ml of 0.75% ropivacaine + 15ml of 1.5% mepivacaine then infusion with 0.2% ropivacaine at a rate of 12ml/h for 72h. Group C (30 patients): epidural; Bolus of 20ml of a mixture containing 2% lidocaine and 0.5% bupivacaine then infusion with 0.125% bupivacaine + 3mcg/ml of fentanyl at a rate of 10ml/h for 72 hr	GA (volatile + Nitrous oxide)	Yes – PCA 1mg doses with 5min lockout period and a maximum dose of 10mg/h	No	No
20	McNamee D (2001)	 Group A (24 patients): control group; no intervention. Group B (25 patients): Femoral + Sciatic blocks with nerve stimulator guidance. 2mg/kg of bupivacaine 7.5mg/ml divided equally between the femoral and sciatic nerves. Group C (25 patients): Femoral + Sciatic blocks with nerve stimulator guidance. 2mg/kg of ropivacaine 7.5mg/ml divided equally between the femoral and sciatic nerves. 	Spinal Anesthesia	Yes – PCA 1mg bolus of morphine with 5min lockout time	No	No
21	Tanaka N (2001)	 Group A (27 patients): Intra-articular single injection, 5 mg morphine in 30 mL of 0.25% bupivacaine with Epi Group B (20 patients): control group; no intervention. Group C (12 patients): intra-articular injection of 5 mg morphine in 30 mL of 0.25% bupivacaine with Epi Group D (10 patients): control group; no intervention. 	Spinal Anesthesia	Yes – PCA 1 mg/mL morphine sulfate, with a lock-out period of 6 minutes	No	No
22	Adams H (2002)	 Group A (21 patients): 3-in-1 femoral block with nerve stimulator guidance; after surgery. Bupivacaine 0.375% solution 40ml Group B (21 patients): epidural; Bupivacaine 3ml 0.25% solution then bupivacaine 0.375% (1ml per 10cm body height, maximum 15ml) Group C (21 patients): control group; no intervention. 	GA (volatile + Nitrous oxide)	Pirinitramide PCA	Yes	No
23	McNamee D (2002)	Group A (27 patients): Femoral + sciatic block with nerve stimulator guidance; before surgery. 15 ml ropivacaine 0.75% to each nerve.	GA (volatile + Nitrous oxide)	Yes - PCA (1 mg bolus of morphine with a 5-min lockout	No	No

		Group B (24 patients): Femoral + sciatic + obturator block with nerve stimulator guidance; before surgery. 15 ml ropivacaine 0.75% to each nerve and an obturator nerve block with 5 ml ropivacaine 0.75%		time)		
24	Wang H (2002)	 Group A (15 patients): Femoral nerve block using a nerve stimulator, after the end of surgery. 40 mL 0.25% bupivacaine with Epi. Group B (15 patients): Femoral nerve block with saline and PCA. 	GA (volatile + Nitrous oxide)	Yes - PCA (Morphine 1-mg doses of morphine with a 5- minute lockout period between doses)	No	No
25	Browne C (2004)	Group A (30 patients): Intra-articular single injection; Bupivacaine 20ml 0.5% (100mg) with Epi after capsular closure before complete wound closure. Group B (30 patients): Intra-articular single injection of saline		Yes - PCA and Oral		
26	Davies A (2004)	 Group A (30 patients): Epidural at L2-3 or L3-4; before surgery. Test dose of bupivacaine 0.5%, 3 ml, a further 7 ml was administered and an infusion of bupivacaine 0.25% commenced after surgical incision Group B (30 patients): Single femoral (3-in-1) and sciatic blocks with nerve stimulator guidance; before surgery. 30ml bupivacaine 0.375% was used for the femoral component and 25 ml of bupivacaine 0.375% for the sciatic component. 	GA (volatile + Nitrous oxide)	Yes - PCA (1 mg bolus of morphine with a lockout of 5 min)	Yes	No
27	Kaloul I (2004)	Group A (20 patients): control group PCA only Group B (20 patients): 3-in-1 femoral with nerve stimulator guidance then catheter inserted; before surgery. Bolus of 30 mL of ropivacaine 0.5% with Epi folowed by infusion of ropivacaine 0.2% at 12 mL/hr for 48 hr. Group C (20 patients): Lumbar plexus (Psoas) block with nerve stimulator guidance then catheter inserted; before surgery. Bolus of 30 mL of ropivacaine 0.5% with Epi followed by infusion of ropivacaine 0.2% at 12 mL/hr for 48 hr.	Spinal Anesthesia	Yes – PCA (Morphine 1 mg infused over two minutes with a five-minute lockout period) and Oral	Yes	No
28	Marcalou D (2004)	 Group A (29 patients): 3-in-1 femoral single dose only; before surgery. 0.5% bupivacaine and 2% lidocaine with Epi Group B (33 patients): 3-in-1 Femoral + obturator single injection with nerve stimulator guidance; before surgery. Group C (28 patients): control group only PCA 	GA (volatile + Nitrous oxide)	Yes – PCA (1-mg doses with a 7-min lockout period and a maximum dose of 25 mg in 4 h)	Yes	No
29	Sites B (2004)	Group A (20 patients): Intra-thical morphine; 250 mcg. Group B (20 patients): Femoral, single, ultrasound guided with nerve stimulator. 40 mL of 0.5% ropivacaine with 75 mcg of clonidine and 5 mcg/mL of Epi	Spinal Anesthesia	Yes - PCA (morphine set at a demand dose of 1 mg with a lockout interval of 6 min)	Yes	No
30	Szczukowski M (2004)	Group A (19 patients): Femoral block, single, with nerve stimulator guidance; before surgery. 30ml 0.5% Bupivacaine with Epi Group B (21 patients): Sham femoral block with saline.	GA (volatile + Nitrous oxide)	Yes - PCA (loading dose of 3 mg and the initial PCA dose of 1.5 mg, with the	Yes	No

				lockout interval of 15 minutes and a 4-hour maximum of 30 mg)		
31	Axelsson K (2005)	Group A (15 patients): sham epidural block Group B (15 patients): epidural analgesia with10-20 ml of ropivacaine (10 mg/ml) was injected incrementally followed by ropivacaine (1.25 mg/ml) + morphine 0.02 mg/ml Group C (15 patients): epidural analgesia with 10-20 ml of ropivacaine (10 mg/ml) was injected incrementally followed by ropivacaine 2 mg/ml + morphine 0.02 mg/ml	Epidural Anesthesia	Yes - PCA (morphine 1 mg/ml and a lockout time of 6 min)	NA	NA
32	Barrington M (2005)	 Group A (53 patients): Femoral block with nerve stimulator guidance then catheter placed for infusion; before surgery. 25mL of bupivacaine 0.25% with Epi then infusion of bupivacaine 0.2% commenced at 0.1 mL/kg/h for 3 days Group B (55 patients): Combined spinal-epidural anesthetic at the L2-3 or L3-4; before surgery. Ropivacaine 0.2% plus fentanyl 4 mcg/mL commenced at 6–10 mL/h for 3 days 	Spinal Anesthesia	Yes - PCA (morphine bolus of 0.05 mL/kg and a 60-min lockout period) + oral	Yes	No
33	Dang C (2005)	Group A (14 patients): 3-in-1 femoral block infusion; before surgery. Bolus of 15 mL ropivacaine 0.75% followed by (PCA) pump delivering ropivacaine 0.2% with a following program: 2 to 5 mL/h infusion, 10 mL bolus, and 30 minutes lock out. Group B (14 patients): 3-in-1 femoral + sciatic blocks with infusion; before surgery. Bolus of 15 mL ropivacaine 0.75% (for each block) followed by (PCA) pump delivering ropivacaine 0.2% with a following program: 2 to 5 mL/h infusion, 10 mL bolus, and 30 minutes lock out.	GA (volatile)	Yes - PCA	Yes	No
34	Farag E (2005)	Group A (22 patients): control group; received only PCA Group B (16 patients): Epidural analgesia; after surgery. 15 mL of 1.0% ropivacaine with Epi THEN infusion 0.2% ropivacaine at 8 up to 12 mL/h for 7 days	Spinal Anesthesia	Yes - PCA (morphine 1-mg dose, 6-minute lockout, with no basal infusion after appropriate loading)	NA	NA
35	Morin A (2005)	 Group A (30 patients): continuous femoral nerve block; before surgery. Bolus of the local anesthetic solution (prilocaine 1% mixed with ropivacaine 0.75%); total of 300 mg of prilocaine 1% (30 mL) and 150 mg of ropivacaine 0.75% (20 mL) followed by a ropivacaine 0.2% infusion with 14 mL/h for 48h. Group B (30 patients): combination of continuous femoral and continuous sciatic nerve block; before surgery. Bolus of the local anesthetic solution (prilocaine 1% mixed with ropivacaine 0.75%); total of 200 mg prilocaine 1% (20 mL) and 75 mg ropivacaine 0.75% (10 mL) through each catheter for 48h Group C (29 patients): continuous psoas compartment block; 	GA (volatile + Nitrous oxide)	Yes - PCA	Yes	No

36	Nechleba J (2005)	before surgery. Bolus of the local anesthetic solution (prilocaine 1% mixed with ropivacaine 0.75%); total of 300 mg of prilocaine 1% (30 mL) and 150 mg of ropivacaine 0.75% (20 mL) followed by a ropivacaine 0.2% infusion with 14 mL/h for 48h. Group A (16 patients): control group; Intra-articular injection followed by infusion of saline. Group B (14 patients): Intra-articular injection followed by infusion; 40ml bolus of 0.25% bupivacaine Then infusion rate of	NA	Yes - PCA	Yes	No
		4.16 cc/hr.				
37	Busch C (2006)	Group A (32 patients): Peri-articulat injection (20ml into posterior aspect of the capsule and the medial and lateral collateral ligaments + 20ml into the quadriceps mechanism and the retinacular tissues + 60ml into the fat and subcuticular tissues). 400 mg of ropivacaine, 30 mg of Toradol (ketorolac), 5 mg of epimorphine, and 0.6 mL of epinephrine (1:1000) mixed with sterile normal saline solution to make up a combined volume of 100 mL Group B (32 patients): control group; no intervention.	Spinal Anesthesia	Yes - PCA (morphine bolus of 1.5 mg, a lock-out of six minutes, and a maximum of 15 mg/hr)		No
38	Mistraletti G (2006)	Group A (8 patients): control group; only PCA Group B (8 patients): epidural analgesia; Infusion of bupivacaine 0.1% with fentanyl 3 mcg/mL starting at the rate of 10 mL/h and adjusted if the VAS at rest was 3 or VAS at knee flexion was 4. Group C (8 patients): femoral and sciatic blocks with stimulating catheters; before surgery. Loading dose of lidocaine 2% with epinephrine 2.5 mcg/mL, 0.25 mL/kg, was injected in both the femoral and sciatic catheters followed by infusion ropivacaine 0.2% was administered for 48 hours; the infusion rates were initially 8 mL/h in the femoral catheter and 4 mL/h in the sciatic. Subsequent dose adjustment was performed to obtain a VAS score of 4 and the least possible motor block.	Spinal Anesthesia	Yes – PCA; Morphine incremental doses of 1 mg, with a lockout of 7 minutes	Yes	No
39	Ozen M (2006)	Group A (15 patients): 3-in-1 femoral nerve block with nerve stimulator guidance; before surgery. 40ml of ropivacaine 0.375%. Group B (15 patients): control group; no intervention.	GA (volatile + Nitrous oxide)	Yes - PCA (1 mg bolus with a 15- minute lockout period)	No	No
40	Park CK (2006)	Group A (20 patients): control group; no intervention. Group B (20 patients): Continues 3-in-1 femoral.	Spinal Anesthesia			
41	Seet E (2006)	Group A (17 patients): 3-in-1 femoral continuous infusion (with nerve stimulator guidance); before surgery. 0.25% bupivacaine 10 ml followed by ropivacaine 0.15% at 10 ml/hr during the first 24 hours and then at 5 ml/h during the next 24 hours. Group B (18 patients): 3-in-1 femoral continuous infusion (with nerve stimulator guidance); before surgery. 0.25% bupivacaine 10 ml followed by ropivacaine 0.2% at 10 ml/hr during the first 24 hours and then at 5 ml/h during the next 24 hours.	Spinal Anesthesia	Yes – PCA; concentration 1 mg/ml, on-demand bolus doses of 1 mg with a lockout period of 5 minutes and a maximum dosage of 8 mg/h	Yes	No

		Group C (20 patients): control group; no intervention.				
40	T				NL.	NL.
42	Tugay N (2006)	Group A (8 patients): Femoral nerve block with nerve stimulator	GA (volatile + Nitrous	Yes - PCA (1 mg morphine with a	No	No
		guidance just after anesthesia induction. 40ml 0.25% Bupivacaine.				
		Group B (7 patients): Femoral nerve block with nerve stimulator	oxide)	lockout period of 5		
		guidance just after surgery finished. 40ml 0.25% Bupivacaine.		minutes)		
40	Vendittoli P	Group C (8 patients): control group; no intervention.	Spinal	Yes - PCA and oral	Yes	No
43	(2006)	Group A (22 patients): Peri-articlular infiltration; A 16-gauge catheter that passed through the vastus lateralis muscle was	Anesthesia	opioids	res	No
	(2006)	inserted into the joint (for intra-articular injection on the day after	Anestnesia	opiolas		
		the surgery). 7.5 mL of a 10-mL ropivacaine 10.0 mg/mL sterile				
		pack, 30 mg of ketorolac, and 0.5 mL of Epi to a 100-mL				
		ropivacaine 0.2 mg/mL sterile pack (total of 275 mg of ropivacaine);				
		a total of 107.5 mL of the solution, were used to infiltrate the deep				
		tissues (collateral ligaments, posterior aspect of the capsule,				
		quadriceps tendon, patellar tendon, fat pad, periosteum, and				
		synovium) with the mixture. Before wound closure, the				
		subcutaneous tissues were infiltrated with 125 mg of ropivacaine				
		(the rest of the ropivacaine 10.0 mg/mL sterile pack [2.5 mL] plus				
		50 mL of another 100-mL ropivacaine 0.2 mg/mL sterile pack [a				
		total of 52.5 mL in a 60-mL syringe]). On the first postoperative				
		day, the vacuum drain was clamped and 150 mg of ropivacaine (15				
		mL of 10 mg/mL ropivacaine) was injected into the knee through				
		the catheter, and then the catheter was removed.				
		Group B (20 patients): control group; no intervention.				
44	Zaric D (2006)	Group A (23 patients): epidural analgesia; Ropivacaine 7.5	GA (volatile)	Yes - PCA (bolus of 2	Yes	No
		mg/mL was given in 5-mL aliquots to attain a level of analgesia at		mL 2 mg with a		
		Th 10 then infusion of ropivacaine 2 mg/mL and sufentanil 1		lockout period of 6		
		mcg/mL		min and maximum		
		Group B (26 patients): Femoral + Sciatic (anterior approach) with		dose 20 mg/h)		
		nerve stimulator guidance then catheter placed infusion for 55 hr.				
		Bolus of 30 mL of ropivacaine 7.5 mg/mL was injected to each				
		nerve then infusion by 2 infusers, the first containing ropivacaine 2				
		mg/mL and sufentanil 1 mcg/ mL, was connected to the femoral				
		nerve catheter. The second containing ropivacaine 0.5 mg/mL was				
		connected to the sciatic nerve catheter. Infuser volume was 275				
		mL, and the infusion rate was 5 mL/h				
45	Good R (2007)	Group A (22 patients): Femoral nerve block with nerve stimulator	GA (volatile)	Yes - PCA (1 mg/h, a	No	No
		guidance just after anesthesia induction. 40 mL of 0.50%		dosage that could be		
		bupivacaine hydrochloride with Epi		increased to a		
4.5		Group B (20 patients): femoral block with saline (control group).		maximum of 10 mg/h)		
46	Han C (2007)	Group A (30 patients): single peri-articular infiltration in to 10	Combined	Yes - opioid and PCA	no	No
		different areas. 40 mL of 300mg Ropivacaine with Epi and	spinal			
ι		morphine 5 mg and remaining saline total volume 50 mL.	epidural			

		Group B (30 patients): single peri-articular infiltration in to 10 different areas. 40 mL of 300mg Ropivacaine with Epi and remaining NS total volume 50 mL				
47	Kardash K (2007)	Group C (30 patients): single peri-articular infiltration with saline. Group A (19 patients): Femoral nerve block with nerve stimulator guidance just after surgery finished. 20 mL bupivacaine 0.5% with Epi Group B (20 patients): Obturator block with nerve stimulator guidance after surgery finished. 20 mL bupivacaine 0.5% with Epi Group C (20 patients): Sham block	Spinal Anesthesia	Yes - PCA (fentanyl 50 g/mL set to deliver 25 g every 5 min as needed)	Yes	No
48	Mejia-Terrazas (2007)	Group A (15 patients): Placebo; systemic IV analgesia - infusion for 24h. Morphine 300mcg/kg/day + Parecoxib 80mg/day + Ketamine 100mcg/kg/day. Group B (15 patients): epidural analgesia; infusion Morphine 30mcg/kg/day + Bupivacaine 50mg at rate of 2ml/h per 24hr. Group C (15 patients): Femoral + Sciatic nerve stimulator guided. Ropivacaine 0.25% 1-2mg/kg single dose	Spinal Anesthesia	NA	No	No
49	Ozalp G (2007)	Group A (34 patients): Femoral block with catheter; at the end of surgery. 40 ml of 0.25% bupivacaine and then, as patient controlled regional analgesia, 10-ml boluses of 0.125% bupivacaine, with a lockout time of 60 min over 48 h Group B (34 patients): Psoas block with catheter; at the end of surgery. 40 ml of 0.25% bupivacaine and then, as patient controlled regional analgesia, 10-ml boluses of 0.125% bupivacaine, with a lockout time of 60 min over 48 h	GA (volatile)	Yes - Tramadol	No	No
50	Parvataneni (2007)	Group A (31 patients): Periarticular infiltration; 0.5% Bupivacaine 200-400 mg, Morphine sulfate 4-10 mg, Epinephrine, Methylprednisolone acetate 40 mg, and Normal saline 22 mL Group A (29 patients): Femoral, after surgery.	Spinal Anesthesia	Yes	Yes	No
51	Raimer C (2007)	Group A (21 patients): Combined psoas and sciatic blocks with nerve stimulator guidance then catheter infusion for 48hr postoperatively. 25 mL of 0.75% ropivacaine for the psoas block and 25 mL 1% prilocaine for the sciatic block THEN continuous infusion of 0.2% ropivacaine at a rate of 8 mL/h in each catheter. Group B (21 patients): epidural analgesia; infusion of 0.1% ropivacaine plus 0.5 μg/mL sufentanil at a rate of 8 mL/h. Group B (21 patients): control group; no intervention.	Spinal Anesthesia	Yes – PCA; piritramide (1.5 mg bolus with a lockout interval of 5 min).	Yes	No
52	Rajeev S (2007)	Group A (15 patients): 3-in-1 femoral + sciatic with nerve stimulation guidance. Bolus of 0.4 mL/kg followed by an infusion of 0.14 mL/kg per hour of 0.25% bupivacaine through the catheters beginning after surgery, for 48 hours (divided equally between the two blocks) Group B (15 patients): 3-in1 femoral with nerve stimulation	Spinal Anesthesia	Yes - pethidine	Yes	No

		guidance. Bolus of 0.4 mL/kg followed by an infusion of 0.14 mL/kg per hour of 0.25% bupivacaine through the catheters beginning after surgery, for 48 hours (divided equally between the two blocks)				
53	Toftdahi K (2007)	Group A (37 patients): 3-in1 femoral Winnie technique, with nerve stimulator guidance and catheter insertion; before surgery. Bolus of 20 mL ropivacaine (10 mg/mL) then infusion of 10 mL/h ropivacaine (2 mg/mL) was infused for 48 h. Group B (40 patients): Peri- and intra-articluar injection with catheter intra-articular for postop boluses. 150ml that contain 300 mg ropivacaine, 30 mg ketorolac, and 0.5 mg epinephrine by infiltration of the knee at the end of surgery, and 2 postoperative injections of these substances through an intraarticular catheter. The first 100 mL was given after cementing of the modular prosthesis, before installing the polyethylene part: 50 mL into the posterior part of the capsule and in the intercondylar area and 50 mL into the anterior part of the capsule, the collateral ligaments, and along the femur and tibia	Spinal Anesthesia	Yes - morphine IV and Oxycodone	Yes	No
54	Zugliani A (2007)	Group A (8 patients): 3-in-1 femoral nerve block with catheter for subsequent boluses. 20ml of 0.5% ropivacaine without Epi In case of pain above 3, or equal or greater than moderate pain, more than 6 hours after the femoral nerve block, 20 mL of 0.5% ropivacaine was administered through the catheter to patients in both groups Group B (9 patients): Femoral (3-in-1) with catheter + Sciatic. 20ml of 0.5% ropivacaine without Epi for each block	Spinal Anesthesia	Yes - IM opioid	No	No
55	Bagry H (2008)	Group A (6 patients): control group; no intervention Group B (6 patients): Lumber + Sciatic blocks, with nerve stimulator guidance and catheter insertion. Bolus of lidocaine 2% with epinephrine 2.5 mcg/mL, 0.5 mL/kg, was administered half in each catheter. For continuous postoperative analgesia, ropivacaine 0.2% was administered at a rate of 8 mL/h (lumbar plexus) and 5 mL/h (sciatic nerve) for 48 hours.	Spinal Anesthesia	Yes – PCA (1 mg of morphine, with a lockout of 7 minutes and no background infusion) + oral	Yes	No
56	Campbell A (2008)	Group A (31 patients): epidural analgesia for 55 hr. 4mL of 0.5% levobupivacaine was injected into the epidural space followed by infusion containing a mixture of levobupivacaine 0.125% and clonidine 1.2 mcg/ml at 6ml/hr until the second postop morning Group B (29 patients): Lumber block with catheter insertion under nerve stimulator guidance; a standard approach using a point 4 cm lateral to the transverse process of L4 was used to advance the needle following tissue infiltration with 5mL of 1% lidocaine. Initial bolus of 30mL of 0.5% levobupivacaine followed by infusion containing a mixture of levobupivacaine 0.125% and clonidine 1.2 mcg/ml at 10 ml/hr until the second postop morning	Spinal Anesthesia	Yes - PCA (morphine) + oral	Yes	No
57	Casati A (2008)	Group A (90 patients): control group – PCA	Epidural	Yes – PCA; Morphine	No	No

		 Group B (96 patients): epidural analgesia for 72 hr. 10 ml loading dose of 0.125% levobupivacaine followed by a continuous infusion o f the same solution (Chirocaine 0.125%, Abbott Laboratories, Abbott Park, IL, USA). T h e infusion rate was initially set at 10 ml/h. Group A (20 patients): Combined sciatic (single-shot) and femoral 	Anesthesia GA (volatile)	1 mg doses with a 6- minute lockout period and a maximum allowed dose o f 24 mg/4 h.	Yes	No
58	Martin F (2008)	(continuous for 48 h after surgery) both performed preoperatively. Initial 20-ml bolus of 0.75% ropivacaine for each block followed by infusion for femoral; continuous infusion of 0.2% ropivacaine, 0.15 ml/kg/hr for 48 hr. Group B (18 patients): control group; no intervention.		Yes - PCA (1-mg morphine bolus with a 5-min lockout time. In cases of poor pain control by the patient, the PCA bolus was increased to 2 mg)		
59	Anderson L (2008)	Group A (6 patients): Peri-articular infiltration. Infiltration with 170 ml ropivacaine (0.2%) and epinephrine (10mg/ml) in one knee, and similar infiltration with 170 ml of 0.9% saline in the opposite knee then At 8 h post-operatively, an injection of 20 ml of the drug mixture [40mg ropivacaine and Epi (10 mg/ml)] At 24 h post-operatively, 50ml of the drug mixture [100mg ropivacaine with epinephrine (10mg/ml)] Group B (6 patients): control group; saline peri-articular infilteration.	Spinal Anesthesia	PCA (morphine 20mg/kg, lock-out set to 10 min) + oral opioid	Yes	Gabapentin
60	Bozkurt M (2009)	Group A (20 patients): control group; no intervention Group B (20 patients): epidural analgesia; Test dose 3 ml lidocaine (with Epi), tested before anesthesia, then %0.125 Bupivacaine (with 2mcg/ml fentanyl). Used bolus dose of 5 ml every 30 minutes (lock time). Then they started intraoperatively 20 minutes before the end of surgery.	GA (volatile + Nitrous oxide)	Yes – PCA; Morphine 1mg/ml, bolus 2mg, lock time 10 minutes, maximum 6mg in 1 hour	NA	NA
61	Essving P (2009)	Group A (19 patients): Peri-articular infiltration with intra-articular catheter. Bolus of 200 mg ropivacaine, 30 mg ketorolac, and 0.5 mg epinephrine (total volume 106 mL) were infiltrated intraoperatively into the soft tissue then 21 hours postoperatively, 150 mg ropivacain, 30 mg ketorolac, and 0.1 mg epinephrine were injected intraarticularly via a catheter Group B (19 patients): control group; saline infiltration.	GA (volatile)	Yes - PCA (1–mg bolus with 6–min lockout time)	Yes	No
62	Fu P (2009)	Group A (40 patients): Intraoperative intra-articular cocktail analgesic injection; The first 15 ml of cocktail analgesic injection was injected into the posterior aspect of the capsule and the medial, lateral collateral ligaments, just prior to implantation of the component. Before closure of the incision, the quadriceps tendon, the patella tendon and peripatella tissue were infiltrated with another 10 ml injection. Finally, the remaining 35 ml was used to infiltrate the synovium, fat pad, articular capsule, retinacular tissues, periosteum and subcuticular tissues. The cocktail	Spinal Anesthesia	Yes - PCA (25mg/100mlmorphin e: a 0.5mgbolus, a 6 min lock-out, and a 5mg/h maximum) for 48 h	Yes	No

		analgesic injection contained 5 mg morphine, 30 mg bupivacaine				
		(15 mg/1.5 ml) and 1 ml betamethasone, which were mixed with				
		sterile normal saline solution to make up a combined volume of 60				
		ml.				
		Group B (40 patients): control group; saline infiltration.				
63	Hunt K (2009)	Group A (33 patients): Femoral nerve block with nerve stimulator	NA	Yes - PCA	No	No
	· · · ·	guidance; After induction of general anesthesia. 25 ml of study				
		solution was then injected; 10 to 15 mL of either 0.5% bupivicaine				
		Group B (31 patients): Femoral + Sciatic blocks, single shot, with				
		nerve stimulator guidance; After induction of general anesthesia.				
		25ml of study solution was then injected; 10 to 15 mL of either				
		0.5% bupivicaine; for each nerve.				
		Group C (24 patients): control group; sham blocks.				
64	Kadic L (2009)	Group A (27 patients): Femoral block with catheter, with nerve	Spinal	Yes - PCA (1mg	Yes	No
		stimulator guidance. Before surgery. A bolus of 5ml lidocaine 2%	Anesthesia	morphine on demand		
		(100 mg) with epinephrine 5mg/ml was given as a test dose,		when they felt pain.		
		followed by a main dose of 20–25 ml ropivacaine 0.75%, and		The lockout period		
		THEN a continuous infusion of 0.2% ropivacaine was started in the		was 6 min)		
		recovery room at the rate of 5ml/h and adjusted to a maximum of				
		10 ml/h for the next 48 hr				
		Group B (26 patients): control group; no intervention			X	
65	Park JM (2009)	Group A (25 patients): epidural analgesia with peri-articular saline	Spinal	Yes	Yes	No
		infiltration. 0.5% bupivacaine 8-10 mg and fentanyl and then	Anesthesia			
		infusion 2ml/hr				
		Group B (25 patients): Peri-articular infiltration. 16 mL of 0.75% ropivacaine, 6 mg morphine,0.2 mg of epinephrine and 25 mL				
		normal saline.				
66	Shum C (2009)	Group A (20 patients): control group; no intervention.	Spinal	Yes – PCA; morphine	No	No
00	Shuff C (2003)	Group B (17 patients): Continuous femoral block; with nerve	Anesthesia	1 mg/mL, on-demand	INO	
		stimulator guidance they used Winnie technique (i.e., 3-in-1). After	/ 100110014	bolus doses of 1 mg		
		surgery. Ropivacaine 0.15% (10 mL/h in the first 24 hours, followed		with a lockout period		
		by 5 mL/h in the next 24 hours)		of 5 minutes.		
		Group C (18 patients): Continuous femoral block; with nerve		maximum dose of 8		
		stimulator guidance they used Winnie technique (i.e., 3-in-1). After		mg/hr.		
		surgery. Ropivacaine 0.2%(10 mL/h in the first 24 hours, followed		5		
		by 5 mL/h in the next 24 hours)				
67	Sundarathiti P	Group A (31 patients): epidural analgesia; Bolus of 0.125%	Spinal	Yes; tramadol	Yes	No
	(2009)	levobupivacaine 10 ml plus 2 mg morphine then maintained by	Anesthesia			
		continuous infusion of 0.125% levobupivacaine, infusion rate 8				
		ml/hr for 24 hr post-op and then reduced to 6 ml/hr if VAS > 3.				
		Group B (30 patients): Continuous femoral block; with nerve				
		stimulator guidance. Bolus of 20 ml of 0.25% levobupivacaine then				
		maintained by continuous infusion of 0.125% levobupivacaine with				

		morphine 0.0125 mg/ml, infusion rate 4 ml/hr for 24 hr post-op and then reduced to 3 ml/hr if VAS > 3.				
68	Anderson K (2010)	Group A (19 patients): Peri-articular infiltration followed by catheter continuous infusion. At the end of surgery wound infiltration with 150 mL ropivacaine (2 mg/mL), 1 mL ketorolac (30 mg/mL), and 0.5 mL epinephrine (1 mg/mL) (total volume 152 mL) combined with intraarticular infusion (4 mL/h) of 190 mL ropivacaine (2 mg/mL) plus 2 mL ketorolac (30 mg/mL) Group B (21 patients): epidural analgesia; Bolus of 7 mL ropivacaine (2 mg/mL) then infusion (4 mL/h) of 192 mL ropivacaine (2 mg/mL) combined with 6 intravenous administrations of 0.5 mL ketorolac (30 mg/mL) for 48 h	Spinal Anesthesia	Yes - PCA morphine (concentration 1 mg/mL, dose 2.5 mg, lockout 10 min) as well as Oxycodone	Yes	No
69	Bengisun Z (2010)	 Group A (20 patients): intraoperative intra-articular bupivacaine; The first 100 ml was used after cementing of the modular prosthesis and before replacing the polyethylene insert. First, 50 ml of 100 ml was injected into the posterior part of the capsule and the intercondylar area; second, 50 ml of 100 ml was infiltrated into the anterior part of the capsule, the collateral ligaments, and along the femur and tibia. The remaining 50 ml of solution was infiltrated into the subcutaneous tissue after closure of the capsule. 150 ml solution intra-articularly, containing 200 mg bupivacaine combined with 0.5 mg Epi, at the end of the surgery Group B (20 patients): intraoperative intra-articularly, containing 200 mg levobupivacaine. 150 ml solution intra-articularly, containing 200 mg levobupivacaine combined with 0.5 mg epinephrine, at the end of the surgery. Group C (20 patients): control group; saline intra-articular infiltration. 	Spinal Anesthesia	Yes - PCA with tramadol after the operation as 50-mg boluses with 15-min lockout period, 4-h limit of 200 mg, for 48 hr.	Yes	No
70	Carli F (2010)	Group A (20 patients): Peri-articular infiltration followed by continuous infusion. First; 100 mg of ropivacaine (50 ml of ropivacaine 0.2%), 0.5 ml of ketorolac (30 mg/ml), and 0.25 ml of epinephrine (1 mg/ml) was injected into the posterior capsule of the knee. Then a second solution containing a total volume of 100 ml of ropivacaine 0.2%, 1 ml of ketorolac (30 mg/ml), and 0.5 ml of epinephrine (1 mg/ml); These solutions were injected into the remainder of the capsule, the cut quadriceps tendon, the patellar ligament and soft tissues surrounding the joint, and the subcutaneous tissues after closure of the medial parapatellar arthrotomy. Through this catheter, a third solution containing either 50 ml of ropivacaine 0.5% with ketorolac (30 mg/ml) and 0.25 ml of epinephrine (1 mg/ml) over a 2 hr period at 24 hr. Group B (20 patients): Femoral block with catheter insertion under nerve stimulator guidance; they also received peri-articular	Spinal Anesthesia	Yes - PCA (1 mg of morphine, with a lockout of 7 min and no background infusion), then oxycodone	Yes	No

		placebo, as well as the posterior capsular infiltration. Loading dose of 8 ml of either ropivacaine 0.2% THEN continuous infusion of either ropivacaine 0.2% at a rate of 8 ml/h for 48 hr.				
71	Essving P (2010)	Group A (24 patients): Peri-articular infiltration with catheter insertion for postop boluses. 400 mg ropivacaine, 30 mg ketorolac, and 0.5 mg epinephrine (total volume 166 mL) were infiltrated by the surgeon into the soft tissues peri-articularly during the operation. Before inserting the prosthesis, 40–50 mL of the solution was injected into the posterior capsule. After the prosthesis was cemented in place, the rest of the solution was injected into the deep tissues around the ligaments, the capsule incision, and the synovium. Before closing the skin, 50 mL ropivacaine (100 mg) without epinephrine or ketorolac was injected into the subcutaneous tissue. After 21 h, 200 mg ropivacaine, 30 mg ketorolac, and 0.1 mg epinephrine in total volume of 22 mL were injected intra-articularly via the catheter Group B (23 patients): saline peri-articular infiltration.	GA (volatile)	Yes - PCA morphine (1-mg bolus and 6- min lockout time)	Yes	No
72	Frassanito L (2010)	Group A (26 patients): intra-thecal morphine. Group B (26 patients): Femoral block with ultrasound and nerve stimulator guidance; before anesthesia. 25 mL of 0.75% ropivacaine.	Spinal Anesthesia	Yes - PCA (1-mg bolus and a 5-minute lockout period with no background infusion) for 48 hours	Yes	No
73	Fu P (2010)	Group A (50 patients): Peri-articular infiltration. Cocktail of 5 mg morphine, 150 mg ropivacaine (7.5:1000), 0.5 ml adrenaline (1:1000) and 1 ml betamethasone, which were mixed with sterile normal saline solution to make up a combined volume of 50 ml Group B (50 patients): saline peri-articular infiltration.	Spinal Anesthesia	Yes - PCA (25 mg/100 ml morphine: a 0.5 mg bolus, a 6- min lock-out and a maximum rate of 5 mg/h) for 48 h	Yes - only the treatment group	No
74	Garcia J (2010)	Group A (25 patients): Intra-articular single injection. 10 mg (1 mL) of morphine diluted in 19 mL of NS (total of 20 mL). Group B (25 patients): saline intra-articular injection.	Spinal Anesthesia	Yes – systemic morphine	No	No
75	Gomez-Cardero (2010)	Group A (25 patients): continuous intra-articular infusion. 300 mL ropivacaine 0.2% at a speed of 5 mL/hour for 60hr Group B (25 patients): saline continuous intra-articular infusion.	Spinal Anesthesia	Yes – systemic	Yes	No
76	Kazak B (2010)	Group A (20 patients): Peri-articular; First, 50 ml of 100 ml was injected into the posterior part of the capsule and the intercondylar area; second, 50 ml of 100 ml was infiltrated into the anterior part of the capsule, the collateral ligaments, and along the femur and tibia; catheter placed and The first 25 ml administration was at 10 h and second was at 22 hr after the operation. 150 ml solution intra- articularly, containing 200 mg bupivacaine, with Epi, at the end of surgery Group B (20 patients): peri-articular infiltration as above. 150	Spinal Anesthesia	Yes – PCA	Yes	No

		ml solution intra-articularly, containing 200 mg levobupivacaine, with epi, at the end of surgery. Group C (20 patients): saline peri-articular infiltration.				
77	McMeniman T (2010)	 Group A (47 patients): Femoral block with catheter insertion under nerve stimulator guidance; after induction of anesthesia. Loading dose of 60 mL of 0.2% ropivacaine was given, followed by an infusion via catheter of 8 mL/h. Group B (50 patients): Fascia iliaca block with catheter insertion under nerve stimulator guidance; after induction of anesthesia. Loading dose of 60 mL of 0.2% ropivacaine was given, followed by an infusion via catheter of 8 mL/h. 	GA (volatile)	Yes - PCA (fentanyl 10 µg/mL, with a 10 µg bolus and a 5- minute lockout period with no background) + oral tramadol + SQ morphine	Yes	No
78	Ong J (2010)	 Group A (17 patients): control group; no intervention. Group B (16 patients): continuous peri-articular infiltration. Bupivacaine (4 ml of 0.25%) to the subcutaneous tissue and intraarticular space for 48 hr. Group C (21 patients): continuous peri-articular infiltration. Mixture of normal saline (50 ml), ketorolac (1 ml), morphine (10 mg) and bupivacaine (100 mg), followed by continuous infiltration of bupivacaine (4 ml of 0.25%) to the subcutaneous tissue and intra-articular space for 48 hr. 	NA	Yes – PCA; morphine	Yes	No
79	Rosen A (2010)	 Group A (24 patients): intra-articular single injection after closure. 100 mL of 0.2% (200 mg) ropivacaine. Group B (24 patients): saline intra-articular injection. 	GA (volatile)	Yes - PCA	NA	NA
80	Spreng U (2010)	 Group A (33 patients): epidural analgesia; infusion with fentanyl 2 mg/ml, epinephrine 1 mg/ml, bupivacaine 1 mg/ml. The infusion rate was programmed according to body height (<160 cm: 6 ml/h; 160–190 cm: 8 ml/h; >190 cm: 10 ml/h). Continuous epidural analgesia was maintained for 48 h after operation. Group B (33 patients): Peri-carticular infiltration with catheter in lateral side of knee for subsequent boluses. 150 ml of ropivacaine 150 mg and Epi added to isotonic saline + ketorolac 30 mg + morphine 5 mg were added to the infiltration mixture. 40 ml infiltrated into the posterior capsule structures. After the joint replacement, 50 ml infiltrated circular around the prosthesis. After closure of the capsule, 50 ml was infiltrated into the fascia and subcutaneous. At the end of the operation, 10 ml was injected through the knee catheter. Between 22 and 24 hr after surgery patients got injections both into the knee (20 ml) was ropivacaine 19 ml (7.5 mg/ml) with ketorolac 1 ml (30 mg/ml). Group C (33 patients): Peri-carticular infiltration with catheter in lateral side of knee for subsequent boluses. 150 ml of ropivacaine 150 mg and epinephrine 0.5 mg added to isotonic saline only. 	Spinal Anesthesia	Yes - PCA (morphine 2 mg bolus with 10 min lockout time)	Yes	No

		While ketorolac 30 mg + morphine 5 mg were given intravenously. Additionally, the patients in this group had intra-articular saline.				
81	Thorsell M (2010)	 Group A (34 patients): epidural analgesia; bupivacain 5 mg/mL or ropivacain 10 mg/mL, 10-15 ml. Group B (31 patients): peri-articular analgesia; Bolus of ropivacain 2 mg/mL, 150 mL (300mg); adrenaline 0.1 mg/mL, 5 mL; and ketorolac 30 mg/mL, 1 mL (a total of 156 mL). Then on postoperative day 1, all patients in the local infiltration anesthesia group were given bupivacain-Epi 5 mg/mL 5g/mL, 20 mL, to which was added ketorolac 30 mg/mL, 1 mL (a total of 21 mL) through the catheter introduced intra-articularly during surgery 	Spinal Anesthesia	NA	NA	NA
82	Wang H (2010)	Group A (17 patients): Peri-articular infiltration. Ropivacaine, morphine and Epi Group B (19 patients): epidural analgesia.	Spinal Anesthesia	NA	NA	NA
83	Affas F (2011)	 Group A (20 patients): Femoral block directly after spinal anesthesia, with nerve stimulator guidance, then catheter placed. Bolus of 30 mL ropivacaine (2 mg/mL) was injected followed by 15 mL of the same concentration every 4 hours for 24 h (total dose 240 mg/24 h). Group B (20 patients): continuous peri-articular infiltration. Bolus of 150 mL ropivacaine (2 mg/mL), 1 ml ketorolac (30 mg/mL), and 5 ml epinephrine (0.1 mg/mL). The total dose of ropivacaine during the first 24 h postoperatively was 300 mg and the total dose of ketorolac was 30 mg. 	Spinal Anesthesia	Yes - PCA (morphine (2 mg/dose) on demand with a lock- out time of 6 min and maximum dose of 35 mg over 4 h)	Yes	No
84	Baranovic S (2011)	Group A (35 patients): Femoral block directly after spinal anesthesia, with nerve stimulator guidance, then catheter placed. Bolus dose of 8 ml 0.25%levobupivacain, then 5–6 mL per hour of 0.25% levobupivacain via a femoral catheter. Group B (36 patients): control group; no intervention.	Spinal Anesthesia	Yes – PCA; Morphine (concentration 1mg/ml; basal rate 3 mg/h, bolus upon request 2 mg, with lock out interval of 8 minutes).	Yes	No
85	Essving P (2011)	Group A (25 patients): Intra-thecal morphine + intra-articular catheter and 2 boluses of normal saline after surgery. Group B (25 patients): Peri-articular infiltration with catheter placement and 2 subsequent boluses. Bolus of 400 mg ropivacaine, 30 mg ketorolac, and 0.5 mg epinephrine (total volume 116 mL) were infiltrated by the surgeon into the soft tissues periarticularly during the operation then the surgeon placed intra- articular catheter; then 22ml of 200mg ropivacaine + 30mg Ketorolac + 0.1mg epinephrine (repeated in day 1 and day 2).	Spinal Anesthesia	Yes - PCA and tramadol	No	No
86	Fetherston C (2011)	Group A (27 patients): Femoral block with nerve stimulator guidance, then catheter placed; post induction of anesthesia and before surgery. 20 ml 0.75% ropivacaine and 20 ml 2% lignocaine	NA	Yes – PCA; fentanyl or morphine	No	No

		was administered in the recovery room prior to commencement of				
		continuous infusion of 0.2% ropivacaine.				
		Group B (25 patients): control group; no intervention.				
87	Gallardo (2011)	Group A (20 patients): Fascia iliaca compartment block (infusion).	Spinal	Yes	Yes	No
07	Gallaruo (2011)	Bolus 20ml Bupivacaine 0.5% then infusion bupivacaine 0.1% rate	Anesthesia	165	165	NO
		10ml/hr for 30hr.	Allestilesia			
		Group B (20 patients): epidural analgesia; Bolus 30ml lidocaine				
		1% with Epi then infusion of bupivacaine 0.1% at rate of 10ml/hr				
		and Ketoprofen with morphine 2mg every 8 hr.				
88	Wegener	Group A (29 patients): F group; Patients receiving patient-	GA (TIVA)	Yes	Yes	No
00	(2011)	controlled femoral nerve block only; US-guided; stimulation femoral	GA (IIVA)	165	165	NO
	(2011)	nerve catheter; before anesthesia. Femoral block with loading dose				
		of 20 mL of levobupivacaine 0.375%, continuous infusion of				
		levobupivacaine 0.125% 10 mL/h was started via the femoral nerve				
		catheter in all groups. Postoperatively, the continuous femoral				
		nerve infusion was changed to patient-controlled femoral nerve				
		infusion (5-mL bolus, 30-minute lockout; basal rate, 6 mL/h in all				
		groups				
		Group B (30 patients): Like the F group combined with a single-				
		injection sciatic nerve block; US-guided; stimulation femoral nerve				
		catheter. Sciatic nerve block was established via a parasacral				
		approach; before anesthesia. Femoral and sciatic block, each, with				
		loading dose of 20 mL of levobupivacaine 0.375%, continuous				
		infusion of levobupivacaine 0.125% 10 mL/h was started via the				
		femoral nerve catheter in all groups.				
		Group C (30 patients): Like the F group combined with a				
		continuous sciatic nerve block; US-guided; stimulation femoral				
		nerve catheter, Sciatic nerve block was established via a				
		parasacral approach, a second continuous infusion of				
		levobupivacaine 0.125% 10 mL/h was started via the sciatic				
		catheter 45 minutes after catheter placement; before anesthesia.				
		Femoral and sciatic block, each, with loading dose of 20 mL of				
		levobupivacaine 0.375%, continuous infusion of levobupivacaine				
		0.125% 10 mL/h was started via the femoral nerve catheter in all				
		groups.				
89	Zhang S (2011)	Group A (26 patients): control group; intra-articular catheter	GA (volatile)	Yes - PCA consisting	Yes	No
		saline.		of morphine 1 mg in		
		Group B (27 patients): peri-articular single infiltration		boluses of 25 mg/100		
		subcutaneous, wound, and deep tissue. Mixture of ropivacaine 150		ml with a 6-min		
		ml (2 mg/ml) and ketorolac 1 ml (30 mg/ml) was prepared.		lockout		
		Group C (27 patients): An intra-articular epidural 18-gauge				
		catheter was inserted 5 cm proximal to the incision into the distal				
		anterior thigh. Ropivacaine (190 ml, containing 2 mg/ml) via				

		continuous infusion (flow rate 4 ml/hr for 48 hr) plus 2 ml ketorolac (30 mg/ml) at 1.25 mg/hr.				
90	Fajardo M (2011)	Group A (30 patients): intra-articular injection of an analgesic cocktail containing a combination of 7 cc of 5 mg/10 cc morphine, 7 cc of 0.5% bupivacaine with Epi, and 1 cc of 30 mg/1 cc ketorolac, and mixed with 15 cc of normal saline (total of 30 cc injected) Group B (30 patients): contralateral knee into the control group; received saline injection.	NA	Yes - IV dilauded	Yes	No
91	Joo JH (2011)	 Group A (134 patients): Peri-articular infiltration. 200 mg 0.5% bupivacaine, 10 mg morphine, 40 mg methylprednisolone acetate, and 300 mcg Epi. Group B (134 patients): Peri-articular infiltration (saline). 	Epidural Anesthesia	Yes – PCA; morphine bolus of 1.5 mg, a lockout time of 6 minutes, and a maximum of 15 mg/h, for 48 hr	Yes	No
92	Carvalho (2012)	Group A (25 patients): continue femoral nerve block, under nerve stimulator guidance. 10ml of ropivacaine 0.375% were injected through the needle, and 20 ml of ropivacaine 0.375% were administered through the catheter infusion of ropivacaine 0.2% was started on the femoral catheter at a rate of 8 ml/hr. Group B (25 patients): continues femoral + sciatic nerve blocks, under nerve stimulator guidance. 25 ml of ropivacaine 0.375% were administered when either the common peroneal or tibial nerve (dorsiflexion or plantar flexion of the foot) were identified	GA (volatile)	Yes - Tramadol	Yes	No
93	Chan M (2012)	 Group A (20 patients): Pre-op femoral nerve block; ultrasound guided and nerve stimulator. 0.4 mL/kg 0.375% bupivacaine with Epi. Group B (20 patients): post-op femoral nerve block. 0.4 mL/kg 0.375% bupivacaine with Epi. Group C (20 patients): Pre-op femoral block with saline. Group D (21 patients): post-op femoral block with saline. 	Spinal Anesthesia	Yes - Morphine of 1 mg, a lockout interval of 5 minutes, and a 4- hour maximum dose of 30 mg.	Yes	No
94	Chang L (2012)	Group A (31 patients): auricular acupressure; involved embedding the magnetic beads within skin-colored adhesive tape that was placed on the auricular acupoints and retained in situ for 3 days (Figure 2). The choice of Shenmen (TF4) and subcortex (AT4) acupoints was based on clinical reports [15–18, 21] and the TCM physician's recommendation. Acupressure then was applied by repeatedly pressing the acupoints with the fingertips for 3 minutes per point, 3 times per day (9 AM, 1 PM, 5 PM). The last treatment was given on the third day after surgery at 5 PM. Group B (31 patients): Sham control group with PCA	GA (volatile)	Yes - PCA; bolus of 1 mg morphine with a lockout interval of 5 minutes and a 4-hour maximum morphine dose of 10 mg	NA	No
95	Chen Y (2012)	Group A (40 patients): Intra-articular injection; The first 30 ml of the analgesic injection mixture or normal saline was injected into the posterior aspect of the capsule and the medial lateral collateral	Spinal Anesthesia	Yes - PCA; 25 mg/100 ml morphine: 0.5 mg bolus, 6 min	NA	No

					1	1
		ligaments, just prior to implantation of the component. Care was		lock-out, 5 mg/h		
		taken to avoid excessive infiltration in the area of the common		maximum rate		
		peroneal nerve. Before closure of the incision, the quadriceps				
		tendon, the patella tendon and peripatella tissue were infiltrated				
		with another 30-ml injection. The remaining 40 ml was used to				
		infiltrate the synovium, fat pad, articular capsule, retinacular				
		tissues, periosteum, subcuticular tissues and the subcutaneous				
		tissues around the incision. Magnesium sulphate 50 mg/kg and				
		ropivacaine 190 mg, mixed with sterile normal saline solution to				
		make up a combined volume of 100 ml.				
		Group B (40 patients): control group; saline infiltration.				
96	Jaeger (2012)	Group A (21 patients): Adductor canal block; a systematically	GA (TIVA)	Yes - PCA; morphine	Yes	No
	0 ()	cross-sectional anatomical survey, from proximal to distal thigh,		intravenously (bolus		
		was performed with a linear high-frequency ultrasound transducer.		2.5 mg, lock-out time		
		The adductor canal was identified approximately at the mid-thigh		10 min, no		
		level, with the femoral artery, femoral vein, and the saphenous		background infusion).		
		nerve deep to the sartorius muscle between the vastus medialis		Also IV morphine or		
		muscle and the adductor longus muscle. With the tip of the needle		fentanyl PRN		
		located in the adductor canal close to the saphenous nerve (if		,		
		seen), 10 ml of saline was injected to distend the canal and to				
		facilitate catheter threading. A 21-gauge catheter was inserted				
		approximately 5 cm beyond the needle tip. (Total 60 ml) 30 ml of				
		ropivacaine 0.75%. Following completion of the study, all patients				
		received a bolus of 30-ml 0.75% ropivacaine through the catheter				
		Group B (20 patients): control group; sham block with saline.				
97	Jenstrup (2012)	Group A (34 patients): Adductor canal block; a systematically	Spinal	Yes - PCA; morphine	Yes	No
	1 ()	cross-sectional anatomical survey, fromproximal to distal thigh,	Anesthesia	intravenously (bolus		
		was performed with a linear high-frequency ultrasound transducer.		2.5 mg, lock-out time		
		The adductor canal was identified approximately at the mid-thigh		10 min, no		
		level, with the femoral artery, femoral vein, and the saphenous		background infusion).		
		nerve deep to the sartorius muscle between the vastus medialis		Also IV morphine or		
		muscle and the adductor longus muscle. With the tip of the needle		fentanyl PRN		
		located in the adductor canal close to the saphenous nerve (if		,, ,		
		seen), 10 ml of saline was injected to distend the canal and to				
		facilitate catheter threading. A 21-gauge catheter was inserted				
		approximately 5 cm beyond the needle tip. 30 ml of ropivacaine				
		immediately post-operatively. Additional boluses of 15 ml of				
		immediately post-operatively. Additional boluses of 15 ml of ropivacaine 0.75% or saline were administered at 6, 12 and 18 h				
		immediately post-operatively. Additional boluses of 15 ml of ropivacaine 0.75% or saline were administered at 6, 12 and 18 h post-operatively. At 24 h post-operatively, a bolus of 15 ml of				
		immediately post-operatively. Additional boluses of 15 ml of ropivacaine 0.75% or saline were administered at 6, 12 and 18 h post-operatively. At 24 h post-operatively, a bolus of 15 ml of ropivacaine 0.75%.				
98	Lee J (2012)	immediately post-operatively. Additional boluses of 15 ml of ropivacaine 0.75% or saline were administered at 6, 12 and 18 h post-operatively. At 24 h post-operatively, a bolus of 15 ml of	GA (volatile)	Yes - PCA; morphine	NA	NA

		the prone position. Using a C-arm the location of the 4th lumbar vertebra body was confirmed. 0.25% ropivacaine at a bolus dose of 20 ml was infused via the catheter before the surgery then using 0.2% ropivacaine at a rate of 8 ml/hr was infused for 48 hr.		and a 15 min lockout time		
99	Ng F (2012)	Group A (30 patients): continues femoral nerve block (nerve stimulator guided); before induction of anesthesia. Ropivacaine was infused at 0 to 10 ml per hour continuously for 3 to 4 days. Group B (30 patients): control group; no intervention.	NA	Yes - PCA; morphine 1 mg per bolus with a 5-minute lockout interval.	NA	NA
100	Ng F (2012)	Group A (16 patients): continues femoral nerve block (nerve stimulator guided); before induction of anesthesia. Single 20 mL bolus of 0.2% ropivacaine, followed by continuous infusion at 10 mL/h, starting in the recovery room and continuing for 72 hr. Group B (16 patients): Peri-articular infiltration. Solution included ropivacaine (300 mg in 30 mL), adrenaline (1 mg in 0.5 mL), and isotonic sodium chloride solution (70 mL). Triamcinolone acetonide (40 mg in 1 mL) was added into half of the portion of the	GA (volatile)	Yes - PCA; morphine 1 mg bolus, lockout 5 minutes, 1 hour maximum 6 mg	NA	NA
101	Shanthanna H (2012)	 Group A (19 patients): epidural analgesia; 12 mL bolus of 0.125% bupivacaine mixed with 2 mcg/mL fentanyl. Continuous infiltration of a mixture of 0.125% bupivacaine with 2 mcg/mL of fentanyl The initial rate of infusion was set at 8 mL/h in both the groups. Group B (19 patients): continues femoral nerve block (ultrasound guided); after surgery. 12 mL bolus of 0.125% bupivacaine mixed with 2 mcg/mL fentanyl. Continuous infiltration of a mixture of 0.125% bupivacaine with 2 mcg/mL fentanyl. Continuous infiltration of a mixture of 0.125% bupivacaine with 2 mcg/mL fentanyl. The initial rate of infusion was set at 8 mL/h in both the groups. 	NA	No	Yes	No
102	Widmer (2012)	Group A (27 patients): Femoral nerve block with ultrasound and nerve stimulator guidance. 30ml ropivacaine 0.375% (=100mg) Group B (27 patients): Peri-articular infiltration; posterior, medial, lateral, and anterior capsule as well as the arthrotomy margins, subcutaneous tissue, and skin. 100 mL of ropivacaine 0.2% (200 mg) with Epi administered	GA (volatile)	Yes - PCA; 20 µg of fentanyl at 5-minute intervals on demand. Then oxycodone	Yes	No
103	Yuenyongviwat (2012)	Group A (30 patients): periarticular injections at the extensor mechanism (3mL), capsule (5 mL), pes anserinus (1 mL), iliotibial band (1 mL), collateral ligament (2 mL), and subcutaneous tissue (8mL) with 0.25% bupivacaine before wound closure. Group B (30 patients): saline injections.	Spinal Anesthesia	Yes - PCA; morphine 1mg IV bloused with 15-minute lock-out interval.	Yes	No
104	Ashraf (2013)	 Group A (22 patients): Ultrasound guided femoral nerve block; before anesthesia. Single shot femoral nerve block contained 30 ml of 0.2% ropivacaine. Group B (20 patients): Peri-articular infiltration. 150 ml 0.2% ropivacaine, 1 ml 1:1000 Epi, and 30 mg ketolorac 	Spinal Anesthesia	Yes - Morphine	Yes	No
105	Chan E (2013)	Group A (66 patients): control group; no intervention. Group B (69 patients): single-injection femoral verve block; prior	NA	Yes - PCA; morphine 1mg with 5min	Yes	No

		to the induction; either nerve stimulation localization or ultrasound visualization of the femoral nerve, or a combination of both. 20 ml of 0.25% bupivacaine with Epi. Group C (65 patients): Continuous femoral nerve block; prior to the induction. 20ml of 0.25% bupivacaine with Epi, followed by infusion of bupivacaine 0.125% 4ml/h until day 3.		lockout (maximum 10mg/h); Or fentanyl for patients with high risk of renal impairment		
106	Chaumeron (2013)	 Group A (30 patients): Femoral nerve block with catheter infusion; with nerve stimulator guidance. With peri-articular saline infiltration; before anesthesia. Bolus of 20 mL ropivacaine 0.25% then ropivacaine 0.2% was perfused continuously infused at 8 to 10 mL/hr for 48 to 72 hr. Group B (29 patients): Peri-articular infiltration with catheter infusion. Infiltrated in deep tissues (collateral ligaments, posterior capsule, quadriceps tendon, patellar tendon, fat pad, periosteum, and synovial lining) with femoral sham block. Total of 108; 275 mg ropivacaine, 7.5 mL of 10.0 mg/mL Naropin, 30 mg ketorolac, and 0.5 mL adrenaline (1/1000) into a 100-mL sterile pack of 0.2 mg/mL Naropin. On Day 1 150 mg ropivacaine (15 mL of Naropin) 	Spinal Anesthesia	Yes - oral and IV opioids	Yes	No
107	Dauri (2013)	Group A (20 patients): ultrasound-guided continuous femoral nerve block, and single shot ultrasound-guided sciatic nerve block; before surgery. Bolus of 30 ml of 5mg/ml of ropivacaine, for sciatic 20 mL of 5 mg/ml of ropivacaine. At the end of the procedure, an elastomeric pump with 2 mg/ ml of ropivacaine at 8 ml/h infusion rate was connected to the catheter of each patient of each group; Group B (20 patients): Psoas group; received continuous ultrasound-guided and nerve stimulator lumbar plexus block and single shot ultrasound-guided sciatic nerve block; before surgery. Bolus of 30 ml of 5mg/ml of ropivacaine, for sciatic 20 mL of 5 mg/ml of ropivacaine. At the end of the procedure, an elastomeric pump with 2 mg/ ml of ropivacaine at 8 ml/h infusion rate was connected to the catheter of each patient of each group;	GA (volatile)	Yes - PCA morphine 2 mg bolus, with 10 min lockout and a one hour limit of 8 mg morphine	NA	No
108	Goyal (2013)	Group A (75 groups): intra-articular saline. Group B (75 groups): Intra-articular catheter was placed in the joint space. 300 mL of 0.5% bupivacaine; at rate of 5 mL/hr for 2 days	Spinal Anesthesia	Yes - PRN	Yes	Pregabalin
109	He B (2013)	 Group A (45 patients): Sham acupuncture points (sham control group received four non-acupuncture points on the helix ipsilateral to the site of surgery). Group B (45 patients): Four acupuncture points ipsilateral to the surgery site—knee joint, shenmen, subcortex, and sympathesis. Acupressure was applied by repeatedly pressing the acupoints with the fingertips for 3 minutes per point, four times per day, and ended 7 days after surgery. The seeds were kept in place unilaterally by 	Epidural Anesthesia	Yes - PCA; fentanyl continuously deliver 3 mL/1 h of the mixture and provide a single dose of 4 mL with a 30-minute lockout period PRN	Yes	No

		applying an adhesive patch onto the acu-points. Patients were				
110	Ikeuchi (2013)	instructed by the acupuncturist on how to apply acupuncture. Group A (20 patients): peri-articular infiltration; before the skin incision, 40 mL of 0.5 % lidocaine with Epi was injected into the skin and joint capsule. A catheter was inserted into the knee joint before closing the wound. At the end of the surgery, 50 mg flurbiprofen and 100 lg fentanyl were administered intravenously. Analgesic drugs consist of 20 mL of 0.75 % ropivacaine, 6.6 mg of dexamethasone, and 400 mg of isepamicin. A bolus injection of 5 mL of analgesics was performed every 12 h until 48 hr. Group B (20 patients): control group; no intervention.	GA (TIVA)	Yes - PCA; 20 mcg fentanyl with a 15- min lock out time	Yes	No
111	Jaeger (2013)	Group A (22 groups): Adductor canal block with catheter infusion; immediately postoperative and before the spinal anesthesia had worn off. Ultrasound survey at the medial part of the thigh, halfway between the superior anterior iliac spine and the patella. In a short axis view, we identified the femoral artery underneath the sartorius muscle, with the vein just inferior and the saphenous nerve just lateral to the artery. The needle was introduced in-plane and 2 to 3 mL of saline was used to ensure correct placement of the needle in the vicinity of the saphenous nerve in the adductor canal. The correct spread of the ropivacaine bolus injection in a semicircular form around the artery was observed. 30 mL of ropivacaine 0.5% via the catheter initially, followed by an infusion of 0.2% ropivacaine at a rate of 8 mL/h during the next 24 hr. Group B (26 groups): Femoral nerve block with catheter infusion; ultrasound guided. 30 mL of ropivacaine 0.5% via the catheter initially, followed by an infusion at a rate of 8 mL/h during the next 24 hr.	Spinal Anesthesia	Yes - PCA; morphine (bolus 2.5 mg, lock- out time 10 minutes, and no background infusion)	Yes	No
112	Bing-shan L (2013)	 Group A (20 patients): Epidural analgesia. 0.2% ropivacaine, 2 mg / L fentanyl. Group B (20 patients): continues femoral nerve block. 0.2% ropivacaine 4 mL, compound betamethasone Pine injection 1 mL, saline 5 mL 	Epidural Anesthesia (with sedation)	Yes - IM pethedine and PO tramadol	Yes	No
113	Moghtahael (2013)	Group A (18 patients): femoral nerve block with nerve stimulator assistance. Single injection of 20 ml ropivacaine (10 mg/ml) Group B (18 patients): Peri-articular infiltration. Ropivacaine 300mg and Ketorolac 30 mg with Epi on 150 ml.	Spinal Anesthesia	Yes - IV morphine	Yes	No
114	Nakai T (2013)	 Group A (20 patients): control group; no intervention. Group B (21 patients): intra-articular injection. A mixture (30 ml) containing 0.5% bupivacaine (20 ml), 10 mg of morphine hydrochloride (1 ml), 0.3 mg of epinephrine (0.3 ml), and sterile normal saline (8.7 ml). Group C (19 patients): Peri-articular infiltration. 50 ml of a mixture 	GA (volatile)	NA	NA	NA

		containing 0.75% ropivacaine (30 ml), 10 mg of morphine				
		hydrochloride (1 ml), 4 mg of betamethasone (1 ml), 0.25 mg of				
		epinephrine (0.25 ml), and saline (17.75 ml) before and after				
		implant placement.				
115	Sakai (2013)	Group A (30 patients): epidural analgesia; A test dose of 1%	GA (volatile)	No	Yes	No
		lidocaine (50 mg) was initially injected, and the sensory block was				
		tested after 10 min by applying ice to the ipsilateral thigh. Then,				
		two 90-mg doses of 0.3% ropivacaine were administered.				
		Immediately after surgery, 0.15% ropivacaine infusion at 4 mL/h				
		was initiated.				
		Group B (30 patients): continuous femoral nerve block and single-				
		injection selective tibial nerve block; ultrasound guided. A single				
		60-mg dose of 0.3% ropivacaine was then injected around the tibial				
		nerve. A single 60-mg dose of 0.3% ropivacaine was then injected				
		around the femoral nerve. Immediately after surgery, 0.15%				
110	Tammachote	ropivacaine infusion at 4 mL/h was initiated	Spinol	Vec. DCA inject 0.6	Yes	No
116	(2013)	Group A (28 patients): intra-thical morphine Group B (29 patients): Peri-articular infiltration. Multimodal drug	Spinal Anesthesia	Yes - PCA; inject 0.6 mg in 1 mL (30 mg of	res	NO
	(2013)	injection comprised 100 mg bupivacaine (0.5%, 20 mL), 5 mg	Anestnesia	ketorolac in 50 mL		
		morphine sulfate (5 mL), 0.6 mg Epi, and 30 mg ketorolac. These		normal saline) when		
		were mixed with sterile normal saline solution to make up a		patients pressed a		
		combined volume of 100 mL.		button with a 2-		
				minute lockout period		
117	Williams (2013)	Group A (24 patients): intra-articular infusion. Infusion of 0.5%	Spinal	Yes - PCA; morphine	Yes	Gabapentin
		bupivacaine instilled at 2 cc/h for 48hr. All patients received a	Anesthesia			
		standard intraoperative loading dose of 20 cc 0.25%				
		bupivacaine/Epi injection, 10 cc into the medial and lateral				
		subcutaneous tissue around the incision and 10 cc intra-articular				
		after arthrotomy closure				
		Group B (25 patients): saline intra-articular injection.				
118	Abdallah (2014)	Group A (17 patients): Proximal Group (infragluteal sciatic nerve	Spinal	Yes - PCA;	Yes	No
		block + continuous femoral nerve block); ultrasound and nerve	Anesthesia	hydromorphone (if		
		stimulator guided; after surgery started. 30ml of a 2:1 admixture of bupivacaine 0.5%: lidocaine 2% with Epi, delivered. Once the		pain not well controlled) with PO		
		catheter was secured in place, all patients received 10 ml		opioids		
		mepivacaine 2% injected through the CFNB catheter. Bolus of 20		opiolus		
		ml of ropivacaine 0.2% with Epi injected through the CFNB				
		catheter. An infusion of ropivacaine 0.2% was also initiated through				
		the CFNB catheter with a baseline rate of 5 ml/h and				
		patientcontrolled boluses of 5 ml available every 30 min.				
		Group B (18 patients): Popliteal approach (popliteal sciatic nerve				
		block + continuous femoral nerve block); ultrasound and nerve				
		stimulator guided. Hydrolocation by injecting 0.5 to 1 ml of dextrose				

		5% in water was used to localize the needle tip and advance it to the vicinity of the posterior external surface of sciatic nerve; after surgery started. Same mixture. Group C (18 patients): Sham sciatic block and continuous femoral nerve block. Once the catheter was secured in place, all patients received 10 ml mepivacaine 2% injected through the femoral nerve catheter. Bolus of 20 ml of ropivacaine 0.2% with Epi injected through the CFNB catheter. An infusion of ropivacaine 0.2% was also initiated through the femoral catheter with a baseline rate of 5 ml/hr and patient controlled boluses of 5 ml available every 30 min.				
119	Albrecht (2014)	 Group A (28 patients): Femoral (continuous) + Sciatic (single) ultrasound guided; before anesthesia. Immediately after catheter placement, 10 mL mepivacaine 2% was injected through the catheter. Then in PACU a bolus of 20mLropivacaine 0.2% with Epi into the femoral catheter followed by ropivacaine 0.2% at a rate of 5 mL/h with patient-controlled boluses of 5mL available every 30minutes. Sciatic block with 30 mL ropivacaine 0.2%. Group B (32 patients): Femoral (continuous) + Sciatic (single) ultrasound guided; before anesthesia. Immediately after catheter placement, 10 mL mepivacaine 2% was injected through the catheter. Then in PACU 20 mL ropivacaine 0.2% with Epi into the femoral catheter followed by ropivacaine 0.2% with Epi into the femoral catheter followed by ropivacaine 0.2% with Epi into the femoral catheter followed by ropivacaine 0.2% with Epi into the femoral catheter followed by ropivacaine 0.2% with Epi into the femoral catheter followed by ropivacaine 0.2% with Epi into the femoral catheter followed by ropivacaine 0.2% with Epi into the femoral catheter followed by ropivacaine 0.2% with Epi into the femoral catheter followed by ropivacaine 0.2%. Group C (33 patients): Single injection of femoral and sciatic block then saline infusion. Saline; a bolus of 30 mL ropivacaine 0.375% with Epi into the femoral catheter followed by normal saline at a rate of 1 mL/h with patient-controlled boluses of 1 mL available every 30 minutes. 	Spinal Anesthesia	Yes - oral opioids with or without PCA morphine	Yes	Gabapentin
120	Anastase D (2014)	Group A (48 patients): epidural analgesia; 5 ml of 0.2% ropivacaine and the PCA was performed through the epidural catheter. The hourly rate was of 3 ml, bolus administration of 5 ml, and a lock-out period of 30 minutes Group B (52 patients): femoral and sciatic block; ultrasound guided; after anesthesia and before surgery. 5 ml bolus 0.2% ropivacaine, femoral catheter, PCA was performed with an hourly rate of 5 ml, bolus administration of 5 ml by the patient and the lock-out interval of 20 minutes; in patients with a sciatic catheter, the rate of perfusion was 5 ml/h to a maximum of 8 ml/h, 5 ml bolus to be administered by the patient and the lock-out interval of 20 minutes	Spinal Anesthesia	Yes - PCA; piritramide	NA	NA
121	Bedir E (2014)	Group A (15 patients): epidural analgesia; 120 ml prepared solution of 72 ml saline + 48 ml bupivacaine (1 ml = 5 mg). The	Spinal Anesthesia	No	Yes	No

		patient-controlled pump was prepared as a 5 cc/hour continuous infusion for 24 hr. Group B (15 patients): Intra-articular; over the fascia parallel to the incision line so that all the holes of the catheter remained under the skin. 120 ml solution of 72 ml saline + 48 ml bupivacaine (1ml = 5 mg) at an infusion rate of 5 ml/hour for 24 hr.				
122	Chan E (2014)	Group A (66 patients): control group; no intervention Group B (69 patients): Single-injection femoral nerve block; 20 ml of 0.25% bupivacaine with 1:400,000 adrenaline (2.5 mcg/ml) Group C (65 patients): continuous femoral nerve block; bupivacaine 0.125% 4 ml/hour at the PACU until postoperative day 3.	NA	Yes - PCA; bolus doses of morphine (1 mg) with 5-minute lockout (maximum 10 mg/hour), or fentanyl (20 g) dose with 5- minute lockout (maximum 240 g/hour) for patients at risk of developing renal impairment	NA	No
123	Kim D (2014)	Group A (46 patients): Ultrasound-guided adductor canal block; was performed at mid-thigh level, before surgery. 15 cc of 0.5% of bupivacaine with 5 μg/ml Epi. Group B (47 patients): Ultrasound-guided femoral nerve block; with nerve stimulator confirmation, before surgery. 30 cc of 0.25% of bupivacaine with 5 μg/ml Epi.	Combined spinal and epidural anesthesia	Yes – PCA (10 µg/ml hydromorphone, 0.06% bupivacaine) was used for postoperative days (PODs) 0 to 2. Initial settings were 4 ml/h of continuous infusion, 4-ml bolus on demand every 10 min as needed, maximum total of 20 ml/h.	Yes	No
124	Kim TW (2014)	 Group A (42 patients): control group; saline peri-articular infiltration Group B (43 patients): single-dose peri-articular infiltration. Ropivacaine 180 mg (24 mL) and Epi Group C (43 patients): single-dose peri-articular infiltration. Ropivacaine 180 mg (24 mL), morphine sulphate 5 mg (5 mL) Group D (43 patients): single-dose peri-articular infiltration. Ropivacaine 180 mg (24 mL), morphine sulphate 5 mg (5 mL) Group D (43 patients): single-dose peri-articular infiltration. Ropivacaine 180 mg (24 mL), morphine sulphate 5 mg (5 mL), ketorolac 30 mg (1 mL). 	Spinal Anesthesia	Yes - PCA; Fentanyl	Yes	No
125	Lamplot J (2014)	Group A (19 patients): peri-articular infiltration; around the posterior capsule in the posteromedial and posterolateral soft tissues, synovium, pes anserinus and iliotibial band at Gerdy's tubercle. 30 cc 0.5% bupivacaine, 10 mg MSO4 and 15 mg	NA	Yes - PO opioids	Yes	Gabapentin

		ketorolac. Group B (17 patients): control group; no intervention.				
126	Leownorasate M (2014)	Group A (21 patients): Peri-articular infiltration; Diclofenac (75 mg) 3 ml, levobupivacaine (5 mg/ml) 20 ml, 5 mg of morphine, and 1 ml of Epi in saline total volume 100 ml. Group B (21 patients): control group; no intervention.	Spinal Anesthesia	Yes - PCA; morphine bolus of 1 mg with a lock-out of six minutes, and a maximum of 15 mg/hr	No	No
127	Liu J (2014)	Group A (108 patients): Posterior approach to lumbar plexus block + sciatic nerve block; nerve stimulator guidance. 25–30 mL of 0.35% ropivacaine was injected in divided doses, and 15–25 mL of 0.35% ropivacaine for the sciatic block Group B (105 patients): control group; no intervention.	GA (TIVA)	Yes - PCA; sufentanil 1.25 µg/hour as background dose and 1.25 µg bolus with an 8-minute lockout time	Yes	NA
128	Mangar D (2014)	Group A (20 patients): Continuous femoral nerve block nerve stimulator technique. All patients received a single-injection sciatic nerve block preoperatively, placed via the anterior approach using the nerve stimulator, and received 10 ml 0.5 % ropivacaine; before anesthesia. Fentanyl 3 mcg/ml basal rate of 10 ml/h for 24 hr Group B (20 patients): continues femoral with single sciatic block; ropivacaine 0.1 % basal rate of 10 ml/h for 24 hr Group C (20 patients): control group; saline femoral and sciatic blocks.	GA (volatile)	Yes - fentanyl 5 mcg/ml via a patient- controlled analgesia (PCA) pump at 6 ml/h.	NA	No
129	Moghtahael M (2014)	Group A (18 patients): single femoral nerve injection, nerve stimulator, 20cc ropivacaine (10mg/cc); after surgery. Group B (20 patients): peri-articular infiltration; combination of 300mg ropivacaine, 30mg ketorolac and 0.5mg Epi diluted to a volume of 150cc and locally injected in and around the knee joint in 3 stages	Spinal Anesthesia	Yes - Opioids; morphine IV by the nurse	Yes	No
130	Niemelainen M (2014)	Group A (27 patients): peri-articular infiltration; a mixture of levobupivacaine (150 mg), ketorolac (30 mg), and Epi (0.5 mg) Group B (29 patients): control group; no intervention.	Spinal Anesthesia	Yes - PCA; oxycodone (dose: 2 mg; lock-out time: 8 min)	Yes	No
131	Peng L (2014)	Group A (140 patients): Continuous femoral nerve block; before the induction of anesthesia; ultrasound guidance and nerve stimulator. 10mL 2% lidocaine and 10mL 1% ropivacaine as an initial dose, 30 minutes before the end of the operation, the catheter was connected to the PCA pump; the patients received a loading dose of 5mL of 0.15% ropivacaine followed by an infusion of 0.15% ropivacaine at 5mL/h, with bolus of 5mL and lock time of 30 min. Preoperatively, a loading dose of 30mL was injected for intraoperative analgesia. Group B (140 patients): control group; no intervention.	GA (volatile)	Yes - Opioid; Pethidine, Tramadol	Yes	No
132	Safa B (2014)	Group A (35 patients): received a single-shot femoral nerve block and sham posterior articular injection using a nerve stimulator (with	Spinal Anesthesia	Yes - PCA; hydromorphone	Yes	Gabapentin

		or without ultrasound guidance). 20 cc of Ropivacaine 0.5% deposited adjacent to the femoral nerve; likewise, 20 cc of Ropivacaine 0.5% or normal saline was deposited adjacent to the sciatic nerve. Group B (33 patients): received a posterior articular injection and a sham femoral nerve block + single-shot SNB using a nerve stimulator (with or without ultrasound guidance). Group C (32 patients): control group; sham sciatic and sham posterior articular injection.		pump for 48 h and oxycodone		
133	Sahin L (2014)	Group A (51 patients): US-guided, and nerve stimulator, single- injection femoral nerve block, before surgery. 40 ml of 0.5% bupivacaine and Epi. Group B (53 patients): control group; saline femoral block.	Spinal Anesthesia	Yes - PCA; 2 mg intravenous morphine on demand with a lockout time of ten minutes for the first 48 hours after operation	Yes	No
134	Shah N (2014)	 Group A (48 patients): continuous adductor canal block, approximately halfway between the anterior superior iliac spine and the patella, at the mid thigh level; adductor canal was visualized using a high-frequency linear ultrasound transducer. 30 cc of ropivacaine 0.75% followed by repeated boluses of ropivacaine 0.25%, 30 cc at an interval of 4 h till 8:00 am on the morning of the second day after surgery. Group B (50 patients): continuous femoral nerve block, nerve stimulator. Ultrasound guidance was used as needed in obese patients only to verify femoral nerve anatomy. 30 cc of ropivacaine 0.75% followed by repeated boluses of ropivacaine 0.75% followed by repeated boluses of ropivacaine an interval of 4 h till 8:00 am on the morning of the second day after surgery. 	Spinal Anesthesia	Yes - Tramadol	Yes	No
135	Spangehl M (2014)	Group A (79 patients): continuous femoral nerve with a single shot sciatic block (nerve stimulator or ultrasound; not standardized), before surgery. Bolus of 30 mL 0.5% ropivacaine without epinephrine for femoral nerve and 10 mL 0.5% ropivacaine without epinephrine for sciatic nerve. After the knee arthroplasty, a 0.2% plain ropivacaine infusion was started through the femoral catheter. The infusion range was 6 mL to 12 mL/hour, typically starting at 6 at 8 mL/hour and increased or decreased by 1 mL every hour as needed. The infusion was discontinued on the morning of postoperative day 2. Group B (81 patients): peri-articular infiltration; cocktail, based on three weight categories, of ropivacaine, epinephrine, ketorolac, and morphine sulphate with normal saline added to bring the volume to 120 mL.	GA (volatile)	Yes - Oxycodone and Morphine	Yes	Gabapentin

136	Surdam J (2014)	 Group A (40 patients): Single shot femoral block performed under ultrasound, nerve stimulator, before surgery. 40 ml of 0.5% ropivacaine with 1:200,000 epinephrine, plus 30 mg of 1% tetracaine. Group B (40 patients): Exparel group; periarticular infiltration. 266 mg of the liposomal bupivacaine in the operating room. The 20 ml vial of 1.3% liposomal bupivacaine (1 vial; 266 mg) was first mixed with 40 ml of injectable saline to make up a combined total volume of 60 ml to be injected into the periarticular tissues. 	Spinal Anesthesia	Yes - Oxycodone and hydrocodone	Yes	NA
137	Tsukada S (2014)	 Group A (61 patients): epidural analgesia; continuous infusion (a flow rate of 4 mL/h for 24 hr) of 100 mL of 2 mg/mL of ropivacaine (8 mg/h), and 0.8 mL of 10 mg/mL of morphine hydrochloride hydrate. Group B (50 patients): peri-articular infiltration; 60-mL cocktail (7.5 mg/mL of ropivacaine [40 mL], 10 mg/mL of morphine hydrochloride hydrate [0.8 mL], Epi [0.3 mL], methylprednisolone [40mg] [1 mL], ketoprofen [50mg] [2.5 mL], and 15.4 mL of normal saline solution) was prepared in three 20-mL syringes. 	Spinal Anesthesia	No	Yes	No
138	Uesugi K (2014)	Group A (100 patients): peri-articular infiltration; A mixture of 20 ml of 0.75% ropivacaine (Anapeine injection 7.5 mg/mL), physiological saline 20 mL, Epi, morphine hydrochloride (men 10 mg, women 5 mg), and dexamethasone 3.3 mg. Group B (100 patients): femoral and sciatic nerves block after surgery; nerve stimulator only. 20 mL of 0.75% ropivacaine was injected for femoral and 10 for sciatic (same)	Spinal Anesthesia	No	Yes	No
139	Wu J (2014)	Group A (30 patients): Femoral nerve block with catheter, nerve stimulator and US guidance; before anesthesia. Bolus of 15 mL 0.5% levobupivacaine, continuous infusion of 8 to 12 mL/h of 0.08% levobupivacaine postoperatively in the recovery area till POD 3. Group B (30 patients): control group; no intervention.	Epidural Anesthesia	Yes; morphine, tramadol, PCA only in the PCA group	Yes	No
140	Jæger P (2014)	Group A (14 patients): Adductor canal block was performed after the end of surgery, US guidance. Linear ultrasound transducer was placed on the medial part of the thigh, halfway between the superior anterior iliac spine and the patella with the leg slightly externally rotated. The femoral artery was identified in short axis in the adductor canal, underneath the sartorius muscle. The needle tip was placed underneath the sartorius muscle, just lateral to the artery and saphenous nerve, using 2–3 ml of saline to ensure correct placement. 30 ml 0.75% ropivacaine followed by another bolus of 15 ml 6 hours later. Immediately after the second bolus, infusion of 0.2% ropivacaine at a rate of 8 ml/hr. Group B (16 patients): control group; saline adductor canal block.	GA (TIVA)	Yes - Morphine bolus 2.5 mg, lock-out time 10 minutes, no background infusion	Yes	No

141	Zhang W (2014)	 Group A (30 patients): adductor canal block, after surgery, ultrasound guidance; locate the adductor canal (approximately 8–12 cm below the inguinal crease). 20 ml of 0.33% ropivacaine, then 0.2% ropivacaine through the catheter, continuous dose being 5 ml/hr, and the bolus dose being 5 ml, with a lock time of 30 minutes for 48 hr. Group B (30 patients): femoral nerve block, after surgery, with nerve stimulator. 20 ml of 0.33% ropivacaine, then 0.2% ropivacaine through the catheter, continuous dose being 5 ml/h, and the bolus dose being 5 ml, with a lock time of 30 minutes for 48 hr. 	Combined spinal and epidural anesthesia	Yes - Meperidine	Yes	No
142	Zinkus J (2014)	Group A (18 patients): epidural analgesia; Bupivacaine 0.125% and fentanyl 5 mcg/ml at rate of 3-5 ml/hr. Group B (18 patients): Lumber plexure block; Bupivacaine 0.125% and fentanyl 5 mcg/ml at rate of 5-12 ml/hr	Spinal Anesthesia	Yes	Yes	No
143	Chen C (2015)	Group A (30 patients): Acupuncture; knee, scalp, and auricular acupuncture (AA). Patients assigned to the study group received 1 session of acupuncture and AA under general anesthesia. Each session of acupuncture lasted 20 minutes. Ear needles were embedded in ear acupoints and firmly fixed with 3 layers of adhesive tape during the 3 days after surgery. Disposable 1-time-use acupuncture needles and AA needles were used in this study. The acupoints were chosen according to the theory of traditional Chinese medicine to treat knee arthralgia and included the following body acupoints: SP10, ST34, BL40, LR7, ST36, sensory area of the scalp acupuncture, GV20, and GV24; and Chinese auricular acupoints: ear Shen men (shemen, TF4), knee point (xi, AH4), sympathesis point (jiaogan, AH6a), and subcortex point (pizhixia, AT4). Group B (30 patients): control group; sham punctures.	GA (volatile + Nitrous oxide)	Yes - PCA; fentanyl 0.2 µg/kg per hour and a bolus of 10 µg with a 5 minute lockout period for 48 hours	Yes	No
144	Al-Zahrani T (2015)	Group A (25 patients): epidural analgesia; Infused with 0.0625% bupivacaine + fentanyl (2 mcg/ml) with rate 5–10 ml/hour was started after initial bolus of 10 ml of 0.25% bupivacaine + 50 mcg fentanyl preoperatively. Group B (25 patients): ultrasound-guided continues femoral with single sciatic blocks; at a rate of 5 ml/hour 0.2% bupivacaine after initial bolus of 10 ml 0.25% bupivacaine + single shot sciatic nerve block with 15 ml of 0.25% bupivacaine.	GA (volatile)	Yes - PCA morphine 1 mg of morphine sulfate with a lockout of 8 minutes without background infusion	Yes	No
145	Wang F (2015)	Group A (23 patients): continues femoral nerve block, ultrasound and nerve stimulator guided. After surgery, 0.2% ropivacaine (20 mL) was injected via the catheterfor analgesia. 0.2% ropivacaine was injected at a rate of 8 mL/h, the pulse dose of 5 mL and lock- out time of 30 min.	GA (volatile)	NA	NA	NA

146	Song MH (2015)	 Group B (22 patients): epidural analgesia; after surgery, 0.2% ropivacaine (20 mL) was injected via the catheter for analgesia. 0.2% ropivacaine was injected at a rate of 5 mL/h, pulse dose of 2 mL and lock-out time of 30 min. Group A (40 patients): control group; no intervention. Group B (40 patients): peri-articular infiltration; 300 mg of ropivacaine (0.75 %), 30 mg of ketorolac, 10 mg of morphine, 0.5 mg of Epi and 40 mg of triamcinolone. These were mixed with normal saline solution to a total volume of 100 ml 	Spinal Anesthesia	Yes – PCA;	Yes	Pregabalin
147	Ren L (2015)	 Group A (109 patients): continues femoral nerve block; before surgery, ultrasound-guided and nerve stimulator for 3 days. 0.2% ropivacaine dubbed in 300 ml. Analgesia pump parameters: a loading dose of 5 ml; background infusion rate 5 ml / h; single dose 5 ml; safety lock time 30 min. Group B (102 patients): control group; no intervention. 	GA (volatile)	Yes - tramadol, meperidine and PCA a loading dose of 5 ml; background infusion rate 1 ml / h (adjustment range: 0.5 ~ 1.5 ml / h); single dose 2 ml; safety lock time 15 min.	Yes	No
148	Shen SJ (2015)	Group A (16 patients): control group; saline infiltration. Group B (20 patients): intra-articular injection; After the closure of the surgical wound, an intra-articular injection of 0.5% bupivacaine 60mL (300mg).	GA (volatile)	Yes - Meperidine	Yes	No
149	Kutzner KP (2015)	Group A (60 patients): intra-articular continues infusion; 200 ml of ropivacaine (7.5 mg / ml) 2 ml of morphine (10 mg / ml) and 148 ml of saline and contains a continuous Infusion rate of 8 ml / hr for guaranteed a total of about 44 hours. Also patients periarticular infiltration the capsule, the retinaculum and subcutaneous soft tissue with a mixture of 15 ml of ropivacaine (7.5 mg / ml) and 10 ml of saline. Group B (60 patients): continues femoral block; robivacaine 8 ml/hr (2 mg/ml).	GA (volatile)	Yes - oxycodone	Yes	No
150	Sayed A (2015)	Group A (30 patients): Continues Femoral; nerves stimulator and ultrasound, before surgery. 20 ml of 0.25% levobupivacaine was injected through the perineural catheter. At the conclusion of the surgery, 5 ml bolus of 0.125% levobupivacaine was injected through the perineural catheter followed by a basal continuous infusion at a rate of 5 ml/h same late concentration. Group B (30 patients): Continues Psoas block: nerve stimulator and ultrasound, before surgery. 20 ml of 0.25% levobupivacaine was injected through the perineural catheter. At the conclusion of the surgery, 5 ml bolus of 0.125% levobupivacaine was injected through the perineural catheter followed by a basal	GA (volatile)	Yes - IV morphine	Yes	No

		continuous infusion at a rate of 5 ml/h same late concentration.				
151	Kurosaka K (2015)	 Group A (21 patients): Peri-articular infiltration; (single dose) half of the collateral ligaments just prior to cementing the implants. The remaining solution was solution was injected into the posterior part of the capsule, the intercondylar area, and around injected into the anterior part of the capsule and the subcutaneous tissue after implantation. Containing 7.5 mg/mL of ropivacaine, (40 ml) 20 mg/mL of ketoprofen (5 ml), 1 mg/mL of epinephrine (0.5 ml), and 40 mL of saline. Group B (21 patients): Continues femoral block; ultrasound-guided, following induction of general anesthesia. A total of 20 mL of 2.0 mg/mL of ropivacaine was injected around the femoral nerve as an initial block. Postoperatively, 1.5 mg/mL of ropivacaine was continuously infused at the rate of 5 mL per hour for 48 hours through the catheter. 	GA (volatile)	Yes - PCA morphine (1 mg/dose) on demand with a lock- out time of five minutes and no background infusion, for 24 hr	Yes	No
152	Milani P (2015)	Group A (32 patients): control group; saline infiltration. Group B (32 patients): peri-articular injections; The solution was injected into posteromedial and posterolateral corners, posterior capsule, quadriceps and wound margins. Ropivacaine 1% 20 mL 200 mg.	Spinal Anesthesia	Yes - Oxycodone	Yes - Ketorolac	No
153	Mulford J (2015)	Group A (25 patients): control group; peri-articular saline infiltration. Group B (25 patients): Peri-articular infiltration; injection was performed just prior to the implantation of the prosthesis with catheter placement. Two doses (intra-op and in the first day): composed of 300 mg of ropivacaine (2 mg/ mL), 30 mg of ketorolac and 0.5 mg of adrenaline to a total volume of 150 mL THE second dose was 100 mL	GA (volatile)	Yes - PCA morphine	Yes	No
154	Hegazy N (2015)	Group A (53 patients): adductor canal block, ultrasound guided; after spinal anesthesia; Saphenous nerve was localized at medial side of the mid-thigh just deep to the sartorius muscle, usually lateral to the femoral artery, as a hyperechoic structure. ropivacaine 0.5% 20 ml. Group B (54 patients): Femoral block; ultrasound guided; after spinal anesthesia. ropivacaine 0.5% 20 ml.	GA (TIVA)	Yes - PCA morphine	Yes	Gabapentin
155	Kasture S (2015)	Group A (35 patients): epidural analgesia; 300 ml of 0.125% bupivacaine with 300 mcg fentanyl injection for 48 hr. Group B (40 patients): peri-articular infiltration; 300 ml of 0.125% bupivacaine with 5 ml ketorolac injection for 48 hours at 5 ml/hr for 48 hr	Spinal Anesthesia	Yes - Tramadol	Yes	No
156	Tsukada S (2015)	Group A (37 patients): peri-articular infiltration; 40 mL of ropivacaine (Anapeine, 7.5 mg/mL), 1.0 mL of morphine hydrochloride hydrate (10 mg/mL), 0.6 mL of Epi (1.0 mg/mL), 80	Spinal Anesthesia	No	Yes	No

		Group B (74 patients): single-injection nerve stimulator-guided				
	(2016)	adductor canal block + sham lumber plexus; before anesthesia. 15 mL 0.25% bupivacaine with 5 μg/mL Epi and 1.67 μg/mL clonidine.	Anesthesia			Ŭ
162	(2016) Henshaw D	 mL. A bolus of 20 mL ropivacaine 0.5% was injected in increments of 5 mL until the morning of postoperative day (POD)1 Group B (31 patients): Femoral, before surgery, US-guided, infusion; A bolus of 20 mL ropivacaine 0.5% was injected in increments of 5 mL. A bolus of 20 mL ropivacaine 0.5% was injected in increments of 5 mL until the morning of postoperative day (POD)1 Group A (74 patients): single-injection ultrasound-guided 	Spinal	hydromorphone or fentanyl & oxycodone"	Yes	Pregabalin
161	Elkassabany NM	Group A (31 patients): ACB, before surgery, US-guided, infusion; A bolus of 20 mL ropivacaine 0.5% was injected in increments of 5	Spinal or General	"Yes - intermittent IV boluses of	Yes	Gabapentin
160	Beausang DH (2016)	Group A (50 patients): ACB, after surgery, infusion, US-guided. "15 cc of 0.5% ropivacaine, infusion of 0.2% ropivacaine at 10cc/h via the On-Q system for a maximum of 48 hours" Group B (46 patients): Periarticular infiltration, infusion; infusion of 0.5% bupivacaine via the On-Q system for 48 hours	Spinal Anesthesia	Yes	Yes	Pregabalin
159	Barrington JW (2016)	Group A (40 patients): liposomal bupivacaine (Exparel); 20 mL of 1.3% liposomal bupivacaine with 25 mL of 0.5% bupivacaine, 30 mg ketorolac, 1 mg of 1:1000 epinephrine, in Normal saline to make 60 mL total Group B (38 patients): Periarticular infiltration; 50 mL of 0.5% ropivacaine, 30 mg ketorolac, 1 mg of 1:1000 epinephrine, in Normal saline to make 60 mL total	Spinal Anesthesia	Yes	Yes	No
158	Olive DJ (2015)	Group A (28 patients): Femoral, nerve stimulator guided, before surgery, infusion. A loading dose of 20 ml of 0.75% ropivacaine with Epi, followed by 0.2% ropivacaine at 12 ml/hr until the morning of postoperative day (POD) two. Group B (27 patients): Spinal; intra-thecal morphine.	Spinal Anesthesia	Yes - PCA morphine	Yes	No
157	Memtsoudis SG (2015) bilateral TKA	Group A (30 patients): Adductor canal block, US-guided, 15 ml bupivacaine 0.25 %. Group B (29 patients): Femoral, US-guided, 30 ml of bupivacaine 0.25 %.	Epidural Anesthesia (with sedation)	Yes	NA	No
		mg of methylprednisolone, and 50mg of ketoprofen. These agents were mixed with normal saline solution to a combined volume of 120 mL, and 60mL of the mixture was injected into each knee with use of the injection technique proposed by Busch et al Group B (33 patients): epidural analgesia; continuous infusion (flow rate, 4 mL/hr) of 100 mL of 2-mg/mL ropivacaine (8 mg/hr) plus 1.0 mL of 10-mg/mL morphine hydrochloride hydrate (0.4 mg/hr).				

		lumber plexus + sham adductor canal; before anesthesia. 25 mL 0.25% bupivacaine with 5 μ g/mL epinephrine and 1.67 μ g/mL clonidine.				
163	Wiesmann T (2016)	 Group A (21 patients): adductor canal block with Sciatic block; ultrasound + nerve stimulator. The initial bolus volume of 15 ml of ropivacaine 0.375 % was injected via the catheter. The PCA pump filled with ropivacaine 0.2 % was connected afterwards with a continuous flow rate of 6 ml/h and a bolus function of 6 ml. Same for sciatic block. Group B (21 patients): Femoral with sciatic block; ultrasound + nerve stimulator. The initial bolus volume of 15 ml of ropivacaine 0.375 % was injected via the catheter. The PCA pump filled with ropivacaine 0.375 % was injected via the catheter. The PCA pump filled with ropivacaine 0.2 % was connected afterwards with a continuous flow rate of 6 ml/h and a bolus function of 6 ml. Same for sciatic block. 	GA (volatile)	Yes	Yes	No
164	Vaishya R (2016)	Group A (40 patients): peri-articular infiltration; 75 mL of bupivacaine 0.25% 20 mL, morphine 15mg, ketorlac 30mg, and Epi Group B (40 patients): control group; saline infiltration.	Spinal Anesthesia	Yes – PCA	Yes	No
165	Fan L (2016)	Group A (78 patients): Femoral block; before anesthesia, with ultrasound and nerve stimulator. 20mL of ropivacaine 0.5% Group B (79 patients): peri-articular infiltration; 50 mL of cocktail mixture containing morphine (1 mL: 10 mg), ropivacaine (10 mL: 100 mg), and diprospan (1 mL: 5 mg betamethasone dipropionate and 2 mg betamethasone sodium phosphate).	NA	Yes – PCA	Yes	No
166	Schwarzkopf R (2016)	Group A (20 patients): liposomal bupivacaine (Exparel); 20cc mixed with 60cc saline, and 20cc 0.25% Marcaine injected with a different syringe. Group B (18 patients): peri-articular infiltration; 49.25cc 0.5% Ropivacaine, 0.8cc 100mg/ml Clonidine, 1cc 30mg/ml ketorolac, 0.5cc 1mg/ml Epi, and 48cc saline	Spinal anesthesia	Yes	Yes	Gabapentin
167	Jain RK (2016)	Group A (82 patients): Intra-articular injection; 30 mL of 0.25% bupivacaine with epinephrine and 10 mg of morphine Group B (62 patients): Periarticular infiltration, single; 30 mL of 0.25% bupivacaine with epinephrine and 10 mg of morphine Group C (63 patients): liposomal bupivacaine (Exparel); 60 mL for injection	Spinal Anesthesia	Yes - (oxycodone, hydrocodone, or hydromorphone)	Yes	No
168	Runge C (2016)	 Group A (23 patients): Obturator and femoral block, US-guided, single; 10 mL and contained 46 mg of bupivacaine, 0.05 mg of epinephrine, 0.0375 mg of clonidine, and 2 mg of dexamethasone. Group B (26 patients): Femoral, US-guided, single; 10 mL and contained 46 mg of bupivacaine, 0.05 mg of epinephrine, 0.0375 mg of clonidine, and 2 mg of dexamethasone. Group C (26 patients): Periarticular infiltration; mixture consisted 	Spinal Anesthesia	Yes	Yes	Gabapentin

		of 150 mL and contained 300 mg of ropivacaine, 0.75 mg of epinephrine, and 45 mg of ketorolac				
169	Sawhney M (2016)	 Group A (46 patients): ACB, before surgery, US-guided, single; 30 mL of 0.5% ropivacaine Group B (49 patients): Periarticular infiltration, single; 110-mL normal saline solution containing 300 mg ropivacaine, 10 mg morphine, and 30 mg ketorolac or 110 mL saline 0.9%. 	Spinal Anesthesia	Yes - hydromorphone PCA (0.2 mg bolus, 5-minute lockout, and a 4-hour maximum of 6 mg)	Yes	Gabapentin
170	Youm YS (2016)	 Group A (30 patients): Femoral, nerve stimulator, before surgery; 10 mL of 0.375% ropivacaine Group B (30 patients): Peri-articular infiltration; 50 mL of solution, including 40 mL of 0.75% ropivacaine, 7.5-mg morphine sulfate, 0.3-mg epinephrine, 40-mg methyl prednisolone, 30-mg ketorolac, 500-mg cefoxitin, and additional normal saline 	NA	Yes - PCA (1600-mg fentanyl + 80-mg nefopam)	Yes	Pregabalin
	= total intravenous phrine, POD = pos	anesthesia, PCA = patient controlled analgesia, IV = intravenous, PO	= per oral, GA =	general anesthesia, NA	= not availab	le, Epi =

Risk	Risk of bias assessment using Cochrane tool.												
ID	Authors	Year	Random sequence generation (selection bias)	Allocation concealment (selection bias)	Blinding of participants and personnel (performance bias)	Blinding of outcome assessment (detection bias)	Incomplete outcome data (attrition bias)	Selective reporting (reporting bias)	Other bias		Overall risk		
1	Raj P	1987	Н	Н	Н	Н	Н	U	Н		Н		
2	Nielsen P	1989	н	L	н	U	U	U	н		н		
3	Pettine K	1989	U	U	н	U	U	L	U				
4	Mahoney O	1990	U	н	н	н	U	U	н				
5	Serpell M	1991	U	U	н	U	U	L	U				
6	Edwards N	1992	U	U	н	U	U	L	U		н		
7	Sharrock	1994	U	U	н	н	U	L	U		Н		
8	Badner N	1996	L	U	L	U	L	н	U				
9	Hirst G	1996	U	U	U	L	U	L	U				
10	Williams- Russo	1996	L	U	н	U	U	U	U				
11	Mauerhan D	1997	L	L	L	L	L	L	L				
12	Allen H	1998	U	U	L	L	L	L	U				
13	Singelyn F	1998	L	U	н	U	U	L	U				
14	Tarkkila P	1998	U	Н	н	U	U	L	Н		Н		
15	Capdevlla X	1999	U	U	н	L	L	L	L		н		
16	Ganapathy S	1999	U	U	L	L	U	Н	U		Н		

17	Klasen J	1999	L	L	н	L	U	U	н
18	Ritter M	1999	L	U	L	U	L	L	н
19	Chelly J	2001	U	L	н	L	U	L	U
20	McNamee D	2001	U	U	н	L	U	U	U
21	Tanaka N	2001	U	U	L	L	U	U	U
22	Adams H	2002	U	U	н	U	U	L	U
23	McNamee D	2002	U	U	н	U	U	L	U
24	Wang H	2002	U	L	L	L	U	н	U
25	Browne C	2004	U	U	L	L	U	н	н
26	Davies A	2004	L	L	н	L	L	U	L
27	Kaloul I	2004	L	L	н	U	L	U	L
28	Marcalou D	2004	L	L	н	L	L	L	U
29	Sites B	2004	L	L	н	U	L	U	U
30	Szczukowski M	2004	L	L	L	L	U	н	L
31	Axelsson K	2005	L	L	L	L	L	L	U
32	Barrington M	2005	L	L	н	U	L	L	U
33	Dang C	2005	L	U	н	U	L	L	U
34	Farag E	2005	L	L	н	U	U	U	U
35	Morin A	2005	L	L	н	U	L	L	L
36	Nechleba J	2005	L	U	L	U	L	U	н
37	Busch C	2006	L	U	н	U	L	L	U
38	Mistraletti G	2006	L	L	н	U	L	L	L
39	Ozen M	2006	L	L	н	н	U	L	U
40	Park CK	2006	U	U	н	U	U	L	U
41	Seet E	2006	U	U	н	U	L	L	U
42	Tugay N	2006	U	U	н	U	U	U	U
43	Vendittoli P	2006	L	U	н	U	U	L	U
44	Zaric D	2006	L	L	н	U	L	L	L
45	Good R	2007	L	U	L	L	L	L	U
46	Han C	2007	L	U	L	L	L	L	L
47	Kardash K	2007	L	U	н	L	L	L	L
48	Mejia-Terrazas	2007	U	U	н	L	н	L	н
49	Ozalp G	2007	U	U	Н	U	L	L	U
50	Raimer C	2007	н	н	Н	U	L	L	U
51	Rajeev S	2007	L	U	н	U	L	U	U
52	Toftdahi K	2007	U	U	н	U	L	L	L
53	Zugliani A	2007	U	U	н	U	Н	U	н

Н

Н

Н

Н

н

Н

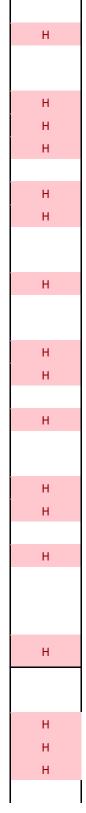
H H

54	Parvataneni	2007	L	U	Н	Н	L	U	Н	
55	Bagry H	2008	U	U	н	U	U	н	н	
56	Campbell A	2008	L	U	н	U	L	U	U	
57	Casati A	2008	L	L	н	U	U	L	н	
58	Martin F	2008	U	U	н	U	L	L	U	
59	Anderson L	2008	L	L	L	U	н	н	н	
60	Bozkurt M	2009	н	н	н	н	L	L	н	
61	Essving P	2009	L	L	н	L	L	L	L	
62	Fu P	2009	L	L	L	L	L	L	U	
63	Hunt K	2009	н	U	н	L	L	L	н	
64	Kadic L	2009	L	L	н	U	L	L	U	
65	Park JM	2009	U	U	н	U	U	U	н	
66	Shum C	2009	U	U	н	U	U	L	U	
67	Sundarathiti P	2009	L	U	н	U	U	L	U	
68	Anderson K	2010	L	L	н	U	L	U	U	
69	Bengisun Z	2010	L	L	L	U	U	н	U	
70	Carli F	2010	L	L	L	L	L	L	L	
71	Essving P	2010	L	L	U	L	L	L	L	
72	Frassanito L	2010	L	L	н	L	U	U	U	
73	Fu P	2010	L	L	U	L	L	U	н	
74	Garcia J	2010	L	L	L	U	н	U	н	
75	Gomez- Cardero	2010	L	L	L	L	н	U	н	
76	Kazak B	2010	L	U	L	L	L	U	U	
77	McMeniman T	2010	L	L	н	L	Н	U	U	
78	Ong J	2010	U	U	н	U	U	L	Н	
	Rosen A	2010	L	L	L	U	U	U	U	
80	Spreng U	2010	L	L	L	L	L	L	L	
81	Thorsell M	2010	U	н	н	н	н	н	н	
82	Wang H	2010	L	L	н	L	U	L	н	
83	Affas F	2011	L	L	н	U	U	L	U	
84	Baranovic S	2011	U	U	н	U	н	U	н	
85	Essving P	2011	L	L	н	L	L	L	L	
86	Fetherston C	2011	н	н	н	н	U	U	н	
87	Gallardo	2011	L	U	L	Н	L	L	U	
88	Wegener	2011	L	L	н	U	L	L	U	
89	Zhang S	2011	L	L	L	L	L	L	L	
90	Fajardo M	2011	U	U	L	U	U	L	н	

91	Joo JH	2011	L	L	L	L	Н	U	Н
92	Carvalho	2012	L	L	Н	L	U	L	U
93	Chan M	2012	L	L	н	L	U	L	U
94	Chang L	2012	L	U	н	L	U	L	U
95	Chen Y	2012	L	L	U	L	U	L	U
96	Jaeger	2012	L	L	L	L	U	U	U
97	Jenstrup	2012	L	L	L	L	U	U	U
98	Lee J	2012	U	U	Н	Н	U	L	Н
99	Ng F	2012	н	Н	Н	Н	н	U	н
100	Ng F	2012	L	U	н	L	U	н	U
101	Shanthanna H	2012	L	U	н	U	U	н	U
102	Widmer	2012	L	U	н	L	L	U	U
103	Yuenyongviwat	2012	L	L	L	L	U	L	U
104	Ashraf	2013	U	L	Н	L	н	Н	U
105	Chan E	2013	L	L	н	U	U	L	U
106	Chaumeron	2013	L	L	L	L	L	L	L
107	Dauri	2013	L	U	L	L	U	L	U
108	Goyal	2013	L	U	L	L	U	L	U
109	He B	2013	U	L	н	L	L	L	U
110	Ikeuchi	2013	U	U	н	U	U	L	U
111	Jaeger	2013	L	L	U	L	L	L	L
112	Bing-shan L	2013	U	U	н	Н	U	L	U
113	Moghtahael	2013	U	U	н	U	U	U	Н
114	Nakai T	2013	U	н	Н	Н	н	U	н
115	Sakai	2013	L	U	н	Н	L	L	L
116	Tammachote	2013	L	L	н	L	L	U	L
117	Williams	2013	L	U	L	L	L	L	U
118	Abdallah	2014	L	L	L	L	L	L	U
119	Albrecht	2014	L	L	L	L	L	н	U
120	Anastase D	2014	U	U	н	U	Н	Н	н
121	Bedir E	2014	U	U	н	U	U	U	н
122	Chan E	2014	U	U	н	U	L	L	U
123	Kim D	2014	L	L	н	L	L	L	Н
124	Kim TW	2014	U	U	L	L	L	L	U
125	Lamplot J	2014	U	L	н	U	L	L	Н
126	Leownorasate M	2014	U	н	н	н	U	L	U
127	Liu J	2014	L	L	н	L	U	L	U

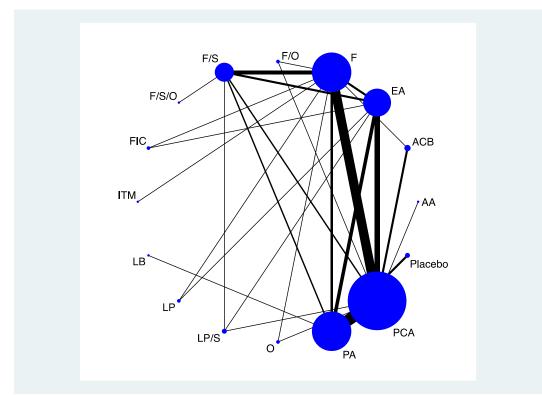
H H H

Н

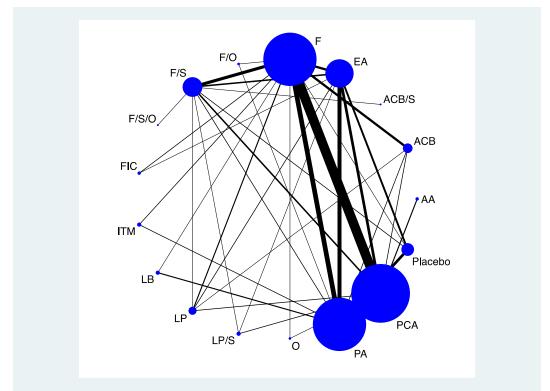

H H H H

Н

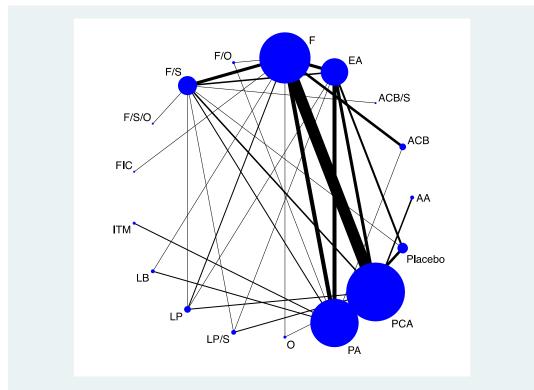
Н

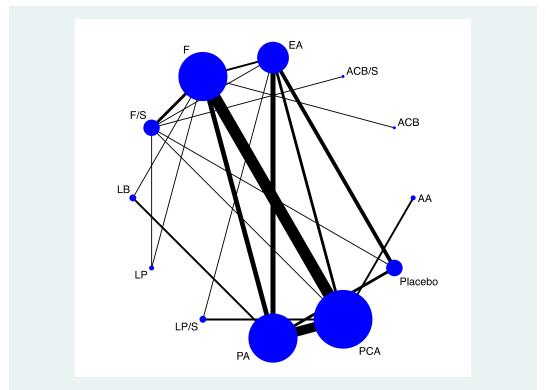

H H

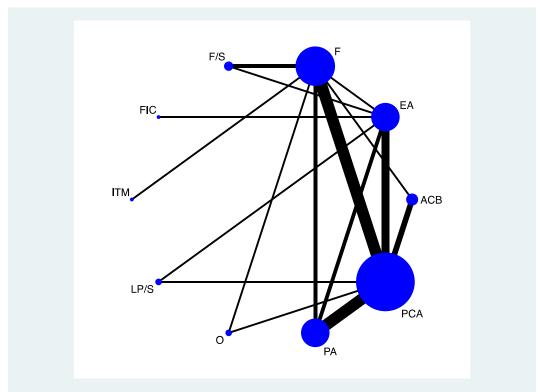
128	Mangar D	2014	L	U	L	L	L	L	L
129	Moghtahael M	2014	L	н	н	L	U	L	н
130	Niemelainen M	2014	L	L	L	L	L	L	L
131	Peng L	2014	L	L	н	U	L	L	L
132	Safa B	2014	L	L	L	L	U	L	U
133	Sahin L	2014	L	U	L	L	L	L	U
134	Shah N	2014	L	U	н	L	L	L	н
135	Spangehl M	2014	L	L	н	L	L	L	L
136	Surdam J	2014	L	L	н	U	U	L	U
137	Tsukada S	2014	L	L	н	н	L	L	U
138	Uesugi K	2014	L	L	н	U	L	н	U
139	Wu J	2014	L	L	н	н	U	U	U
140	Jæger P	2014	L	L	L	L	L	L	U
141	Zhang W	2014	U	U	н	н	U	L	н
142	Zinkus J	2014	U	н	н	н	U	U	н
143	Chen C	2015	L	L	н	U	L	L	U
144	Al-Zahrani T	2015	L	L	н	L	L	L	L
145	Wang F	2015	U	н	н	U	Н	U	н
146	Song MH	2015	U	U	н	U	U	L	U
147	Ren L	2015	L	U	н	L	L	L	U
148	Shen SJ	2015	L	U	L	L	U	U	н
149	Kutzner KP	2015	U	L	н	U	L	U	н
150	Sayed A	2015	L	U	н	U	U	U	U
151	Kurosaka K	2015	L	L	н	н	U	L	U
152	Milani P	2015	L	L	L	L	U	L	U
153	Mulford J	2015	L	L	L	U	U	U	U
154	Hegazy N	2015	L	L	н	U	U	Н	U
155	Kasture S	2015	Н	н	н	н	U	U	Н
156	Tsukada S	2015	L	U	н	L	L	L	L
157	Olive DJ	2015	L	L	н	L	L	L	U
158	Memtsoudis SG	2015	L	L	н	L	L	U	н
159	Henshaw D	2016	L	L	н	L	L	Н	L
160	Wiesmann T	2016	L	L	Н	L	L	L	L
161	Vaishya R	2016	L	L	L	L	L	L	U
162	Fan L	2016	L	L	н	L	L	L	U
163	Schwarzkopf R	2016	L	L	L	L	L	L	Н
164	Youm YS	2016	L	U	н	U	L	L	U

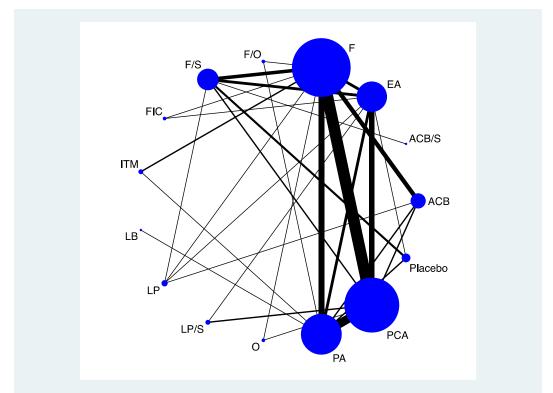


165	Elkassabany	2016	L	L	U	L	L	L	L		
166	Sawhney M	2016	L	L	U	L	L	н	L		н
167	Beausang DH	2016	L	U	н	U	L	L	н		н
168	Jain RK	2016	L	н	н	L	U	L	U		н
169	Runge C	2016	L	L	L	L	L	L	U		
170	Barrington JW	2016	L	L	н	L	U	L	U		н
	L = low risk	U = unknown					H = high risk				

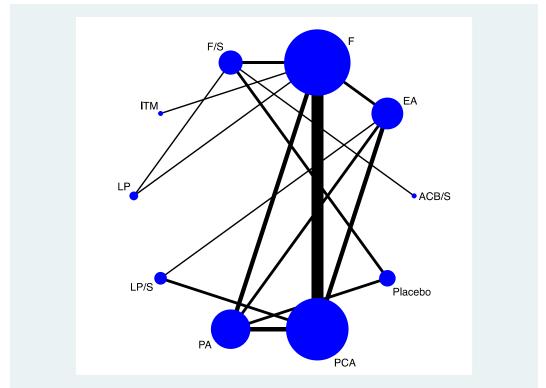

Network geometries (network plots)

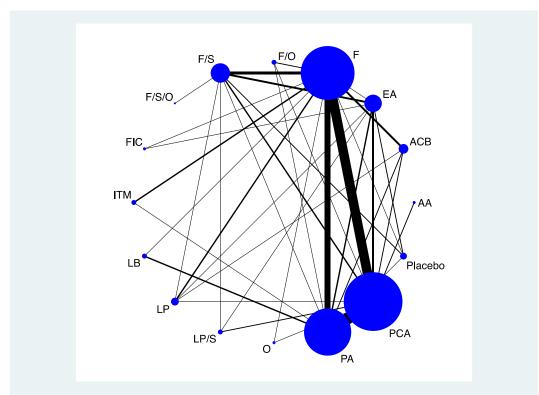


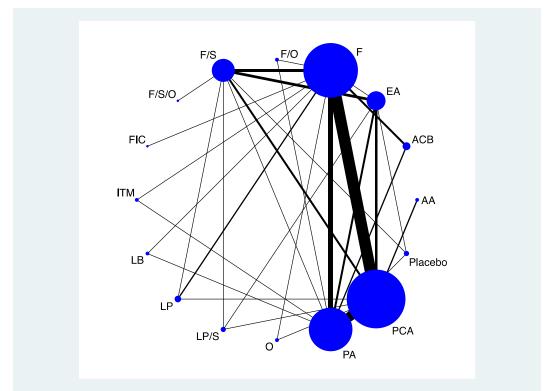

Pain at rest – 24 hr

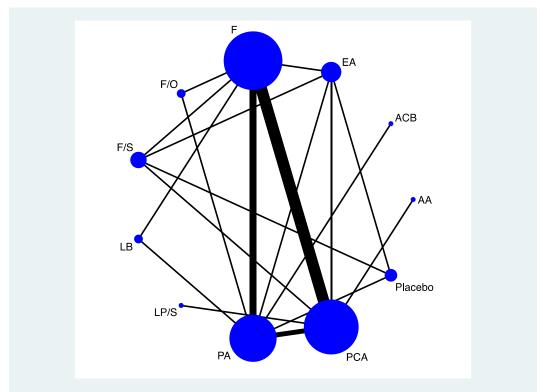

Pain at rest – 48 hr

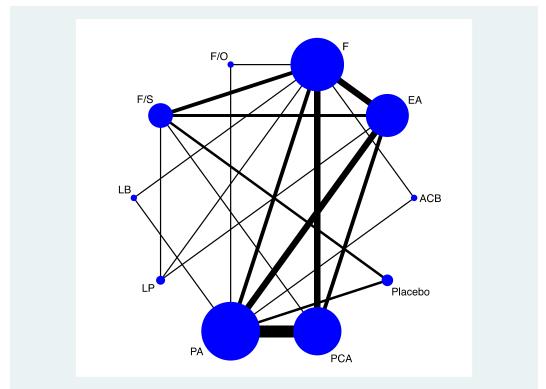

Pain at rest – 72 hr

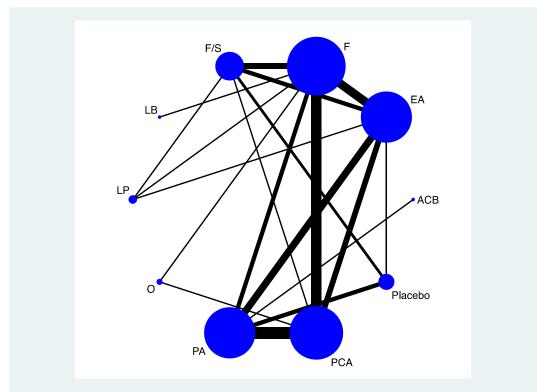

Pain at movement – 2 hr

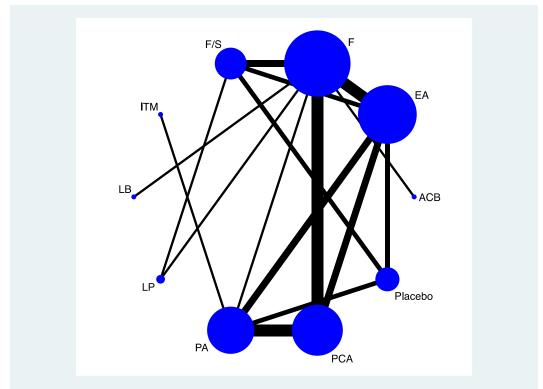

Pain at movement – 24 hr

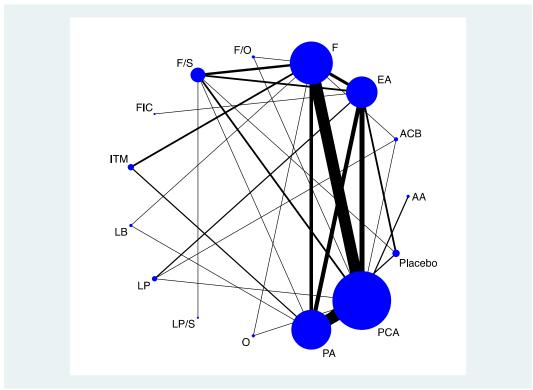

Pain at movement – 48 hr

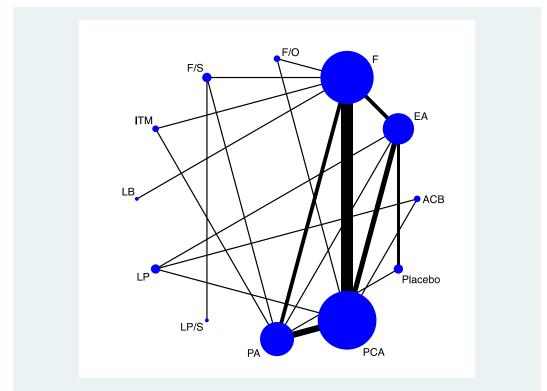

Pain at movement – 72 hr

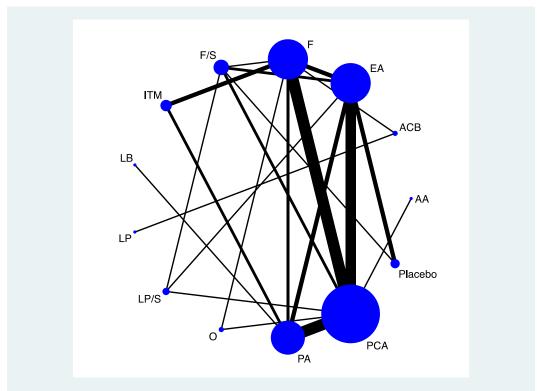

Opioid consumption – 24 hr

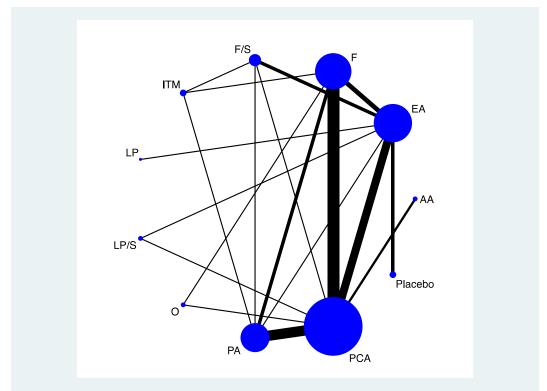

Opioid consumption – 48 hr

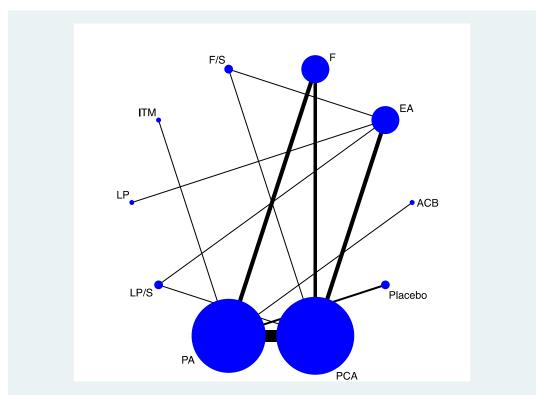

Opioid consumption – 72 hr

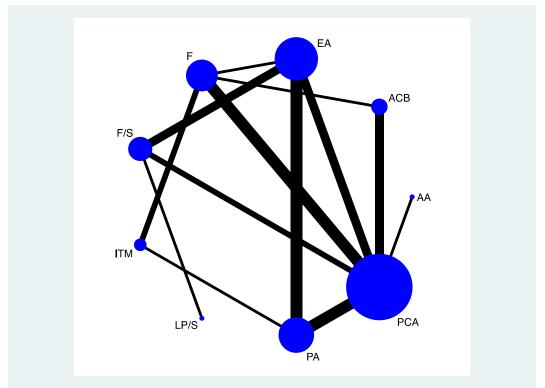

Range of motion and degree of flexion – 24 hr

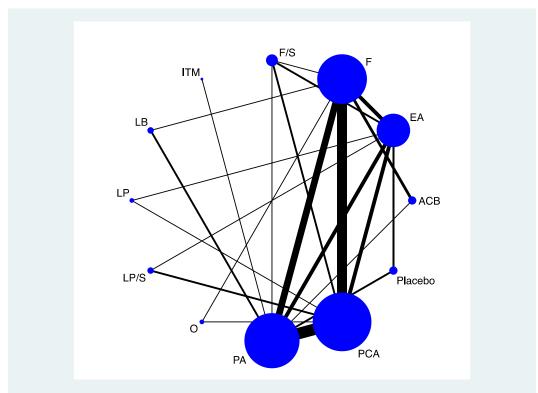

Range of motion and degree of flexion – 48 hr


Range of motion and degree of flexion - 72 hr


Incidence of nausea


Incidence of vomiting


Incidence of pruritus


Incidence of urinary retention

Incidence of deep vein thrombosis

Estimated blood loss

Length of hospital stay

Treatments efficacy (league) tables

Comparisons between treatments should be read from left to right, and the estimate is in the cell in common between the column defining treatment and the row defining treatment. A negative sign (red cell) favors the treatment mentioned in the column over the one in the row while a positive sign (green cell) favors the treatment mentioned in the row, except for the range of motion where the opposite is true, and thus the colored are switched. Data presented as standard mean differences (SMDs) with 95% CI for all continues measures (e.g., pain, opioid, the range of motion and length of stay) and on OR with 95% CI for dichotomous measures (e.g., the incidence of nausea, vomiting, pruritus, urinary retention, DVT).

PCA															
-1.00 (- 2.11,0.11)	Placebo														
0.78 (0.41,1.15)	1.78 (0.73,2.82)	PA													
0.46 (- 1.05,1.98)	1.46 (- 0.41,3.33)	-0.32 (- 1.87,1.23)	0												
1.17 (- 0.01,2.35)	2.16 (0.57,3.76)	0.39 (- 0.81,1.59)	0.70 (- 1.20,2.61)	LP/S											
1.00 (- 0.27,2.27)	2.00 (0.34,3.66)	0.22 (- 1.07,1.51)	0.54 (- 1.41,2.49)	-0.17 (- 1.85,1.52)	LP										
0.57 (- 1.15,2.29)	1.57 (- 0.41,3.55)	-0.21 (- 1.89,1.48)	0.11 (- 2.18,2.40)	-0.59 (- 2.66,1.47)	-0.43 (- 2.54,1.69)	LB									
0.57 (- 1.21,2.35)	1.57 (- 0.51,3.65)	-0.21 (- 2.00,1.59)	0.11 (- 2.20,2.41)	-0.60 (- 2.71,1.51)	-0.43 (- 2.56,1.71)	-0.00 (- 2.46,2.46)	ІТМ								
0.54 (- 0.72,1.80)	1.54 (- 0.12,3.19)	-0.24 (- 1.52,1.04)	0.08 (-	-0.63 (- 2.31,1.05)	-0.46 (- 2.18,1.26)	-0.03 (- 2.14,2.08)	-0.03 (- 2.16,2.10)	FIC							
1.86 (0.06,3.66)	2.86 (0.76,4.95)	1.08 (- 0.73,2.89)	1.40 (- 0.94,3.74)	0.69 (- 1.39,2.77)	0.86 (- 1.31,3.03)	1.29 (- 1.19,3.76)	1.29 (- 1.21,3.79)	1.32 (- 0.84,3.48)	F/S/O						
1.49 (0.92,2.05)	2.48 (1.28,3.69)	0.71 (0.11,1.30)	1.02 (- 0.57,2.62)	0.32 (- 0.86,1.49)	0.49 (- 0.84,1.81)	0.91 (- 0.87,2.69)	0.91 (- 0.91,2.74)	0.94 (- 0.38,2.26)	-0.37 (- 2.09,1.34)	F/S					
1.22 (- 0.27,2.71)	2.22 (0.37,4.07)	0.44 (- 1.08,1.96)	0.76 (- 1.35,2.86)	0.05 (- 1.83,1.94)	0.22 (- 1.71,2.15)	0.65 (- 1.62,2.91)	0.65 (- 1.64,2.94)	0.68 (- 1.24,2.60)	-0.64 (- 2.96,1.68)	-0.26 (- 1.83,1.30)	F/O		_		
0.46 (0.06,0.85)	1.45 (0.31,2.60)	-0.32 (- 0.79,0.15)	-0.01 (- 1.52,1.51)	-0.71 (- 1.91,0.49)	-0.54 (- 1.79,0.70)	-0.12 (- 1.86,1.63)	-0.11 (- 1.85,1.62)	-0.08 (- 1.32,1.15)	-1.40 (- 3.20,0.40)	-1.03 (- 1.59,-0.47)	-0.76 (- 2.25,0.72)	F			
0.96 (0.48,1.44)	1.96 (0.79,3.12)	0.18 (- 0.32,0.69)	0.50 (- 1.07,2.07)	-0.21 (- 1.39,0.98)	-0.04 (- 1.28,1.21)	0.39 (- 1.37,2.14)	0.39 (- 1.42,2.20)	0.42 (- 0.82,1.66)	-0.90 (- 2.72,0.92)	-0.52 (- 1.13,0.09)	-0.26 (- 1.80,1.29)	0.50 (- 0.02,1.03)	EA		
0.35 (- 0.52,1.22)	1.35 (- 0.06,2.75)	-0.43 (- 1.36,0.51)	-0.11 (- 1.85,1.63)	-0.82 (- 2.27,0.64)	-0.65 (- 2.17,0.87)	-0.22 (- 2.15,1.70)	-0.22 (- 2.18,1.74)	-0.19 (- 1.71,1.32)	-1.51 (- 3.50,0.48)	-1.13 (- 2.15,-0.12)	-0.87 (- 2.58,0.84)	-0.11 (- 1.02,0.81)	-0.61 (- 1.59,0.37)	ACB	L
0.69 (- 1.01,2.39)	1.69 (- 0.35,3.72)	-0.09 (- 1.83,1.65)	0.23 (- 2.05,2.51)	-0.48 (- 2.55,1.59)	-0.31 (- 2.43,1.81)	0.12 (- 2.30,2.54)	0.12 (- 2.34,2.58)	0.15 (- 1.97,2.27)	-1.17 (- 3.65,1.31)	-0.80 (- 2.59,1.00)	-0.53 (- 2.79,1.73)	0.23 (- 1.52,1.98)	-0.27 (- 2.04,1.50)	0.34 (- 1.57,2.25)	AA

Pain at rest – 2 hr

РСА																
-0.30 (- 0.75,0.14)	Placebo															
0.77 (0.55,0.99)	1.07 (0.66,1.4 9)	ΡΑ														
, 0.51 (- 0.77,1.78)	0.81 (- 0.53,2.15)	-0.26 (- 1.55,1.02)	ο													
0.92 (0.06,1.77)	1.22 (0.28,2.1 6)	0.14 (- 0.72,1.01)	0.41 (- 1.12,1.94)	LP/S												
0.77 (0.22,1.31)	1.07 (0.40,1.7 3)	-0.01 (- 0.56,0.55)	0.26 (- 1.12,1.64)	-0.15 (- 1.15,0.85)	LP											
0.81 (0.09,1.54)	1.12 (0.30,1.9 3)	0.04 (- 0.66,0.75)	0.31 (- 1.15,1.77)	-0.10 (- 1.21,1.01)	0.05 (- 0.84,0.94)	LB										
0.07 (- 0.67,0.82)	0.38 (- 0.46,1.21)	-0.70 (- 1.43,0.04)	-0.43 (- 1.90,1.03)	-0.84 (- 1.97,0.28)	-0.69 (- 1.59,0.21)	-0.74 (- 1.75,0.27)	ІТМ									
0.86 (0.02,1.71)	1.17 (0.24,2.0 9)	0.09 (- 0.76,0.94)	0.36 (- 1.16,1.87)	-0.05 (- 1.24,1.13)	0.10 (- 0.88,1.07)	0.05 (- 1.04,1.14)	0.79 (- 0.31,1.89)	FIC		_						
0.77 (- 0.71,2.25)	1.07 (- 0.45,2.59)	-0.00 (- 1.49,1.48)	0.26 (- 1.69,2.21)	-0.15 (- 1.83,1.53)	0.00 (- 1.56,1.56)	-0.04 (- 1.68,1.59)	0.70 (- 0.95,2.34)	-0.09 (- 1.78,1.59)	F/S/O							
0.87 (0.50,1.24)	1.18 (0.67,1.6 8)	0.10 (- 0.27,0.48)	0.37 (- 0.95,1.68)	-0.04 (- 0.92,0.83)	0.11 (- 0.50,0.72)	0.06 (- 0.73,0.85)	0.80 (- 0.00,1.60)	0.01 (- 0.88,0.90)	0.11 (- 1.33,1.54)	F/S						
1.24 (- 0.03,2.50)	1.54 (0.22,2.8 6)	0.47 (- 0.79,1.73)	0.73 (- 1.06,2.52)	0.32 (- 1.20,1.84)	0.47 (- 0.89,1.83)	0.42 (- 1.01,1.86)	1.16 (- 0.28,2.61)	0.37 (- 1.13,1.88)	0.47 (- 1.47,2.41)	0.36 (- 0.94,1.66)	F/O					
0.66 (0.44,0.89)	0.97 (0.52,1.4 1)	-0.11 (- 0.35,0.13)	0.16 (- 1.12,1.43)	-0.25 (- 1.12,0.62)	-0.10 (- 0.64,0.44)	-0.15 (- 0.88,0.58)	0.59 (- 0.14,1.32)	-0.20 (- 1.02,0.63)	-0.11 (- 1.59,1.37)	-0.21 (- 0.57,0.15)	-0.57 (- 1.83,0.68)	F				
0.56 (0.25,0.87)	0.86 (0.42,1.3 0)	-0.21 (- 0.52,0.09)	0.05 (- 1.25,1.35)	-0.36 (- 1.23,0.51)	-0.21 (- 0.77,0.35)	-0.26 (- 1.02,0.50)	0.48 (- 0.29,1.26)	-0.31 (- 1.15,0.54)	-0.21 (- 1.70,1.28)	-0.32 (- 0.72,0.08)	-0.68 (- 1.97,0.60)	-0.11 (- 0.42,0.20)	EA			
0.50 (- 1.01,2.01)	0.80 (- 0.74,2.35)	-0.27 (- 1.78,1.24)	-0.01 (- 1.97,1.96)	-0.42 (- 2.12,1.29)	-0.27 (- 1.85,1.32)	-0.31 (- 1.97,1.35)	0.43 (- 1.24,2.09)	-0.36 (- 2.07,1.35)	-0.27 (- 2.32,1.78)	-0.37 (- 1.83,1.09)	-0.74 (- 2.69,1.22)	-0.16 (- 1.67,1.34)	-0.06 (- 1.57,1.46)	ACB/S		
0.72 (0.26,1.17)	1.02 (0.42,1.6 2)	-0.05 (- 0.52,0.41)	0.21 (- 1.13,1.55)	-0.20 (- 1.16,0.76)	-0.05 (- 0.69,0.59)	-0.10 (- 0.93,0.73)	0.64 (- 0.20,1.49)	-0.15 (- 1.08,0.78)	-0.05 (- 1.59,1.48)	-0.16 (- 0.70,0.39)	-0.52 (- 1.85,0.80)	0.05 (- 0.38,0.49)	0.16 (- 0.35,0.67)	0.22 (- 1.34,1.78)	ACB	
0.17 (- 0.64,0.99)	0.48 (- 0.45,1.41)	-0.60 (- 1.44,0.25)	-0.33 (- 1.84,1.18)	-0.74 (- 1.92,0.44)	-0.59 (- 1.57,0.39)	-0.64 (- 1.73,0.45)	0.10 (- 1.00,1.21)	-0.69 (- 1.86,0.48)	-0.60 (- 2.29,1.10)	-0.70 (- 1.59,0.19)	-1.06 (- 2.57,0.44)	-0.49 (- 1.33,0.36)	-0.38 (- 1.25,0.49)	-0.33 (- 2.04,1.39)	-0.54 (- 1.48,0.39)	AA

Pain at rest – 24 hr.

PCA]															
-0.01 (- 0.52,0.50)	Placebo															
0.65 (0.40,0.89)	0.65 (0.17,1.1 3)	ΡΑ														
0.42 (- 0.83,1.66)	0.42 (- 0.91,1.75)	-0.23 (- 1.49,1.02)	0													
0.96 (0.10,1.81)	0.96 (- 0.00,1.93)	0.31 (- 0.56,1.18)	0.54 (- 0.96,2.04)	LP/S												
0.30 (- 0.36,0.97)	0.31 (- 0.50,1.12)	-0.34 (- 1.03,0.34)	-0.11 (- 1.51,1.29)	-0.65 (- 1.72,0.41)	LP											
0.72 (- 0.10,1.54)	0.73 (- 0.20,1.66)	0.07 (- 0.73,0.88)	0.30 (- 1.17,1.78)	-0.24 (- 1.41,0.94)	0.42 (- 0.62,1.46)	LB										
0.50 (- 0.51,1.51)	0.51 (- 0.59,1.60)	-0.15 (- 1.13,0.83)	0.08 (- 1.51,1.68)	-0.46 (- 1.77,0.85)	0.20 (- 1.00,1.39)	-0.22 (- 1.49,1.05)	ІТМ									
0.63 (- 0.76,2.02)	0.64 (- 0.83,2.10)	-0.02 (- 1.41,1.38)	0.21 (- 1.63,2.06)	-0.33 (- 1.95,1.29)	0.32 (- 1.20,1.85)	-0.09 (- 1.68,1.50)	0.13 (- 1.58,1.84)	FIC		_						
0.79 (- 0.66,2.24)	0.80 (- 0.71,2.30)	0.14 (- 1.31,1.60)	0.37 (- 1.53,2.27)	-0.17 (- 1.81,1.48)	0.49 (- 1.09,2.06)	0.07 (- 1.58,1.72)	0.29 (- 1.47,2.05)	0.16 (- 1.83,2.15)	F/S/O		_					
0.55 (0.14,0.95)	0.56 (- 0.02,1.13)	-0.10 (- 0.51,0.31)	0.13 (- 1.16,1.43)	-0.41 (- 1.28,0.47)	0.25 (- 0.48,0.97)	-0.17 (- 1.06,0.71)	0.05 (- 1.01,1.12)	-0.08 (- 1.50,1.34)	-0.24 (- 1.63,1.16)	F/S		_				
0.74 (- 0.49,1.97)	0.75 (- 0.56,2.06)	0.10 (- 1.13,1.32)	0.33 (- 1.41,2.06)	-0.21 (- 1.70,1.27)	0.44 (- 0.94,1.82)	0.02 (- 1.43,1.48)	0.24 (- 1.32,1.81)	0.11 (- 1.72,1.95)	-0.05 (- 1.93,1.84)	0.19 (- 1.08,1.47)	F/O					
0.48 (0.23,0.72)	0.48 (- 0.04,1.00)	-0.17 (- 0.44,0.11)	0.06 (- 1.18,1.30)	-0.48 (- 1.35,0.39)	0.17 (- 0.50,0.84)	-0.24 (- 1.06,0.57)	-0.02 (- 1.04,1.00)	-0.15 (- 1.52,1.22)	-0.31 (- 1.76,1.14)	-0.07 (- 0.47,0.32)	-0.27 (- 1.49,0.96)	F				
0.28 (- 0.05,0.61)	0.29 (- 0.22,0.80)	-0.36 (- 0.69,- 0.04)	-0.13 (- 1.41,1.14)	-0.67 (- 1.55,0.20)	-0.02 (- 0.71,0.67)	-0.44 (- 1.29,0.41)	-0.22 (- 1.25,0.82)	-0.35 (- 1.75,1.06)	-0.51 (- 1.97,0.96)	-0.27 (- 0.70,0.17)	-0.46 (- 1.71,0.79)	-0.19 (- 0.53,0.14)	EA			
0.33 (- 1.15,1.80)	0.34 (- 1.20,1.87)	-0.32 (- 1.79,1.16)	-0.09 (- 2.01,1.83)	-0.63 (- 2.29,1.04)	0.02 (- 1.57,1.62)	-0.39 (- 2.06,1.28)	-0.17 (- 1.94,1.60)	-0.30 (- 2.31,1.71)	-0.46 (- 2.45,1.53)	-0.22 (- 1.64,1.20)	-0.41 (- 2.32,1.49)	-0.15 (- 1.62,1.32)	0.05 (- 1.44,1.53)	ACB/S		
0.55 (- 0.04,1.15)	0.56 (- 0.19,1.31)	-0.09 (- 0.69,0.51)	0.14 (- 1.22,1.50)	-0.40 (- 1.43,0.62)	0.25 (- 0.62,1.12)	-0.17 (- 1.15,0.81)	0.05 (- 1.10,1.21)	-0.07 (- 1.55,1.40)	-0.24 (- 1.79,1.32)	0.00 (- 0.67,0.68)	-0.19 (- 1.53,1.15)	0.08 (- 0.48,0.63)	0.27 (- 0.37,0.91)	0.22 (- 1.35,1.80)	ACB	
0.11 (- 0.68,0.90)	0.12 (- 0.82,1.06)	-0.54 (- 1.36,0.29)	-0.31 (- 1.78,1.16)	-0.85 (- 2.01,0.32)	-0.19 (- 1.23,0.84)	-0.61 (- 1.75,0.53)	-0.39 (- 1.67,0.89)	-0.52 (- 2.12,1.08)	-0.68 (- 2.33,0.97)	-0.44 (- 1.33,0.45)	-0.63 (- 2.10,0.83)	-0.37 (- 1.19,0.46)	-0.17 (- 1.03,0.68)	-0.22 (- 1.89,1.45)	-0.44 (- 1.43,0.55)	AA

Pain at rest – 48 hr.

РСА											
0.03 (- 0.67,0.73)	Placebo		_								
0.38 (- 0.02,0.78)	0.35 (- 0.29,0.99)	РА									
0.43 (- 0.71,1.57)	0.40 (- 0.90,1.69)	0.05 (- 1.13,1.23)	LP/S								
-0.09 (-	-0.12 (-	-0.47 (-	-0.52 (-	LP							
1.54,1.36)	1.66,1.42)	1.93,0.99)	2.35,1.31)			1					
0.44 (-	0.41 (-	0.06 (-	0.01 (-	0.53 (-	LB						
0.53,1.42)	0.70,1.52)	0.86,0.99)	1.47,1.50)	1.16,2.23)	a .a /		1				
0.02 (-	-0.01 (-	-0.36 (-	-0.41 (-	0.11 (-	-0.43 (-	F/S					
0.74,0.77)	0.87,0.84)	1.13,0.40)	1.75,0.93)	1.31,1.52)	1.59,0.74)			1			
0.33 (-	0.30 (-	-0.04 (-	-0.09 (-	0.43 (-	-0.11 (-	0.32 (-	F				
0.05,0.72)	0.41,1.01)	0.48,0.39)	1.28,1.09)	0.99,1.84)	1.07,0.85)	0.40,1.04)	•				
0.23 (-	0.20 (-	-0.14 (-	-0.20 (-	0.32 (-	-0.21 (-	0.22 (-	-0.10 (-	EA			
0.28,0.75)	0.43,0.84)	0.63,0.34)	1.38,0.99)	1.16,1.81)	1.23,0.81)	0.56,1.00)	0.64,0.44)				
0.46 (-	0.43 (-	0.08 (-	0.03 (-	0.55 (-	0.01 (-	0.44 (-	0.12 (-	0.22 (-	ACB/S		
1.33,2.24)	1.40,2.26)	1.71,1.87)	2.07,2.13)	1.60,2.70)	1.98,2.01)	1.18,2.06)	1.65,1.89)	1.57,2.02)	ACD/3		
0.65 (-	0.62 (-	0.27 (-	0.22 (-	0.74 (-	0.20 (-	0.63 (-	0.31 (-	0.41 (-	0.19 (-	4.60	
0.95,2.24)	1.09,2.32)	1.34,1.88)	1.73,2.17)	1.36,2.84)	1.62,2.03)	1.08,2.34)	1.24,1.86)	1.23,2.05)	2.16,2.54)	ACB	
0.26 (-	0.23 (-	-0.12 (-	-0.17 (-	0.35 (-	-0.19 (-	0.24 (-	-0.08 (-	0.02 (-	-0.20 (-	-0.39 (-	
0.85,1.36)	1.08,1.53)	1.30,1.05)	1.76,1.42)	1.48,2.17)	1.66,1.29)	1.10,1.58)	1.25,1.09)	1.20,1.24)	2.30,1.90)	2.33,1.55)	AA

Pain at rest – 72 hr.

РСА									
1.19 (0.49,1.88)	РА								
-0.26 (- 2.09,1.57)	-1.44 (- 3.37,0.48)	0							
0.92 (-0.92,2.75)	-0.27 (- 2.19,1.65)	1.18 (- 1.40,3.75)	LP/S						
0.83 (-1.35,3.01)	-0.35 (- 2.59,1.88)	1.09 (- 1.67,3.85)	-0.08 (- 2.91,2.74)	ITM					
1.67 (-0.55,3.90)	0.49 (-1.77,2.75)	1.93 (- 0.92,4.79)	0.76 (-2.00,3.52)	0.84 (-2.23,3.92)	FIC				
1.57 (0.24,2.90)	0.38 (-1.02,1.79)	1.83 (- 0.35,4.01)	0.65 (-1.54,2.84)	0.74 (-1.67,3.14)	-0.11 (- 2.57,2.36)	F/S		_	
0.83 (0.14,1.52)	-0.35 (- 1.20,0.50)	1.09 (- 0.74,2.92)	-0.08 (- 2.01,1.84)	0.00 (-2.06,2.07)	-0.84 (- 3.12,1.43)	-0.74 (- 1.97,0.50)	F		
1.68 (0.84,2.51)	0.49 (-0.43,1.41)	1.93 (- 0.04,3.91)	0.76 (-1.07,2.59)	0.84 (-1.43,3.12)	0.00 (-2.06,2.07)	0.11 (-1.24,1.45)	0.84 (-0.11,1.80)	EA	
0.34 (-0.71,1.38)	-0.85 (- 2.08,0.38)	0.60 (- 1.48,2.67)	-0.58 (- 2.68,1.52)	-0.49 (- 2.86,1.87)	-1.34 (- 3.78,1.11)	-1.23 (- 2.87,0.40)	-0.49 (- 1.65,0.66)	-1.34 (-2.65,- 0.03)	ACB

Pain at movement – 2 hr.

PCA														
0.35 (-	Placebo													
0.51,1.21)	0.67 (-		1											
(0.64,1.41)	0.17,1.51)	PA												
0.46 (-	0.11 (-	-0.56 (-		1										
1.10,2.03)	1.66,1.88)	2.15,1.03)	0											
1.06 (-	0.71 (-	0.03 (-	0.59 (-]									
0.20,2.31)	0.80,2.21)	1.27,1.33)	1.41,2.60)	LP/S										
0.60 (-	0.25 (-	-0.42 (-	0.14 (-	-0.45 (-	LP									
0.42,1.63)	1.00,1.51)	1.45,0.61)	1.70,1.99)	2.05,1.14)	LP		-							
1.08 (-	0.73 (-	0.06 (-	0.62 (-	0.03 (-	0.48 (-	LB								
0.67,2.84)	1.17,2.64)	1.65,1.77)	1.72,2.96)	2.12,2.17)	1.52,2.48)			1						
1.59	1.24 (-	0.56 (-	1.12 (-	0.53 (-	0.98 (-	0.50 (-	ІТМ							
(0.48,2.69)	0.11,2.58)	0.53,1.65)	0.77,3.01)	1.13,2.19)	0.47,2.43)	1.53,2.53)			•					
0.72 (-	0.37 (-	-0.31 (-	0.25 (-	-0.34 (-	0.11 (-	-0.37 (-	-0.87 (-	FIC						
0.58,2.01)	1.14,1.87)	1.62,1.00)	1.76,2.26)	2.12,1.44)	1.48,1.70)	2.52,1.78)	2.53,0.79)	-		•				
1.20	0.85	0.18 (-	0.74 (-	0.15 (-	0.60 (-	0.12 (-	-0.38 (-	0.49 (-	F/S					
(0.60,1.81)	(0.03,1.68)	0.44,0.80)	0.91,2.39)	1.22,1.52)	0.46,1.66)	1.70,1.94)	1.58,0.82)	0.88,1.85)	-		1			
1.53 (-	1.18 (-	0.50 (-	1.06 (-	0.47 (-	0.92 (-	0.44 (-	-0.06 (-	0.81 (-	0.32 (-	F/O				
0.05,3.10)	0.57,2.93)	1.05,2.06)	1.13,3.26)	1.53,2.47)	0.91,2.76)	1.87,2.75)	1.93,1.81)	1.19,2.81)	1.32,1.97)			1		
0.80	0.45 (-	-0.22 (-	0.34 (-	-0.25 (-	0.20 (-	-0.28 (-	-0.78 (-	0.09 (-	-0.40 (-	-0.72 (-	F			
(0.45,1.15)	0.40,1.31)	0.62,0.18)	1.22,1.91)	1.54,1.04)	0.80,1.20)	2.03,1.47)	1.85,0.29)	1.19,1.36)	0.97,0.17)	2.28,0.83)			1	
0.79	0.44 (-	-0.23 (-	0.33 (-	-0.27 (-	0.19 (-	-0.29 (-	-0.80 (-	0.07 (-	-0.41 (-	-0.74 (-	-0.01 (-	EA		
(0.32,1.26)	0.43,1.31)	0.73,0.27)	1.29,1.94)	1.55,1.02)	0.83,1.20)	2.07,1.49)	1.95,0.36)	1.20,1.35)	1.02,0.20)	2.34,0.87)	0.49,0.47)			
1.38 (-	1.03 (-	0.35 (-	0.91 (-	0.32 (-	0.77 (-	0.29 (-	-0.21 (-	0.66 (-	0.17 (-	-0.15 (-	0.57 (-	0.59 (-	ACB/S	
0.51,3.26)	0.94,3.00)	1.54,2.25)	1.52,3.35)	1.93,2.57)	1.31,2.85)	2.26,2.84)	2.36,1.94)	1.59,2.91)	1.62,1.96)	2.58,2.28)	1.31,2.45)	1.30,2.48)	-	
0.69	0.34 (-	-0.34 (-	0.22 (-	-0.37 (-	0.08 (-	-0.40 (-	-0.90 (-	-0.03 (-	-0.52 (-	-0.84 (-	-0.12 (-	-0.10 (-	-0.69 (-	ACB
(0.09,1.28)	0.65,1.32)	0.95,0.27)	1.42,1.87)	1.75,1.01)	0.96,1.12)	2.21,1.42)	2.09,0.29)	1.41,1.35)	1.28,0.24)	2.48,0.79)	0.67,0.43)	0.79,0.58)	2.63,1.25)	

Pain at movement – 24 hr.

PCA													
0.44 (- 0.47,1.34)	Placebo												
0.96 (0.57,1.36)	0.52 (- 0.34,1.39)	РА											
0.22 (- 1.23,1.67)	-0.22 (- 1.91,1.47)	-0.74 (- 2.23,0.74)	0		_								
1.06 (- 0.13,2.26)	0.63 (- 0.85,2.11)	0.10 (- 1.14,1.35)	0.85 (- 1.03,2.72)	LP/S									
0.11 (- 1.02,1.24)	-0.33 (- 1.69,1.03)	-0.85 (- 1.99,0.29)	-0.11 (- 1.92,1.71)	-0.95 (- 2.57,0.66)	LP		_						
0.91 (- 0.33,2.16)	0.47 (- 1.00,1.95)	-0.05 (- 1.27,1.17)	0.69 (- 1.20,2.58)	-0.15 (- 1.87,1.56)	0.80 (- 0.83,2.44)	ІТМ							
0.76 (- 0.89,2.42)	0.32 (- 1.52,2.17)	-0.20 (- 1.86,1.47)	0.54 (- 1.63,2.72)	-0.30 (- 2.33,1.73)	0.65 (- 1.30,2.61)	-0.15 (- 2.18,1.88)	FIC						
1.00 (0.38,1.62)	0.56 (- 0.31,1.43)	0.04 (- 0.60,0.68)	0.78 (- 0.77,2.33)	-0.06 (- 1.38,1.26)	0.89 (- 0.25,2.03)	0.09 (- 1.25,1.42)	0.24 (- 1.48,1.95)	F/S		_			
1.54 (0.08,3.01)	1.11 (- 0.56,2.77)	0.58 (- 0.86,2.03)	1.33 (- 0.72,3.37)	0.48 (- 1.40,2.36)	1.43 (- 0.37,3.24)	0.63 (- 1.24,2.50)	0.78 (- 1.39,2.95)	0.54 (- 1.00,2.08)	F/O				
0.63 (0.27,0.98)	0.19 (- 0.70,1.08)	-0.33 (- 0.73,0.07)	0.41 (- 1.04,1.86)	-0.44 (- 1.66,0.79)	0.52 (- 0.58,1.62)	-0.28 (- 1.50,0.94)	-0.13 (- 1.75,1.48)	-0.37 (- 0.94,0.20)	-0.92 (- 2.36,0.53)	F		_	
0.27 (- 0.18,0.72)	-0.17 (- 1.10,0.76)	-0.69 (- 1.19,-0.20)	0.05 (- 1.45,1.55)	-0.80 (- 2.02,0.42)	0.16 (- 0.94,1.26)	-0.64 (- 1.92,0.64)	-0.49 (- 2.17,1.18)	-0.73 (- 1.35,-0.11)	-1.28 (- 2.77,0.22)	-0.36 (- 0.82,0.09)	EA		
0.60 (- 1.17,2.38)	0.17 (- 1.71,2.04)	-0.36 (- 2.14,1.42)	0.38 (- 1.89,2.66)	-0.46 (- 2.58,1.66)	0.49 (- 1.52,2.51)	-0.31 (- 2.44,1.82)	-0.16 (- 2.55,2.23)	-0.40 (- 2.06,1.26)	-0.94 (- 3.21,1.32)	-0.03 (- 1.78,1.73)	0.33 (- 1.44,2.11)	ACB/S	
0.74 (0.01,1.48)	0.30 (- 0.79,1.39)	-0.22 (- 0.96,0.52)	0.52 (- 1.07,2.11)	-0.32 (- 1.71,1.06)	0.63 (- 0.65,1.91)	-0.17 (- 1.55,1.21)	-0.02 (- 1.77,1.72)	-0.26 (- 1.13,0.60)	-0.80 (- 2.38,0.78)	0.11 (- 0.55,0.77)	0.47 (- 0.32,1.26)	0.14 (- 1.74,2.01)	ACB

Pain at movement – 48 hr.

PCA									
0.38 (- 0.40,1.17)	Placebo								
0.39 (- 0.08,0.86)	0.01 (- 0.69,0.70)	РА							
0.26 (- 0.65,1.17)	-0.12 (- 1.30,1.05)	-0.13 (- 1.13,0.86)	LP/S						
0.14 (- 1.01,1.30)	-0.24 (- 1.46,0.98)	-0.25 (- 1.41,0.92)	-0.12 (- 1.57,1.34)	LP					
4.74 (3.19,6.30)	4.36 (2.67,6.04)	4.35 (2.77,5.93)	4.48 (2.69,6.27)	4.60 (2.73,6.47)	ITM				
0.39 (- 0.37,1.16)	0.01 (- 0.70,0.71)	0.00 (-0.75,0.75)	0.13 (- 1.04,1.30)	0.25 (- 0.85,1.35)	-4.35 (-6.02,- 2.68)	F/S			
0.31 (- 0.06,0.68)	-0.07 (- 0.82,0.68)	-0.08 (- 0.54,0.38)	0.05 (- 0.91,1.01)	0.17 (- 0.93,1.27)	-4.43 (-5.94,- 2.92)	-0.08 (- 0.79,0.62)	F		
-0.36 (-	-0.75 (-	-0.75 (-1.32,-	-0.62 (-	-0.51 (-	-5.10 (-6.71,-	-0.76 (-	-0.67 (-1.20,-	EA	
0.87,0.15)	1.60,0.10)	0.19)	1.58,0.33)	1.72,0.70)	3.50)	1.60,0.09)	0.14)	LA	
-0.13 (-	-0.51 (-	-0.52 (-	-0.39 (-	-0.27 (-	-4.87 (-6.95,-	-0.52 (-	-0.44 (-	0.24 (-	ACB/S
1.60,1.34)	1.95,0.93)	1.98,0.94)	2.10,1.33)	1.94,1.40)	2.78)	1.77,0.73)	1.88,1.00)	1.28,1.75)	ACD/3

Pain at movement – 72 hr.

PCA		_													
0.84 (0.08,1.6 0)	Placebo														
0.75 (0.46,1.0 3)	-0.09 (- 0.85,0.66)	РА													
0.42 (- 1.05,1.90)	-0.41 (- 2.06,1.23)	-0.32 (- 1.81,1.17)	о												
2.50 (1.55,3.4 6)	1.67 (0.51,2.83)	1.76 (0.78,2.73)	2.08 (0.33,3.83)	LP/S		_									
1.47 (0.72,2.2 2)	0.63 (- 0.37,1.63)	0.72 (- 0.04,1.49)	1.05 (- 0.59,2.68)	-1.03 (- 2.21,0.14)	LP		_								
0.83 (- 0.03,1.69)	-0.01 (- 1.11,1.10)	0.09 (- 0.74,0.91)	0.41 (- 1.29,2.10)	-1.67 (- 2.94,- 0.40)	-0.64 (- 1.74,0.47)	LB									
0.79 (- 0.09,1.67)	-0.05 (- 1.17,1.08)	0.05 (- 0.83,0.92)	0.37 (- 1.33,2.06)	-1.71 (- 2.99,- 0.43)	-0.68 (- 1.79,0.43)	-0.04 (- 1.23,1.15)	ITM		_						
1.50 (0.28,2.7 2)	0.66 (- 0.71,2.03)	0.75 (- 0.47,1.97)	1.07 (- 0.82,2.97)	-1.01 (- 2.51,0.50)	0.03 (- 1.35,1.41)	0.67 (- 0.80,2.13)	0.71 (- 0.76,2.17)	FIC		_					
2.32 (0.58,4.0 7)	1.48 (- 0.35,3.32)	1.58 (- 0.17,3.33)	1.90 (- 0.38,4.17)	-0.18 (- 2.12,1.76)	0.85 (- 1.01,2.71)	1.49 (- 0.44,3.42)	1.53 (- 0.40,3.46)	0.82 (- 1.27,2.92)	F/S/O						
1.61 (1.12,2.1 0)	0.77 (0.02,1.52)	0.86 (0.36,1.37)	1.18 (- 0.35,2.72)	-0.90 (- 1.87,0.08)	0.14 (- 0.67,0.94)	0.78 (- 0.17,1.73)	0.82 (- 0.14,1.78)	0.11 (- 1.14,1.36)	-0.71 (- 2.39,0.96)	F/S					
2.04 (1.00,3.0 9)	1.21 (- 0.06,2.47)	1.30 (0.25,2.35)	1.62 (- 0.18,3.42)	-0.46 (- 1.86,0.95)	0.57 (- 0.68,1.83)	1.21 (- 0.11,2.54)	1.25 (- 0.08,2.59)	0.55 (- 1.03,2.13)	-0.28 (- 2.30,1.74)	0.44 (- 0.69,1.56)	F/O				
0.88 (0.58,1.1 7)	0.04 (- 0.71,0.79)	0.13 (- 0.18,0.45)	0.46 (- 1.02,1.93)	-1.62 (- 2.60,- 0.65)	-0.59 (- 1.32,0.14)	0.05 (- 0.81,0.90)	0.09 (- 0.76,0.93)	-0.62 (- 1.82,0.58)	-1.44 (- 3.18,0.30)	-0.73 (- 1.20,- 0.25)	-1.16 (- 2.20,- 0.12)	F			
1.77 (1.25,2.2 9)	0.93 (0.17,1.69)	1.03 (0.50,1.56)	1.35 (- 0.20,2.90)	-0.73 (- 1.73,0.26)	0.30 (- 0.51,1.12)	0.94 (- 0.03,1.91)	0.98 (- 0.00,1.96)	0.27 (- 0.93,1.48)	-0.55 (- 2.31,1.21)	0.16 (- 0.38,0.71)	-0.27 (- 1.42,0.87)	0.89 (0.36,1.42)	EA		
0.80 (0.22,1.3 9)	-0.04 (- 0.95,0.88)	0.06 (- 0.54,0.65)	0.38 (- 1.19,1.95)	-1.70 (- 2.80,- 0.60)	-0.67 (- 1.51,0.17)	-0.03 (- 1.03,0.97)	0.01 (- 1.00,1.02)	-0.70 (- 2.01,0.62)	-1.52 (- 3.34,0.30)	-0.81 (- 1.52 <i>,</i> - 0.09)	-1.24 (- 2.41,- 0.07)	-0.08 (- 0.65,0.49)	-0.97 (- 1.71 <i>,</i> - 0.23)	АСВ	
0.39 (- 0.77,1.55)	-0.45 (- 1.84,0.94)	-0.35 (- 1.55,0.84)	-0.03 (- 1.91,1.84)	-2.11 (- 3.62,- 0.61)	-1.08 (- 2.46,0.30)	-0.44 (- 1.89,1.00)	-0.40 (- 1.86,1.06)	-1.11 (- 2.79,0.58)	-1.93 (- 4.03,0.17)	-1.22 (- 2.48,0.04)	-1.65 (- 3.22,- 0.09)	-0.49 (- 1.69,0.71)	-1.38 (- 2.65,- 0.11)	-0.41 (- 1.71,0.89)	AA

Opioid consumption – 24 hr.

Opioid consumption – 48 hr.

PCA															
0.59 (- 0.35,1.52)	Placebo														
0.54 (0.21,0.8 6)	-0.05 (- 0.97,0.87)	РА													
0.25 (- 1.10,1.60)	-0.34 (- 1.97,1.29)	-0.29 (- 1.66,1.09)	о												
0.28 (- 0.78,1.34)	-0.31 (- 1.65,1.04)	-0.26 (- 1.34,0.82)	0.03 (- 1.68,1.74)	LP/S											
1.27 (0.29,2.2 5)	0.68 (- 0.63,1.99)	0.73 (- 0.27,1.73)	1.02 (- 0.63,2.67)	0.99 (- 0.42,2.40)	LP										
0.58 (- 0.52,1.69)	-0.00 (- 1.41,1.41)	0.05 (- 1.04,1.14)	0.34 (- 1.39,2.06)	0.30 (- 1.21,1.82)	-0.68 (- 2.13,0.76)	LB									
0.47 (- 0.65,1.59)	-0.12 (- 1.54,1.30)	-0.07 (- 1.17,1.03)	0.22 (- 1.51,1.95)	0.19 (- 1.33,1.71)	-0.80 (- 2.25,0.66)	-0.12 (- 1.64,1.41)	ITM								
0.32 (- 1.21,1.85)	-0.26 (- 2.03,1.51)	-0.21 (- 1.75,1.33)	0.08 (- 1.94,2.09)	0.04 (- 1.80,1.89)	-0.94 (- 2.72,0.84)	-0.26 (- 2.11,1.59)	-0.14 (- 2.00,1.71)	FIC							
1.73 (0.13,3.3 4)	1.15 (- 0.64,2.93)	1.20 (- 0.41,2.81)	1.49 (- 0.60,3.57)	1.45 (- 0.40,3.31)	0.47 (- 1.37,2.30)	1.15 (- 0.78,3.08)	1.27 (- 0.67,3.20)	1.41 (- 0.79,3.61)	F/S/O						
1.03 (0.54,1.5 3)	0.45 (- 0.47,1.37)	0.50 (- 0.02,1.01)	0.79 (- 0.64,2.21)	0.76 (- 0.29,1.80)	-0.23 (- 1.25,0.78)	0.45 (- 0.72,1.63)	0.57 (- 0.62,1.75)	0.71 (- 0.87,2.29)	-0.70 (- 2.23,0.83)	F/S					
0.69 (- 0.66,2.04)	0.10 (- 1.51,1.71)	0.15 (- 1.19,1.48)	0.44 (- 1.45,2.33)	0.41 (- 1.29,2.11)	-0.58 (- 2.22,1.06)	0.10 (- 1.60,1.81)	0.22 (- 1.49,1.93)	0.36 (- 1.64,2.37)	-1.05 (- 3.13,1.03)	-0.35 (- 1.76,1.06)	F/O		_		
0.60 (0.29,0.9 1)	0.01 (- 0.93,0.96)	0.06 (- 0.29,0.41)	0.35 (- 1.00,1.70)	0.32 (- 0.76,1.40)	-0.67 (- 1.63,0.30)	0.01 (- 1.07,1.10)	0.13 (- 0.97,1.23)	0.27 (- 1.22,1.77)	-1.14 (- 2.74,0.47)	-0.44 (- 0.94,0.06)	-0.09 (- 1.42,1.25)	F			
0.62 (0.09,1.1 5)	0.03 (- 0.90,0.97)	0.08 (- 0.44,0.61)	0.37 (- 1.07,1.81)	0.34 (- 0.73,1.41)	-0.65 (- 1.71,0.42)	0.04 (- 1.15,1.22)	0.15 (- 1.05,1.35)	0.30 (- 1.30,1.89)	-1.11 (- 2.73,0.50)	-0.41 (- 0.95,0.12)	-0.07 (- 1.48,1.35)	0.02 (- 0.53,0.57)	EA		
0.39 (- 0.32,1.11)	-0.19 (- 1.32,0.94)	-0.14 (- 0.84,0.55)	0.14 (- 1.36,1.65)	0.11 (- 1.14,1.37)	-0.87 (- 2.04,0.30)	-0.19 (- 1.45,1.07)	-0.08 (- 1.35,1.20)	0.07 (- 1.57,1.71)	-1.34 (- 3.07,0.39)	-0.64 (- 1.46,0.17)	-0.29 (- 1.77,1.19)	-0.20 (- 0.88,0.47)	-0.23 (- 1.06,0.61)	АСВ	
0.43 (- 0.63,1.49)	-0.16 (- 1.57,1.26)	-0.11 (- 1.21,1.00)	0.18 (- 1.53,1.90)	0.15 (- 1.35,1.65)	-0.84 (- 2.28,0.60)	-0.15 (- 1.68,1.38)	-0.04 (- 1.58,1.50)	0.11 (- 1.75,1.97)	-1.30 (- 3.23,0.62)	-0.60 (- 1.77,0.56)	-0.26 (- 1.97,1.46)	-0.17 (- 1.27,0.93)	-0.19 (- 1.37,0.99)	0.04 (- 1.24,1.31)	AA

PCA										
-0.57 (- 2.30,1.16)	Placebo		_							
0.42 (- 0.56,1.40)	0.99 (- 0.67,2.64)	РА								
-0.09 (- 2.52,2.34)	0.48 (- 2.51,3.46)	-0.51 (- 3.13,2.11)	LP/S							
0.37 (- 1.54,2.29)	0.94 (- 1.45,3.33)	-0.05 (- 1.86,1.77)	0.46 (- 2.63,3.56)	LB						
-0.39 (- 1.85,1.07)	0.18 (- 1.52,1.87)	-0.81 (- 2.34,0.72)	-0.30 (- 3.14,2.54)	-0.77 (- 3.02,1.49)	F/S		_			
1.07 (- 1.22,3.36)	1.64 (- 1.06,4.33)	0.65 (- 1.55,2.85)	1.16 (- 2.18,4.50)	0.70 (- 2.08,3.47)	1.46 (- 1.12,4.04)	F/O				
0.31 (- 0.50,1.12)	0.88 (- 0.83,2.59)	-0.11 (- 1.02,0.81)	0.40 (- 2.16,2.97)	-0.06 (- 1.87,1.75)	0.70 (- 0.74,2.15)	-0.76 (- 2.96,1.44)	F			
-1.25 (- 2.70,0.20)	-0.69 (- 2.36,0.99)	-1.67 (-3.11,- 0.23)	-1.16 (- 4.00,1.67)	-1.63 (- 3.85,0.59)	-0.86 (- 2.42,0.70)	-2.32 (- 4.87,0.23)	-1.56 (-3.00,- 0.13)	EA		
0.55 (- 2.09,3.19)	1.12 (- 1.84,4.07)	0.13 (- 2.32,2.58)	0.64 (- 2.95,4.23)	0.18 (- 2.87,3.23)	0.94 (- 1.95,3.83)	-0.52 (- 3.82,2.78)	0.24 (- 2.38,2.86)	1.80 (- 1.04,4.65)	ACB	
0.13 (- 2.34,2.60)	0.70 (- 2.32,3.72)	-0.29 (- 2.94,2.37)	0.22 (- 3.24,3.69)	-0.24 (- 3.37,2.88)	0.52 (- 2.34,3.39)	-0.94 (- 4.31,2.43)	-0.18 (- 2.78,2.42)	1.38 (- 1.48,4.25)	-0.42 (- 4.03,3.20)	AA

Opioid consumption – 72 hr.

PCA									
-0.03 (-0.49,0.43)	Placebo								
-0.41 (-0.63,- 0.20)	-0.38 (-0.81,0.05)	РА							
-0.67 (-1.23,- 0.11)	-0.64 (-1.29,0.01)	-0.26 (-0.81,0.29)	LP		_				
-0.27 (-0.83,0.29)	-0.24 (-0.91,0.43)	0.14 (-0.39,0.68)	0.40 (-0.34,1.14)	LB					
-0.78 (-1.14,-	-0.75 (-1.18,-	-0.37 (-0.71,-	-0.11 (-	-0.52 (-	F/S				
0.43)	0.33)	0.03)	0.66,0.44)	1.12,0.08)	175		_		
-0.68 (-1.42,0.05)	-0.65 (-1.48,0.17)	-0.27 (-0.99,0.45)	-0.01 (-	-0.42 (-	0.10 (-	F/O			
0.00 (1.42,0.03)	0.03 (1.40,0.17)	0.27 (0.33,0.43)	0.89 <i>,</i> 0.87)	1.29,0.46)	0.67,0.87)	170			
-0.55 (-0.81,-	-0.52 (-0.97,-	-0.14 (-0.38,0.10)	0.12 (-0.41,0.65)	-0.28 (-	0.23 (-	0.13 (-	F		
0.29)	0.07)	-0.14 (-0.56,0.10)	0.12 (-0.41,0.05)	0.82,0.25)	0.08,0.55)	0.58,0.85)	r r		
-0.50 (-0.78,-	-0.47 (-0.93,-	0.00 (0.22 0.15)	0.17/0.200.00	-0.24 (-	0.28 (-	0.18 (-	0.05 (-	54	
0.23)	0.02)	-0.09 (-0.33,0.15)	0.17 (-0.36,0.69)	0.80,0.33)	0.05,0.61)	0.56,0.92)	0.20,0.30)	EA	
	0.00 / 0.60 0.69	0.28 (0.17 0.02)	0.64 (0.12.1.20)	0.22 / 0.51 0.09	0.75 (0.12.1.27)	0.65 (-	0.52 (-	0.47 (-	ACP
-0.03 (-0.61,0.54)	-0.00 (-0.69,0.68)	0.38 (-0.17,0.93)	0.64 (-0.12,1.39)	0.23 (-0.51,0.98)	0.75 (0.13,1.37)	0.24,1.54)	0.04,1.07)	0.11,1.05)	ACB

Range of motion and degree of flexion – 24 hr.

РСА									
-0.23 (- 0.67,0.22)	Placebo		_						
-0.41 (-0.67,-	-0.18 (-	ΡΑ							
0.15)	0.58,0.22)	14							
-0.50 (-	-0.28 (-	-0.10 (-	o						
1.36,0.35)	1.22,0.66)	0.97,0.78)	0						
-0.46 (-	-0.23 (-	-0.05 (-	0.05 (-1.00,1.09)	LP					
1.11,0.19)	0.94,0.48)	0.69,0.59)	0.05 (-1.00,1.09)	LP		_			
-0.30 (-	-0.08 (-	0 10 / 0 91 1 01)	0.20 (1.01.1.41)	0.15 (0.01 1.21)	ID				
1.21,0.60)	1.04,0.89)	0.10 (-0.81,1.01)	0.20 (-1.01,1.41)	0.15 (-0.91,1.21)	LB				
-0.43 (-0.83,-	-0.21 (-	-0.03 (-	0.07 (-0.84,0.98)	0.02 (-0.61,0.66)	-0.13 (-	F/S			
0.04)	0.64,0.23)	0.41,0.36)	0.07 (-0.84,0.98)	0.02 (-0.01,0.00)	1.06,0.80)	F/3			
-0.50 (-0.78,-	-0.28 (-	-0.09 (-	0.00 (-0.85,0.86)	-0.04 (-	-0.20 (-	-0.07 (-	E		
0.22)	0.71,0.16)	0.38,0.19)	0.00 (-0.85,0.80)	0.66,0.57)	1.06,0.67)	0.41,0.27)	F		
-0.29 (-	-0.06 (-	0.12 (-0.16,0.39)	0.21 (-0.67,1.09)	0 17 (0 44 0 78)	0.01 (-0.89,0.92)	0 14 / 0 21 0 50)	0.21 (-0.06,0.48)	EA	
0.59,0.01)	0.49,0.36)	0.12 (-0.10,0.39)	0.21 (-0.07,1.09)	0.17 (-0.44,0.78)	0.01 (-0.89,0.92)	0.14 (-0.21,0.50)	0.21 (-0.06,0.48)	EA	
-0.56 (-	-0.33 (-	-0.15 (-	-0.06 (-	-0.10 (-	-0.26 (-	-0.13 (-	-0.06 (-	-0.27 (-	ACB
1.44,0.32)	1.27,0.60)	1.00,0.69)	1.27,1.16)	1.16,0.96)	1.50,0.98)	1.05,0.80)	0.95,0.83)	1.16,0.62)	ACD

Range of motion and degree of flexion – 48 hr.

РСА									
-0.35 (- 0.94,0.23)	Placebo								
-0.73 (-1.13,-	-0.38 (-	ΡΑ							
0.33)	0.90,0.15)	14		-					
-0.47 (-	-0.11 (-	0.26 (-0.79,1.31)	LP						
1.51,0.57)	1.19,0.96)	0.20 (-0.79,1.51)	LP						
-0.61 (-	-0.26 (-	0 1 2 (1 0 2 1 2 7)	-0.14 (-	1.0					
1.75,0.53)	1.46,0.94)	0.12 (-1.03,1.27)	1.59,1.30)	LB					
-0.55 (-	-0.20 (-	0.18 (-0.94,1.29)	-0.08 (-		ITM				
1.74,0.63)	1.43,1.04)	0.18 (-0.94,1.29)	1.61,1.45)	0.06 (-1.55,1.66)	I I IVI				
-0.63 (-1.19,-	-0.27 (-	0.10 (0.45 0.66)	-0.16 (-	-0.02 (-	-0.07 (-	F/S			
0.07)	0.82,0.27)	0.10 (-0.45,0.66)	1.14,0.82)	1.18,1.14)	1.32,1.17)	F/3			
-0.66 (-1.07,-	-0.31 (-	0.07 (0.28 0.52)	-0.19 (-	-0.05 (-	-0.11 (-	-0.03 (-	F		
0.25)	0.86,0.25)	0.07 (-0.38,0.52)	1.17,0.79)	1.11,1.01)	1.31,1.09)	0.50,0.44)	F		
-0.62 (-1.04,-	-0.26 (-	0.11 (0.20 0.52)	-0.15 (-	-0.01 (-	-0.06 (-	0.01 (0.47 0.40)	0.04 (0.24 0.42)	EA	
0.19)	0.76,0.24)	0.11 (-0.30,0.52)	1.16,0.87)	1.14,1.12)	1.25,1.12)	0.01 (-0.47,0.49)	0.04 (-0.34,0.42)	EA	
-0.99 (-	-0.64 (-	-0.26 (-	-0.52 (-	-0.38 (-	-0.44 (-	-0.37 (-	-0.33 (-	-0.38 (-	ACB
2.12,0.13)	1.82,0.54)	1.40,0.87)	1.96,0.91)	1.87,1.11)	2.03,1.15)	1.51,0.78)	1.38,0.71)	1.49,0.74)	ACD

Range of motion and degree of flexion – 72 hr.

PCA														
0.59 (- 0.09,1.27)	Placebo		_											
0.72 (0.41,1.02)	0.12 (- 0.54,0.78)	ΡΑ												
-0.24 (- 1.56,1.08)	-0.83 (- 2.31,0.64)	-0.96 (- 2.30,0.39)	0											
1.11 (- 0.59,2.82)	0.52 (- 1.26,2.30)	0.40 (- 1.31,2.11)	1.35 (- 0.79,3.50)	LP/S		_								
0.35 (- 0.52,1.22)	-0.24 (- 1.30,0.81)	-0.36 (- 1.26,0.53)	0.59 (- 0.98,2.16)	-0.76 (- 2.66,1.13)	LP		_							
0.44 (- 0.58,1.46)	-0.15 (- 1.34,1.04)	-0.27 (- 1.28,0.74)	0.68 (- 0.97,2.34)	-0.67 (- 2.64,1.30)	0.09 (- 1.23,1.41)	LB								
0.39 (- 0.30,1.07)	-0.21 (- 1.12,0.71)	-0.33 (- 1.00,0.34)	0.63 (- 0.84,2.09)	-0.73 (- 2.54,1.09)	0.03 (- 1.04,1.11)	-0.06 (- 1.23,1.12)	ITM		_					
0.65 (- 1.40,2.70)	0.06 (- 2.05,2.17)	-0.07 (- 2.11,1.98)	0.89 (- 1.54,3.32)	-0.46 (- 3.10,2.18)	0.30 (- 1.89,2.49)	0.21 (- 2.06,2.48)	0.26 (- 1.88,2.40)	FIC						
0.86 (0.34, 1.38)	0.27 (- 0.45,0.99)	0.15 (- 0.38,0.67)	1.10 (- 0.30,2.51)	-0.25 (- 1.88,1.37)	0.51 (- 0.46,1.49)	0.42 (- 0.69,1.53)	0.48 (- 0.33,1.28)	0.21 (- 1.87,2.29)	F/S		_			
1.94 (0.56, 3.33)	1.35 (- 0.18,2.89)	1.23 (- 0.18,2.64)	2.19 (0.28, 4.09)	0.83 (- 1.36,3.02)	1.59 (- 0.03,3.22)	1.50 (- 0.20,3.21)	1.56 (0.03, 3.08)	1.29 (- 1.17,3.76)	1.08 (- 0.39,2.55)	F/O		_		
0.72 (0.40, 1.03)	0.12 (- 0.58,0.82)	0.00 (- 0.37,0.37)	0.96 (- 0.37,2.28)	-0.40 (- 2.11,1.31)	0.36 (- 0.52,1.25)	0.27 (- 0.73,1.28)	0.33 (- 0.32,0.98)	0.07 (- 1.99,2.12)	-0.15 (- 0.68,0.39)	-1.23 (- 2.62,0.16)	F			
-0.16 (- 0.56,0.24)	-0.75 (- 1.40,-0.11)	-0.88 (- 1.27,-0.48)	0.08 (- 1.29,1.45)	-1.27 (- 2.99,0.44)	-0.51 (- 1.38,0.36)	-0.60 (- 1.66,0.45)	-0.55 (- 1.28,0.19)	-0.81 (- 2.82,1.20)	-1.02 (- 1.57,-0.48)	-2.11 (- 3.54,-0.67)	-0.88 (- 1.31,-0.45)	EA		
0.84 (- 0.05,1.73)	0.25 (- 0.84,1.33)	0.13 (- 0.79,1.04)	1.08 (- 0.49,2.66)	-0.27 (- 2.18,1.63)	0.49 (- 0.45,1.43)	0.40 (- 0.92,1.72)	0.46 (- 0.63,1.54)	0.19 (- 2.02,2.40)	-0.02 (- 1.02,0.98)	-1.10 (- 2.73,0.53)	0.13 (- 0.75,1.01)	1.00 (0.08,1.9 3)	ACB	
2.34 (1.32, 3.36)	1.75 (0.52,2.97)	1.62 (0.56,2.69)	2.58 (0.91, 4.25)	1.23 (- 0.76,3.21)	1.99 (0.65, 3.33)	1.90 (0.46, 3.34)	1.95 (0.73, 3.18)	1.69 (- 0.60,3.98)	1.48 (0.34,2.62)	0.40 (- 1.33,2.12)	1.62 (0.56,2.69)	2.50 (1.41, 3.59)	1.50 (0.15, 2.85)	AA

Incidence of nausea.

PCA											
0.69 (- 0.17,1.55)	Placebo		_								
0.89	0.21 (-	РА									
(0.29,1.50)	0.64,1.05)			1							
-0.08 (-	-0.77 (-	-0.98 (-	LP/S								
2.12,1.95)	2.90,1.35)	2.94,0.98)	-		1						
0.00 (-	-0.69 (-	-0.89 (-	0.09 (-	LP							
1.21,1.22)	2.14,0.77)	2.24,0.45)	2.28,2.45)			1					
1.55 (-	0.87 (-	0.66 (-	1.64 (-	1.55 (-	LB						
0.27,3.37)	1.10,2.83)	1.20,2.51)	1.04,4.32)	0.63,3.74)			7				
0.09 (-	-0.60 (-	-0.81 (-	0.17 (-	0.08 (-	-1.47 (-	ІТМ					
0.90,1.07)	1.79,0.59)	1.72,0.10)	1.98,2.32)	1.47,1.64)	3.45,0.52)			1			
0.73 (-	0.04 (-	-0.17 (-	0.81 (-	0.72 (-	-0.83 (-	0.64 (-	F/S				
0.17,1.62)	1.05,1.13)	0.87,0.54)	1.02,2.64)	0.77,2.22)	2.79,1.13)	0.49,1.77)	175				
1.46 (-	0.77 (-	0.57 (-	1.54 (-	1.46 (-	-0.09 (-	1.37 (-	0.73 (-	F/O			
0.15,3.07)	1.04,2.59)	1.14,2.27)	1.04,4.13)	0.56,3.48)	2.50,2.31)	0.49,3.24)	1.09,2.56)	1,0		I	
0.81	0.12 (-	-0.09 (-	0.89 (-	0.80 (-	-0.75 (-	0.72 (-	0.08 (-	-0.65 (-	F		
(0.33,1.28)	0.77,1.01)	0.68,0.50)	1.13,2.91)	0.49,2.10)	2.50,1.01)	0.21,1.65)	0.79,0.95)	2.30,0.99)	•		
0.03 (-	-0.66 (-	-0.87 (-1.58 <i>,</i> -	0.11 (-	0.02 (-	-1.53 (-	-0.06 (-	-0.70 (-	-1.43 (-	-0.78 (-1.45,-	EA	
0.59,0.64)	1.39,0.06)	0.15)	1.96,2.18)	1.30,1.34)	3.41,0.35)	1.14,1.01)	1.68,0.28)	3.15,0.28)	0.11)	14	
0.14 (-	-0.54 (-	-0.75 (-	0.23 (-	0.14 (-	-1.41 (-	0.06 (-	-0.58 (-	-1.32 (-	-0.66 (-	0.12 (-	ACB
1.04,1.33)	1.99,0.91)	2.08,0.57)	2.12,2.58)	0.97,1.26)	3.58,0.76)	1.48,1.60)	2.06,0.90)	3.32,0.69)	1.94,0.61)	1.19,1.43)	

Incidence of vomiting.

PCA												
-0.28 (- 1.42,0.86)	Placebo											
0.43 (-	0.71 (-	PA										
0.28,1.14)	0.55,1.98)	FA										
-0.87 (-	-0.58 (-	-1.30 (-	0									
3.60,1.87)	3.52,2.36)	4.09,1.49)	0									
2.62	2.90	2.19 (-	3.49 (-	LP/S								
(0.33,4.91)	(0.53,5.27)	0.18,4.55)	0.07,7.04)	LF/3		-						
-0.10 (-	0.19 (-	-0.53 (-	0.77 (-	-2.72 (-	LP							
2.02,1.83)	2.00,2.37)	2.49,1.43)	2.51,4.05)	5.68,0.25)	LF		-					
-0.51 (-	-0.23 (-	-0.94 (-	0.35 (-	-3.13 (-	-0.42 (-	LB						
2.59,1.56)	2.55,2.09)	2.89,1.00)	3.05,3.76)	6.20,-0.07)	3.18,2.35)	ED		-				
-1.08 (-	-0.80 (-	-1.51 (-	-0.21 (-	-3.70 (-	-0.98 (-	-0.57 (-	ІТМ					
2.05,-0.11)	2.21,0.62)	2.40,-0.62)	3.05,2.63)	6.15,-1.25)	2.97,1.00)	2.71,1.58)			-			
0.49 (-	0.78 (-	0.06 (-	1.36 (-	-2.13 (-	0.59 (-	1.01 (-	1.57	F/S				
0.65,1.63)	0.30,1.85)	1.22,1.34)	1.59,4.30)	4.40,0.14)	1.61,2.78)	1.33,3.34)	(0.14,3.01)	175		-		
0.51 (-	0.80 (-	0.08 (-	1.38 (-	-2.10 (-	0.61 (-	1.03 (-	1.60	0.02 (-	F			
0.16,1.19)	0.43,2.03)	0.68 <i>,</i> 0.85)	1.35,4.12)	4.45 <i>,</i> 0.25)	1.19,2.42)	1.06,3.12)	(0.76,2.43)	1.22,1.27)	•			
-0.06 (-	0.22 (-	-0.49 (-	0.81 (-	-2.68 (-	0.04 (-	0.45 (-	1.02 (-	-0.55 (-	-0.57 (-	EA		
0.78,0.66)	0.74,1.19)	1.37,0.40)	2.00,3.61)	4.95,-0.41)	1.95,2.03)	1.69,2.59)	0.07,2.11)	1.63,0.53)	1.41,0.26)			
0.21 (-	0.50 (-	-0.22 (-	1.08 (-	-2.41 (-	0.31 (-	0.73 (-	1.29 (-	-0.28 (-	-0.30 (-	0.27 (-	ACB	
1.21,1.64)	1.26,2.25)	1.68,1.25)	1.93,4.09)	5.07,0.26)	0.99,1.61)	1.71,3.17)	0.21,2.80)	2.04,1.49)	1.55,0.95)	1.23,1.78)		
1.17 (-	1.45 (-	0.74 (-	2.04 (-	-1.45 (-	1.27 (-	1.68 (-	2.25 (-	0.68 (-	0.66 (-	1.23 (-	0.96 (-	AA
1.34,3.68)	1.30,4.21)	1.87,3.35)	1.67,5.75)	4.84,1.95)	1.90,4.43)	1.57,4.94)	0.44,4.94)	2.08,3.43)	1.94,3.25)	1.38,3.84)	1.93,3.84)	~~

Incidence of pruritus.

РСА										
-0.64 (- 2.19,0.90)	Placebo		_							
0.36 (- 0.27,1.00)	1.01 (- 0.62,2.63)	РА								
-0.92 (- 2.28,0.45)	-0.27 (- 2.31,1.76)	-1.28 (- 2.73,0.17)	ο		_					
1.36 (- 1.66,4.38)	2.00 (- 1.29,5.30)	1.00 (- 2.07,4.07)	2.27 (- 1.03,5.58)	LP/S		_				
1.24 (- 0.37,2.84)	1.88 (- 0.08,3.85)	0.88 (- 0.80,2.55)	2.15 (0.08,4.23)	-0.12 (- 3.44,3.20)	LP		_			
0.47 (- 0.70,1.65)	1.12 (- 0.77,3.01)	0.11 (- 1.06,1.28)	1.39 (- 0.31,3.09)	-0.89 (- 4.11,2.34)	-0.77 (- 2.70,1.17)	ITM		_		
0.79 (- 0.02,1.60)	1.44 (- 0.24,3.11)	0.43 (- 0.16,1.03)	1.71 (0.18,3.24)	-0.56 (- 3.67,2.54)	-0.44 (- 2.17,1.29)	0.32 (- 0.89,1.53)	F/S			
0.61 (0.00,1.22)	1.25 (- 0.35,2.86)	0.25 (- 0.46,0.96)	1.53 (0.19,2.87)	-0.75 (- 3.81,2.32)	-0.63 (- 2.29,1.03)	0.14 (- 0.94,1.22)	-0.18 (- 1.05,0.68)	F		
-0.21 (- 0.96,0.53)	0.43 (- 0.93,1.79)	-0.58 (- 1.46,0.31)	0.70 (- 0.81,2.22)	-1.57 (- 4.57,1.43)	-1.45 (-2.88,- 0.03)	-0.69 (- 2.00,0.63)	-1.01 (-1.99,- 0.03)	-0.83 (- 1.68,0.03)	EA	
1.56 (0.51,2.60)	2.20 (0.33,4.07)	1.20 (- 0.03,2.42)	2.47 (0.75,4.19)	0.20 (- 3.00,3.40)	0.32 (- 1.60,2.23)	1.08 (- 0.49,2.66)	0.76 (- 0.56,2.09)	0.95 (- 0.26,2.16)	1.77 (0.49,3.05)	AA

Incidence of urinary retention.

РСА									
0.85 (-1.72,3.41)	Placebo								
0.18 (-0.41,0.76)	-0.67 (- 3.16,1.83)	РА							
0.16 (-3.29,3.60)	-0.69 (- 4.98,3.60)	-0.02 (- 3.51,3.47)	LP/S		_				
-0.89 (- 4.17,2.40)	-1.73 (- 5.90,2.44)	-1.06 (- 4.40,2.28)	-1.04 (- 5.77,3.69)	LP					
0.18 (-3.82,4.18)	-0.67 (- 5.35,4.01)	-0.00 (- 3.96,3.96)	0.02 (-5.26,5.30)	1.06 (- 4.12,6.24)	ITM				
1.49 (-1.49,4.47)	0.65 (-3.28,4.58)	1.32 (-1.72,4.35)	1.34 (-3.21,5.88)	2.38 (- 2.03,6.79)	1.32 (-3.67,6.31)	F/S		_	
-0.05 (-	-0.90 (-	-0.23 (-	-0.21 (-	0.83 (-	-0.23 (-	-1.54 (-	F		
1.06,0.96)	3.58,1.79)	1.22,0.76)	3.80,3.38)	2.60,4.27)	4.31,3.85)	4.69,1.60)	•		
0.31 (-0.25,0.87)	-0.53 (- 3.16,2.09)	0.14 (-0.67,0.94)	0.16 (-3.29,3.60)	1.20 (- 2.04,4.44)	0.14 (-3.90,4.18)	-1.18 (- 4.17,1.81)	0.36 (- 0.79,1.52)	EA	
0.26 (-3.72,4.24)	-0.59 (- 5.25,4.08)	0.08 (-3.86,4.02)	0.10 (-5.16,5.37)	1.15 (- 4.02,6.31)	0.08 (-5.50,5.67)	-1.23 (- 6.21,3.74)	0.31 (- 3.75,4.37)	-0.05 (- 4.08,3.97)	ACB

Incidence of deep vein thrombosis

PCA								
0.49 (0.08,0.89)	РА		_					
0.62 (-0.62,1.86)	0.13 (-1.12,1.38)	LP/S						
0.10 (-0.58,0.79)	-0.38 (-1.07,0.30)	-0.51 (-1.90,0.87)	ITM					
0.78 (0.13,1.42)	0.29 (-0.38,0.96)	0.16 (-0.90,1.22)	0.67 (-0.22,1.56)	F/S		_		
0.15 (-0.25,0.56)	-0.34 (-0.85,0.18)	-0.46 (-1.74,0.82)	0.05 (-0.58,0.68)	-0.62 (-1.34,0.10)	F			
0.46 (0.03,0.88)	-0.03 (-0.43,0.36)	-0.16 (-1.37,1.05)	0.35 (-0.37,1.08)	-0.32 (-0.91,0.27)	0.30 (-0.21,0.81)	EA		
0.02 (-0.52,0.55)	-0.47 (-1.13,0.18)	-0.60 (-1.94,0.74)	-0.09 (-0.92,0.74)	-0.76 (-1.58,0.07)	-0.14 (-0.74,0.46)	-0.44 (-1.10,0.22)	ACB	
0.30 (-0.69,1.30)	-0.19 (-1.26,0.89)	-0.31 (-1.90,1.28)	0.20 (-1.01,1.41)	-0.47 (-1.66,0.71)	0.15 (-0.93,1.22)	-0.15 (-1.24,0.93)	0.29 (-0.84,1.42)	AA

Estimated blood loss

РСА											
0.40 (- 0.49,1.30)	Placebo		_								
0.57	0.17 (-	РА									
(0.19,0.95)	0.68,1.01)			1							
-1.65 (-3.15,-	-2.05 (-3.78,-	-2.22 (-3.75,-	0								
0.14)	0.32)	0.69)			1						
0.74 (-	0.33 (-	0.17 (-	2.39	LP/S							
0.45,1.92)	1.11,1.78)	1.06,1.39)	(0.48,4.30)	-		1					
0.17 (-	-0.23 (-	-0.40 (-	1.82 (-	-0.56 (-	LP						
1.03,1.37)	1.67,1.21)	1.62,0.83)	0.09,3.74)	2.23,1.10)	0.40.(1				
0.57 (-	0.16 (-	-0.00 (-	2.22	-0.17 (-	0.40 (-	LB					
0.42,1.55)	1.09,1.42)	0.94,0.94)	(0.44,3.99)	1.70,1.36)	1.13,1.92)	0.20/		1			
0.28 (-	-0.12 (-	-0.29 (-	1.93 (-	-0.45 (-	0.11 (-	-0.28 (-	ITM				
1.41,1.98)	1.98,1.74)	1.94,1.37)	0.32,4.18)	2.51,1.60)	1.95,2.17)	2.18,1.62)	0.12/		l		
0.41 (-	0.01 (-	-0.16 (-	2.06	-0.33 (-	0.24 (-	-0.16 (-	0.13 (-	F/S			
0.36,1.18)	1.09,1.11)	0.93,0.61)	(0.39,3.73) 1.96	1.72,1.06)	1.15,1.62)	1.35,1.04)	1.70,1.95)	0.10/		1	
0.31 (- 0.09,0.71)	-0.09 (- 0.99,0.81)	-0.26 (- 0.67,0.15)	(0.46,3.46)	-0.43 (- 1.66,0.81)	0.14 (-	-0.26 (- 1.22,0.71)	0.03 (-	-0.10 (- 0.88,0.68)	F		
· · ·			. , ,		1.09,1.37)		1.67,1.73)		0.06.(
0.25 (- 0.25,0.76)	-0.15 (-	-0.32 (- 0.81,0.18)	1.90 (0.34,3.47)	-0.48 (- 1.70,0.74)	0.08 (- 1.11,1.28)	-0.31 (- 1.35,0.72)	-0.03 (-	-0.15 (- 0.95,0.64)	-0.06 (-	EA	
	1.00,0.70)						1.75,1.70)		0.57,0.46)	0.61/	
0.86 (-	0.46 (-	0.29 (-	2.51	0.12 (-	0.69 (-	0.29 (-	0.58 (-	0.45 (-	0.55 (-	0.61 (-	ACB
0.02,1.74)	0.73,1.64)	0.57,1.15)	(0.81,4.21)	1.34,1.58)	0.77,2.15)	0.95,1.53)	1.29,2.44)	0.66,1.56)	0.26,1.36)	0.33,1.54)	

Length of hospital stay.

SUCRA tables for primary outcomes

	Pain at rest									
2	hr	2	4 hr	4	8 hr	72 hr				
67 trials (39	96 patients)	144 trials (9	9794 patients)	110 trials (7	7470 patients)	56 trials (3	718 patients)			
Rank	SUCRA	Rank	SUCRA	Rank	SUCRA	Rank	SUCRA			
F/S/O	84	F/O	80.9	LP/S	78.5	ACB	67.6			
F/S	83.5	F/S	73.1	LB	68.2	LB	63.1			
F/O	71.6	LP/S	69.7	PA	67.4	PA	63.1			
LP/S	68.7	FIC	67.8	F/S/O	66.4	ACB/S	60.7			
EA	63.5	LB	64.4	F/O	65.4	F	59.5			
LP	62.4	PA	64.3	FIC	59	LP/S	59.5			
PA	53.8	LP	62.7	F/S	58.4	AA	50.9			
AA	49.9	ACB	57.8	ACB	56.9	EA	49.2			
ITM	45.7	F/S/O	57.4	ITM	52	LP	33.4			
LB	44.3	F	52.5	F	51.7	F/S	32.9			
FIC	43.1	ACB/S	46.8	0	49.7	Placebo	32.3			
0	38.8	EA	43.5	ACB/S	43.3	PCA	28			
F	36.7	0	43	LP	38.9					
ACB	33.8	AA	26.6	EA	34.6					
PCA	17.2	ITM	19.6	AA	27.2					
Placebo	2.9	PCA	15	PCA	16.8					
		Placebo	4.9	Placebo	15.5					

			Pain at r	novement			
	2 hr	2	4 hr	4	8 hr	7	2 hr
28 trials	(1488 patients)	80 trials (57	764 patients)	66 trials (47	'00 patients)	30 trials (20	042 patients)
Rank	SUCRA	Rank	SUCRA	Rank	SUCRA	Rank	SUCRA
EA	81.1	ITM	82.2	F/O	84	ITM	100
F/S	76	F/O	74.9	F/S	72	PA	62.4
FIC	72.4	F/S	71.9	PA	70.4	F/S	60.4
PA	62.9	ACB/S	66	LP/S	69.1	Placebo	59.1
LP/S	51.1	LP/S	62.3	ITM	61.4	F	56.2
ITM	48.5	PA	62.1	ACB	56.5	LP/S	50.1
F	47.8	LB	57.7	FIC	54.1	LP	43.8
ACB	29	EA	46.2	ACB/S	49	ACB/S	29.8
0	16.2	F	45.9	F	48.6	PCA	28.7
PCA	15	FIC	42.5	Placebo	39.2	EA	9.4
		ACB	38.8	0	31.6		
		LP	36.2	EA	27.9		
		0	33.6	LP	22.8		
		Placebo	22.1	PCA	13.3		
		PCA	7.4				

Opioid consumption									
24	4 hr	4	8 hr	72	2 hr				
104 trials (7	627 patients)	70 trials (47	36 patients)	26 trials (19	27 patients)				
Rank	SUCRA	Rank	SUCRA	Rank	SUCRA				
LP/S	93.3	F/S/O	88.5	F/O	76.8				
F/S/O	84.4	LP	82.8	PA	64.6				
F/O	84.2	F/S	78.1	ACB	62.4				
EA	78	F/O	57.4	F	62.3				
F/S	70.8	EA	53.2	LB	60.5				
LP	65.8	F	52	AA	53.8				
FIC	63.8	Placebo	50	PCA	47.1				
F	39.7	LB	49.7	LP/S	47.1				
LB	36.5	PA	46.9	F/S	34.8				
Placebo	35.9	ITM	43.8	Placebo	30.7				
ITM	34.7	AA	41.9	EA	10				
ACB	34.4	FIC	39						
PA	30.5	ACB	37.6						
0	22.3	LP/S	33.9						
AA	21.1	0	31.8						
PCA	4.5	PCA	13.5						

Range of motion								
24 hr		4	8 hr	72 hr				
41 trials (3059 patients) Rank SUCRA		44 trials (3060 patients) Rank SUCRA		32 trials (2307 patients Rank SUCRA				
F/S	89.6	F	70.7	ACB	77.7			
LP	75.3	ACB	66.9	PA	68.1			
F/O	72.9	0	62.5	F	60.8			
F	67.5	F/S	61.7	F/S	55.9			
EA	60.6	LP	59.8	EA	55			
PA	49	PA	55.9	LB	53.6			
LB	38.5	LB	42.8	ITM	46.6			
ACB	18.5	EA	38	LP	44.2			
Placebo	15.7	Placebo	32.9	Placebo	30.9			
PCA	12.5	PCA	8.6	PCA	7.3			

Heterogeneity of all outcomes` NMA

Outcomes	Heterogeneity standard deviation*
Pain at rest – 2 hr	0.82
Pain at rest – 24 hr	0.67
Pain at rest – 48 hr	0.65
Pain at rest – 72 hr	0.76
Pain with movement – 2 hr	1.00
Pain with movement – 24 hr	0.85
Pain with movement – 48 hr	0.78
Pain with movement – 72 hr	0.55
Opioid consumption – 24 hr	0.80
Opioid consumption – 48 hr	0.72
Opioid consumption – 72 hr	1.23
Rang of motion and degree of flexion – 24 hr	0.29
Rang of motion and degree of flexion – 48 hr	0.37
Rang of motion and degree of flexion – 72 hr	0.49
Incidence of nausea	0.42
Incidence of vomiting	2.30
Incidence of pruritus	0.48
Incidence of urinary retention	0.00
Incidence of deep vein thrombosis	1.17
Estimated blood loss	0.43
Length of hospital stay	0.79

*Heterogeneity standard deviation value below 0.3 is considered negligible, from 0.3 to 0.7 is reasonable, from 0.7 to 1.0 is high, and above 1.0 is extreme.

Inconsistency plots and assessment

_00p		IF	95%CI (truncated)	Loop-specific Heterogeneity(τ²)
-00p		IF	(iruncaleu)	Helefogeneity(1-)
-F/S-PCA		1.85	(0.02,3.69)	0.657
EA-F-F/S		1.47	(0.00,3.45)	0.881
F/S-PA	•	1.43	(0.00,3.58)	0.597
-/S-LP/S-PCA	•	1.22	(0.23,2.20)	0.000
EA-F-FIC		0.85	(0.00,2.43)	0.173
F/O-PCA		0.75	(0.00,3.21)	0.466
EA-LP/S-PCA		0.65	(0.00,2.45)	0.291
EA-F-PCA		0.63	(0.00,1.79)	0.370
EA-F/S-LP/S	_	0.41	(0.00,1.36)	0.000
ACB-F-PCA		0.37	(0.00,2.27)	0.384
-PA-PCA	_	0.24	(0.00,1.33)	0.389
EA-F/S-PCA	_	0.24	(0.00,1.32)	0.162
EA-PA-PCA	-	0.22	(0.00,1.21)	0.418
-/S-PA-PCA		0.14	(0.00,1.65)	0.324
EA-F/S-PA	-	0.13	(0.00,1.23)	0.223
-O-PCA		0.10	(0.00,2.71)	0.455
EA-F-PA	-	0.08	(0.00,1.29)	0.338
EA-F-LP		0.08	(0.00,1.68)	0.173

Pain at rest – 2 hr. The overall chi-square test for inconsistency gave a p-value of 0.83

Statistically significant inconsistent loops are: F-F/S-PCA and F/S-LP/S-PCA.

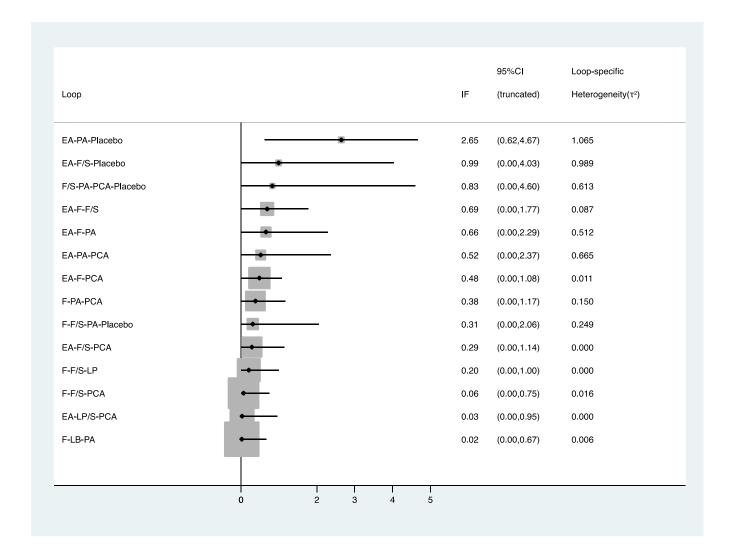
Pain at rest – 2 hr, node-splitting approach for assessment of inconsistency								
	Dire		Indi		Differ	ence		
Comparison	Coefficient	SE	Coefficient	SE	Coefficient	SE	p value	
ACB vs. PCA	0.4963508	0.5136898	-0.1033937	0.9072013	0.5997445	1.042561	0.565	
ACB vs. F	-0.5382922	0.883521	0.0613156	0.5536242	-0.5996078	1.042645	0.565	
EA vs. PCA	0.714459	0.3449161	1.218842	0.3504252	-0.5043831	0.4915553	0.305	
EA vs. F	0.5604733	0.5197963	0.484192	0.3135892	0.0762812	0.6068747	0.9	
EA vs. F/S	0.0759273	0.5167753	-0.8551048	0.3855203	0.9310321	0.6447204	0.149	
EA vs. FIC	-5.33E-12	0.8900503	0.8587103	0.9091196	-0.8587103	1.272277	0.5	
EA vs. LP	-0.0586242	0.9003619	-0.0151693	0.9186631	-0.0434549	1.28631	0.973	
EA vs. LP/S	-4.03E-12	0.8905633	-0.3884355	0.8402196	0.3884355	1.224366	0.751	
EA vs. PA	0.1933449	0.4036345	0.1764752	0.3404475	0.0168697	0.5279854	0.975	
F vs. PCA*	0.7046214	0.2460318	-0.0071802	0.336625	0.7118017	0.4170877	0.088	
F vs. F/O*	-0.991892	0.8754308	-0.0229466	1.573003	-0.9689454	1.799316	0.59	
F vs. F/S	-1.958725	0.3725248	-0.1396307	0.3620586	-1.819094	0.5195375	0	
F vs. FIC	0.3140038	0.8670591	-0.5436571	0.9310363	0.857661	1.27225	0.5	
F vs. ITM*	-0.1134436	0.8853894	0.9160535	63.26489	-1.029497	63.27108	0.987	
F vs. LP	-0.5223345	0.8767102	-0.5643725	0.9412245	0.042038	1.286283	0.974	
F vs. O*	0.1563521	0.8941007	-0.5247403	1.607398	0.6810925	1.841864	0.712	
F vs. PA	-0.2664878	0.5126602	-0.3365606	0.2733903	0.0700729	0.5810018	0.904	
F/O vs. PCA*	0.991892	0.8761338	1.960837	1.571829	-0.9689454	1.799316	0.59	
F/S vs. PCA	0.8110328	0.6468442	1.655117	0.3246584	-0.8440841	0.7239214	0.244	
F/S vs. F/S/O*	-0.37509	0.8740477	2.949368	63.26547	-3.324458	63.27143	0.958	
F/S vs. LP/S	-0.5066413	0.8829677	1.01214	0.8108984	-1.518781	1.198828	0.205	
F/S vs. PA	0.2683959	0.5963914	0.859268	0.3519607	-0.590872	0.6925023	0.394	
LB vs. PA*	-0.2049998	0.8575166	-1.552934	63.26395	1.347934	63.26978	0.983	
LP/S vs. PCA	0.1508447	0.8708589	2.046475	0.8101669	-1.89563	1.189479	0.111	
O vs. PCA*	0.6254082	0.8945188	-0.0556842	1.6067	0.6810925	1.841864	0.712	
PA vs. PCA	0.7190217	0.2215771	0.9434107	0.3644069	-0.224389	0.4263721	0.599	
PA vs. Placebo*	1.775432	0.5354388	1.683519	36.52531	0.0919127	36.5291	0.998	

* Note: all the evidence about these contrasts comes from the trials that directly compare them. Positive values favor the first treatment while negative value favor the second treatment. Pain at rest – 24 hr. The overall chi-square test for inconsistency gave a p-value of 0.96

Loop					I	F	95%CI (truncated)	Loop-specific Heterogeneity(τ ²)
EA-F-Placebo		•			(0.96	(0.00,2.60)	0.255
ACB-LP-PCA		•			(0.91	(0.00,2.24)	0.153
F-PA-Placebo		•			(0.89	(0.00,3.12)	0.311
F-O-PCA		•			(0.80	(0.00,3.28)	0.492
EA-LP-PCA		•				0.79	(0.00,1.67)	0.070
F/S-LP-PCA		•			(0.77	(0.00,1.73)	0.046
F/S-PA-Placebo					- (0.76	(0.00,3.60)	0.469
F/S-LP/S-PCA		•	_				(0.00,1.56)	0.000
ACB-F-LP		•						0,116
F-F/S-LP		•					(0.00,1.41)	
EA-F-PA			-				(0.00,1.47)	0.407
EA-F-LP			-				(0.00,1.44)	
F-F/S-Placebo	-						(0.00,1.59)	0.048
EA-F/S-LP/S							(0.00,3.85)	
F-LB-PA							(0.00,1.61)	
EA-PA-PCA							(0.00,1.44)	0.529
EA-PA-Placebo).39	,	
EA-LP/S-PCA							(0.00,1.30)	0.013
F/S-PA-PCA							(0.00,1.88)	
F-ITM-PA							(0.00, 1.88)	0.168
F-F/S-PA			_				(0.00, 1.48) (0.00, 1.01)	
F-F/O-PA							(0.00, 1.01) (0.00, 1.99)	0.122
EA-F-PCA							,	0.184
							· · ·	
ACB-F-PCA							(0.00,1.55)	0.402
F-PA-PCA							(0.00,0.91)	
EA-F-FIC			1				(0.00,1.43)	
ACB-EA-LP-PA							,	0.812
F-F/S-PCA							(0.00,1.15)	
ACB-F-PA							(0.00,1.07)	0.184
EA-F-F/S							(0.00,1.02)	0.179
ACB-PA-PCA							(0.00,2.00)	0.489
EA-F/S-LP	•						(0.00,2.68)	0.671
EA-F/S-Placebo							(0.00,2.16)	
ACB-F/S-LP-PA	•						(0.00,2.25)	0.327
EA-F/S-PA	•						(0.00,1.95)	0.768
EA-F/S-PCA	•						(0.00,1.06)	0.232
F-LP-PCA			_		(0.02	(0.00,1.60)	0.471
	0	1	2	3	4			

Statistically significant inconsistent loops are: none.

Pain at rest – 24	Pain at rest – 24 hr, node-splitting approach for assessment of inconsistency							
	Dir		Indi		Differ	ence		
Comparison	Coefficient	SE	Coefficient	SE	Coefficient	SE	p value	
ACB vs. PCA	0.5956776	0.529496	0.7467902	0.2614636	-0.1511126	0.5905251	0.798	
ACB vs. F	0.0798803	0.2960081	0.016878	0.3433949	0.0630024	0.453365	0.889	
ACB vs. LP	0.3007836	0.6995172	-0.1476987	0.3717105	0.4484823	0.7921446	0.571	
ACB vs. PA	-0.2020682	0.5033308	-0.0122324	0.2682519	-0.1898358	0.5703504	0.739	
ACB/S vs. F/S*	-0.3743436	0.7451455	-1.74977	63.25831	1.375426	63.2627	0.983	
EA vs. PCA	0.6294256	0.2944237	0.5263879	0.1895638	0.1030377	0.3502612	0.769	
EA vs. F	0.1306834	0.3025	-0.198592	0.1871468	0.3292754	0.3557069	0.355	
EA vs. F/S	-0.3676568	0.3893288	-0.2994663	0.2429106	-0.0681904	0.4585348	0.882	
EA vs. FIC	-9.72E-12	0.7496759	-0.4617765	0.5315583	0.4617765	0.9190039	0.615	
EA vs. LP	0.1946956	0.5234556	-0.3847285	0.3448022	0.5794242	0.6268065	0.355	
EA vs. LP/S	-0.4027777	0.7480851	-0.3349229	0.5578842	-0.0678549	0.9325155	0.942	
EA vs. PA	-0.5433456	0.245694	-0.0085761	0.1941741	-0.5347696	0.3133023	0.088	
EA vs. Placebo	0.82622	0.3550862	0.8839699	0.2956742	-0.0577499	0.4614296	0.9	
F vs. PCA*	0.7635584	0.1524948	0.5280178	0.1779977	0.2355406	0.2343075	0.315	
F vs. F/O*	-0.4466252	0.7390049	-0.9733413	1.300424	0.5267161	1.490771	0.724	
F vs. F/S	-0.3045809	0.2611528	-0.1208384	0.2563769	-0.1837425	0.3659092	0.616	
F vs. FIC	-0.3402179	0.5062966	0.1223968	0.7668307	-0.4626147	0.9188928	0.615	
F vs. ITM	0.7408456	0.5275963	0.4355519	0.5350465	0.3052938	0.7514191	0.685	
F vs. LB	0.1841814	0.7157049	-0.2739582	0.4348035	0.4581396	0.8374292	0.584	
F vs. LP	-0.4592709	0.4234228	0.1570356	0.3606216	-0.6163066	0.5554052	0.267	
F vs. O*	-0.1766341	0.7499335	1.183735	1.317734	-1.360369	1.517732	0.37	
F vs. PA*	-0.1261357	0.2131105	-0.0975642	0.1526943	-0.0285716	0.2621604	0.913	
F vs. Placebo	1.614159	0.778546	0.9061232	0.2385953	0.7080353	0.8142859	0.385	
F/O vs. PA	0.5955011	0.7397625	0.0678107	1.299131	0.5276904	1.490771	0.723	
F/S vs. PCA	0.888665	0.3834747	0.8707884	0.2183385	0.0178767	0.4415022	0.968	
F/S vs. F/S/O*	0.105224	0.7327663	1.755969	63.25362	-1.650745	63.25779	0.979	
F/S vs. LP	0.4460126	0.7287202	0.0341696	0.3434608	0.411843	0.8056062	0.609	
F/S vs. LP/S	-0.5014482	0.751187	0.2115042	0.5560929	-0.7129525	0.9346236	0.446	
F/S vs. PA	-0.1135055	0.4925494	0.1426425	0.2083225	-0.256148	0.5347936	0.632	
F/S vs. Placebo	1.524803	0.5363011	1.074297	0.2938251	0.450506	0.6113181	0.461	
ITM vs. PA	-0.5510915	0.5201202	-0.8568329	0.5423108	0.3057414	0.7514156	0.684	
LB vs. PA	0.1567462	0.4163697	-0.3023315	0.7264226	0.4590777	0.8372887	0.583	
LP vs. PCA	1.208822	0.5361246	0.6008684	0.3271343	0.6079537	0.6280883	0.333	
LP/S vs. PCA	0.607635	0.5743157	1.342394	0.675563	-0.7347594	0.8867223	0.407	
O vs. PCA*	0.1766341	0.7481769	1.537003	1.320726	-1.360369	1.517732	0.37	
PA vs. PCA	0.6634956	0.1376574	0.9685829	0.1868893	-0.3050873	0.2319781	0.188	
PA vs. Placebo	0.9139768	0.2865305	1.270288	0.3169053	-0.3563111	0.4264931	0.403	


* Note: all the evidence about these contrasts comes from the trials that directly compare them. Positive values favor the first treatment while negative value favor the second treatment.

Pain at rest – 48 hr. The overall chi-square test for inconsistency gave a p-value of 0.55.

Loop			IF	95%CI (truncated)	Loop-specific Heterogeneity(τ²)
EA-O-PCA			2.38	(0.21,4.55)	1.002
EA-F/S-PCA			1.94	(0.00,5.50)	1.181
EA-O-PA			0.99	(0.00,2.27)	0.608
EA-F-LB 🛛 🗖 🛶	-		0.94	(0.25,1.63)	0.000
EA-F-O	<u> </u>		0.92	(0.00,2.10)	0.465
EA-F/S-O			0.92	(0.00,3.39)	0.861
F/S-LP-PA			0.74	(0.00,2.46)	0.189
EA-LB-PA			0.67	(0.00,1.94)	0.124
EA-F/S-LP	-		0.66	(0.00,1.61)	0.000
F-F/S-O 🗕 🔶			0.60	(0.24,0.97)	0.005
F-LP/S-PA			0.59	(0.00,2.03)	0.162
EA-F-F/S	•		0.57	(0.08,1.06)	0.004
F/S-O-PCA			0.49	(0.00,1.01)	0.000
ACB-F-O			0.48	(0.00,0.97)	0.000
F/S-O-PA			0.48	(0.00,2.11)	0.354
EA-F/S-LB	_		0.48	(0.00,1.29)	0.000
EA-F/S-PA			0.41	(0.00,1.05)	0.016
EA-F-PA 🗕 🗕 🗕			0.35	(0.00,0.94)	0.128
EA-LP-PA 🔸 🛶 🛶			0.27	(0.00,1.98)	0.222
F-O-PA 🗕 🗕 🗕			0.27	(0.00,0.88)	0.237
F/S-LB-PA 🗕 🗕 🗕			0.17	(0.00,1.54)	0.135
F-F/S-LB 🗕 🗕 🗕	-		0.16	(0.00,1.14)	0.052
F-F/O-O			0.14	(0.00,0.95)	0.000
F-F/S-PA +			0.10	(0.00,0.83)	0.146
F-LB-PA			0.06	(0.00,1.06)	0.157
F-ITM-O 🔶			0.05	(0.00,0.64)	0.000
0	23	5	6		

Statistically significant inconsistent loops are: EA-O-PCA, EA-F-LB, F-F/S-O, and EA-F-F/S.

Pain at rest – 48	hr, node-spl	itting approa	ach for asses	sment of inc	onsistency		
	Dir		Indi		Differ	ence	
Comparison	Coefficient	SE	Coefficient	SE	Coefficient	SE	p value
ACB vs. F	0.1027591	0.3135033	-0.0560006	0.7054254	0.1587597	0.7719554	0.837
ACB vs. PA	-0.2198217	0.690891	-0.0619214	0.3448446	-0.1579003	0.7721711	0.838
ACB/S vs. F/S*	-0.2206406	0.7235974	-1.097906	63.25711	0.8772656	63.26125	0.989
EA vs. PCA	0.5030026	0.3072135	0.1853288	0.2038172	0.3176738	0.3686313	0.389
EA vs. F	-0.2826231	0.295146	-0.1473865	0.2136979	-0.1352366	0.364393	0.711
EA vs. F/S	-0.0175624	0.4315223	-0.3576015	0.2607218	0.3400391	0.5041696	0.5
EA vs. LP	0.6372842	0.70436	-0.240866	0.4069891	0.8781502	0.8134881	0.28
EA vs. LP/S	-0.0815806	0.7228386	-1.035324	0.5647476	0.9537436	0.9171855	0.298
EA vs. PA	-1.072032	0.2589016	0.0583773	0.2001956	-1.130409	0.3277051	0.001
EA vs. Placebo	1.286518	0.4016689	-0.3747007	0.3210237	1.661218	0.5148288	0.001
F vs. PCA*	0.4270211	0.1545759	0.572432	0.2142535	-0.1454108	0.2641189	0.582
F vs. F/O*	-0.181408	0.718858	-0.5347252	1.273725	0.3533172	1.45898	0.809
F vs. F/S	-0.3508161	0.2907734	0.1816193	0.2775084	-0.5324355	0.4018528	0.185
F vs. FIC*	-0.1516083	0.6976436	0.953042	63.25857	-1.10465	63.26242	0.986
F vs. LB	0.017824	0.6955201	-0.3933766	0.5256783	0.4112006	0.8718291	0.637
F vs. LP	0.0000297	0.5081728	0.3190138	0.4663217	-0.3189841	0.6896052	0.644
F vs. O*	-0.2555761	0.7300796	1.042296	1.286948	-1.297872	1.481471	0.381
F vs. PA*	0.1117206	0.2490804	-0.2981372	0.1686154	0.4098578	0.3007874	0.173
F/O vs. PA*	0.181408	0.7188582	-0.1725662	1.273726	0.3539741	1.458981	0.808
F/S vs. PCA	0.8981934	0.4342637	0.4456395	0.2359486	0.4525539	0.4947872	0.36
F/S vs. F/S/O*	-0.2394693	0.7120572	1.083846	63.26011	-1.323315	63.26405	0.983
F/S vs. LP	0.1813205	0.7091532	0.2704094	0.43645	-0.0890888	0.8326179	0.915
F/S vs. LP/S	-0.7182773	0.7341737	-0.2236548	0.5647249	-0.4946225	0.9262425	0.593
F/S vs. PA	-0.187351	0.4784188	-0.0754422	0.2351139	-0.1119088	0.5330696	0.834
F/S vs. Placebo	-0.3887241	0.6864093	0.7615832	0.323095	-1.150307	0.7586487	0.129
ITM vs. PA*	-0.1477831	0.5015085	-1.293189	44.72991	1.145406	44.73271	0.98
LB vs. PA	0.2126874	0.5059093	-0.1991961	0.7099309	0.4118835	0.8717579	0.637
LP vs. PCA	0.4886215	0.5182882	0.1604234	0.4559421	0.3281981	0.6903088	0.634
LP/S vs. PCA	0.915956	0.5824699	1.011485	0.6677829	-0.095529	0.8860934	0.914
O vs. PCA*	0.1022304	0.7279279	1.400102	1.2906	-1.297872	1.481471	0.381
PA vs. PCA	0.6186773	0.1550395	0.6981868	0.2093994	-0.0795095	0.2603801	0.76
PA vs. Placebo	0.2502403	0.3127754	1.261697	0.3888565	-1.011456	0.4991101	0.043

Pain at rest – 72 hr. The overall chi-square test for inconsistency gave a p-value of 0.30.

Statistically significant inconsistent loop is EA-PA-Placebo.

Pain at rest – 72 l	hr, node-split	ting approad	ch for assess	ment of inco	nsistency		
	Dire		Indi		Differ	ence	
Comparison	Coefficient	SE	Coefficient	SE	Coefficient	SE	p value
ACB vs. F*	0.3137187	0.7902099	-0.6629178	63.26125	0.9766364	63.26617	0.988
ACB/S vs. F/S*	0.4412811	0.8251811	-0.0319578	63.26512	0.4732389	63.2705	0.994
EA vs. PCA	0.2563847	0.4844679	0.2271002	0.3217485	0.0292846	0.5815797	0.96
EA vs. F	-0.3480054	0.5858773	-0.0277033	0.3153337	-0.320302	0.6653163	0.63
EA vs. F/S	0.4774829	0.825676	0.1394004	0.4600115	0.3380825	0.9451727	0.721
EA vs. LP/S	-0.0404339	0.8330015	-0.372856	0.8932306	0.3324221	1.221344	0.785
EA vs. PA	-0.7812958	0.3344053	0.4176418	0.3139068	-1.198938	0.4586506	0.009
EA vs. PCA	1.135631	0.3935857	-0.9248885	0.4205532	2.060519	0.5765137	0
F vs. PCA	0.2139781	0.2359722	0.6166727	0.3604328	-0.4026946	0.4307164	0.35
F vs. F/S*	0.1712416	0.468661	0.5673231	0.6076547	-0.3960814	0.7673597	0.606
F vs. LB	0.0475307	0.8077175	-0.2043791	0.6273812	0.2519098	1.022749	0.805
F vs. LP*	0.4091024	0.8196796	0.4916059	1.646008	-0.0825036	1.838402	0.964
F vs. PA	0.2253987	0.363714	-0.2084031	0.2840874	0.4338018	0.4616152	0.347
F/S vs. PCA	0.0625723	0.822574	0.00306	0.4429455	0.0595123	0.9349186	0.949
F/S vs. LP	0.1227307	0.8191229	0.0403661	1.646989	0.0823646	1.838535	0.964
F/S vs. Placebo	-0.2738039	0.8054577	0.1007918	0.5316072	-0.3745958	0.9650744	0.698
LB vs. PA	0.1467948	0.5831024	-0.1056993	0.8401038	0.2524941	1.022638	0.805
LP/S vs. PCA*	0.4466609	0.6373323	0.3383265	1.554162	0.1083343	1.679646	0.949
PA vs. PCA	0.5178501	0.2680845	0.1760919	0.3245078	0.3417582	0.4210424	0.417
PA vs. Placebo	-0.6396888	0.4203132	1.279981	0.4197978	-1.91967	0.5943838	0.001

			95%CI	Loop-specific
оор		IF	(truncated)	Heterogeneity(τ^2)
A-PA-PCA		2.00	(0.00,4.74)	1.970
A-LP/S-PCA	•	1.18	(0.23,2.13)	0.000
A-F-PCA		1.16	(0.00,2.88)	0.276
EA-F-F/S	•	0.78	(0.00,1.82)	0.000
-PA-PCA	•	0.53	(0.00,2.25)	0.689
A-F-PA	•	0.29	(0.00,5.71)	3.460
ACB-F-PCA	-	0.16	(0.00,1.13)	0.066
-O-PCA		0.06	(0.00,1.58)	0.127

Pain with movement – 2 hr. The overall chi-square test for inconsistency gave a p-value of 0.71.

Statistically significant inconsistent loop is EA-LP/S-PCA.

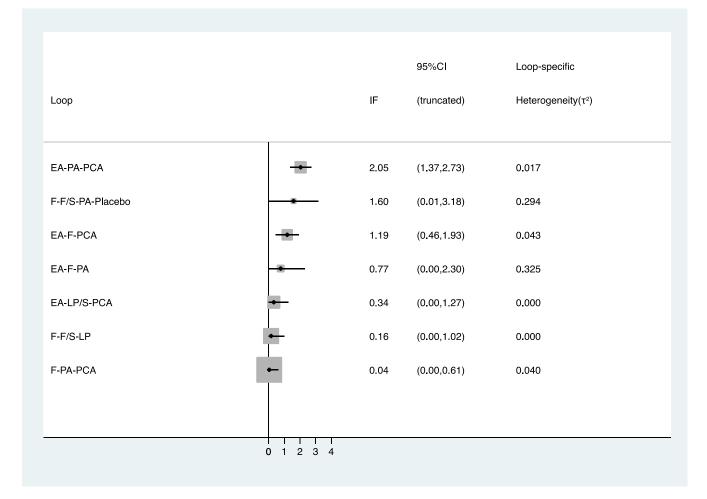
Pain with move	ement – 2 hr,	node-splittir	ng approach f	or assessme	ent of incons	istency	
	Dire	ect	Indi	rect	Differ		
Comparison	Coefficient	SE	Coefficient	SE	Coefficient	SE	p value
ACB vs. PCA	0.3527034	0.6224525	0.288999	1.13829	0.0637044	1.29737	0.961
ACB vs. F	-0.5382918	1.073732	-0.4750803	0.728557	-0.0632115	1.297573	0.961
EA vs. PCA*	1.127325	0.5116536	2.600743	0.667204	-1.473418	0.840225	0.079
EA vs. F	1.44457	1.096438	0.6900214	0.5548065	0.7545485	1.227883	0.539
EA vs. F/S	-4.62E-12	1.063849	0.1900803	0.939378	-0.1900803	1.419227	0.893
EA vs. FIC*	1.84E-08	1.053635	3.351514	63.2769	-3.351514	63.28568	0.958
EA vs. LP/S*	7.30E-12	1.013313	3.623426	1.970056	-3.623426	2.215383	0.102
EA vs. PA	1.522333	0.7046545	-0.1951222	0.5746182	1.717455	0.9093007	0.059
F vs. PCA*	0.8281177	0.4420418	0.8431098	0.6322828	-0.0149921	0.7719233	0.985
F vs. F/S	-0.6824156	0.7682648	-0.8682595	1.192916	0.1858439	1.418904	0.896
F vs. ITM*	1.60E-08	1.053632	1.664782	63.27303	-1.664782	63.2818	0.979
F vs. O*	1.093446	1.085654	1.086405	2.022569	0.007041	2.299209	0.998
F vs. PA	-0.2100917	0.7574447	-0.4291823	0.546421	0.2190906	0.9339781	0.815
LP/S vs. PCA*	0.1568285	1.013417	3.780254	1.969895	-3.623426	2.215383	0.102
O vs. PCA*	-0.2572812	1.079632	-0.2643222	2.032218	0.007041	2.299209	0.998
PA vs. PCA	1.58264	0.4182789	0.3515137	0.6027712	1.231126	0.7337033	0.093

Pain with movement – 24 hr. The overall chi-square test for inconsistency gave a p-value of 0.92.

Loop	IF	95%CI (truncated)	Loop-specific Heterogeneity(τ²)
F-ITM-PA	3.04	(0.00,6.23)	0.737
ACB-F/S-LP-PCA	2.07	(1.07,3.08)	0.000
F/S-PA-PCA-Placebo	2.01	(0.00,4.95)	0.862
F-F/S-PCA	1.44	(0.00,3.08)	0.447
EA-F/S-PCA	1.19	(0.00,2.75)	0.470
ACB-F-LP	1.15	(0.00,2.63)	0.215
F-F/S-PA-Placebo	0.96	(0.00,2.50)	0.361
F-O-PCA	- 0.87	(0.00,3.64)	0.553
EA-F-LP	0.84	(0.00,1.93)	0.069
ACB-EA-LP-PCA	0.73	(0.00,2.43)	0.161
EA-F/S-Placebo	0.67	(0.00,3.41)	1.049
EA-LP/S-PCA	0.61	(0.00,2.17)	0.183
F-F/S-LP	0.56	(0.00,1.33)	0.000
EA-PA-PCA	0.50	(0.00,1.92)	0.561
EA-F-PA	0.46	(0.00,1.41)	0.201
EA-F-PCA	0.45	(0.00,1.63)	0.444
EA-F/S-LP	- 0.45	(0.00,3.78)	1.206
F-PA-PCA	0.45	(0.00,1.54)	0.588
ACB-PA-PCA	0.44	(0.00,2.87)	0.697
F-F/O-PA	0.35	(0.00,2.80)	0.323
EA-F-FIC +	0.11	(0.00,1.24)	0.069
ACB-F-PCA	0.07	(0.00,1.49)	0.438
EA-PA-Placebo	0.06	(0.00,1.96)	0.398
ACB-EA-LP-PA	0.06	(0.00,1.29)	0.096
ACB-F-PA	0.06	(0.00,1.14)	0.240
EA-F-F/S	0.04	(0.00,1.08)	0.287
0 2	4 6 7		

Statistically significant inconsistent loop is ACB-F/S-LP-PCA

Pain with movem	ent – 24 hr. r	ode-splitting	g approach fo	or assessme	nt of inconsis	stency	
	Dir		Indi		Differ		
Comparison	Coefficient	SE	Coefficient	SE	Coefficient	SE	p value
ACB vs. PCA	0.4305404	0.6499163	0.7592753	0.3453666	-0.3287348	0.7359883	0.655
ACB vs. F	-0.1777607	0.3677098	-0.0287188	0.4450777	-0.1490419	0.577327	0.796
ACB vs. LP	0.5263714	0.8800595	-0.1774675	0.6708989	0.7038389	1.106621	0.525
ACB vs. PA	-0.1449207	0.6295153	-0.4003441	0.3613178	0.2554233	0.7258373	0.725
ACB/S vs. F/S*	0.1734847	0.9129806	-2.407041	63.26726	2.580526	63.27384	0.967
EA vs. PCA	1.054999	0.3568047	0.5633601	0.3301061	0.4916385	0.4862074	0.312
EA vs. F	-0.0339787	0.4574097	-0.0048518	0.2925025	-0.0291269	0.5428075	0.957
EA vs. F/S	-0.388136	0.4711382	-0.4338022	0.4187383	0.0456662	0.6299802	0.942
EA vs. FIC	2.24E-08	0.9225227	0.1516448	0.9342378	-0.1516448	1.312954	0.908
EA vs. LP	0.3459361	0.9047998	0.104456	0.6406591	0.2414801	1.108651	0.828
EA vs. LP/S	-0.4479576	0.9197994	-0.0713635	0.948634	-0.3765941	1.320215	0.775
EA vs. PA	-0.4479039	0.4498911	-0.1298267	0.3118987	-0.3180772	0.547437	0.561
EA vs. Placebo	0.6563949	0.9425551	0.3768011	0.5104264	0.2795938	1.071689	0.794
F vs. PCA*	0.6981676	0.2287968	0.9762648	0.2920575	-0.2780972	0.3708605	0.453
F vs. F/O*	-0.4103306	0.9098032	-1.735738	1.629003	1.325407	1.861201	0.476
F vs. F/S	-0.3297528	0.4082937	-0.4755753	0.4216438	0.1458225	0.5869213	0.804
F vs. FIC	0.158817	0.9000396	0.0084835	0.9558731	0.1503335	1.312922	0.909
F vs. ITM	-1.712911	0.6527427	1.041028	0.9055453	-2.753939	1.116278	0.014
F vs. LP	-0.4444863	0.8999352	0.5034258	0.6195456	-0.9479121	1.092762	0.386
F vs. O*	-0.1247882	0.9171529	1.805704	1.628414	-1.930492	1.870415	0.302
F vs. PA*	0.1453571	0.3193936	-0.4607824	0.2597405	0.6061395	0.411804	0.141
F/O vs. PA*	0.8206646	0.911806	-0.5066612	1.625653	1.327326	1.86121	0.476
F/S vs. PCA	2.437691	0.712953	0.925033	0.3352786	1.512658	0.7892948	0.055
F/S vs. LP	0.2958086	0.9042515	0.771152	0.6822513	-0.4753434	1.132852	0.675
F/S vs. Placebo	0.5196196	0.525257	1.440547	0.6967709	-0.9209272	0.8723178	0.291
ITM vs. PA	-1.17205	0.8836648	1.580334	0.6822844	-2.752384	1.116412	0.014
LB vs. PA*	0.0610377	0.8721906	-2.022638	63.26563	2.083675	63.2715	0.974
LP/S vs. PCA*	0.9549858	0.6991963	1.635218	1.671028	-0.680232	1.811393	0.707
O vs. PCA*	1.66E-08	0.9156386	1.930491	1.630968	-1.930491	1.870415	0.302
PA vs. PCA	1.019174	0.2676288	1.029978	0.2942291	-0.0108035	0.3975445	0.978
PA vs. lacebo	1.05963	0.6335652	0.3432458	0.5853919	0.7163839	0.8626102	0.406


loop	IF	95%CI (truncated)	Loop-specific Heterogeneity(τ²)
-ITM-PA	• 4.4		0.141
F-F/S-PCA	- 1.3		0.192
F/S-PA-PCA-Placebo	1.3	6 (0.00,5.35)	0.807
EA-PA-PCA	- 1.0	7 (0.00,2.57)	0.503
EA-F-PCA	0.9	5 (0.30,1.60)	0.163
EA-F-LP	- 0.7	2 (0.00,2.66)	0.339
F-F/O-PA	0.6	9 (0.00,2.30)	0.132
EA-F/S-LP	0.6	8 (0.00,5.01)	2.011
EA-F/S-PCA	- 0.6	1 (0.00,2.58)	0.318
F-O-PCA	0.5	0 (0.00,2.11)	0.227
EA-F-PA	0.3	5 (0.00,1.29)	0.184
EA-F/S-PA-Placebo	0.1	8 (0.00,2.50)	0.689
EA-LP/S-PCA	0.1	6 (0.00,1.18)	0.034
F-F/S-PA-Placebo	0.1	4 (0.00,1.48)	0.212
F-PA-PCA	0.1	2 (0.00,1.11)	0.393
EA-F-F/S	0.0	7 (0.00,1.44)	0.448
ACB-F-PA	0.0	0 (0.00,0.89)	0.071
F-F/S-LP	0.0	0 (0.00,1.63)	0.166
T			

Pain with movement - 48 hr. The overall chi-square test for inconsistency gave a p-value of 0.11

Statistically significant inconsistent loops are F-ITM-PA and EA-F-PCA.

Pain with moven	nent – 48 hr, r	node-splitting	g approach fo	or assessme	nt of inconsis	stency	
	Dire		Indi		Differ		
Comparison	Coefficient	SE	Coefficient	SE	Coefficient	SE	p value
ACB vs. F	0.0657823	0.3715436	0.3458402	0.8494015	-0.2800578	0.9271098	0.763
ACB vs. PA	5.52E-07	0.8228273	-0.2821163	0.4280062	0.2821169	0.9274881	0.761
ACB/S vs. F/S*	-0.3966483	0.8477887	-2.0021	63.26454	1.605452	63.27022	0.98
EA vs. PCA	0.7381741	0.2922017	-0.3275723	0.3272963	1.065746	0.4388444	0.015
EA vs. F	-0.6937203	0.379416	-0.1611696	0.2934193	-0.5325508	0.4797097	0.267
EA vs. F/S	-0.8423143	0.5088637	-0.6612517	0.4088784	-0.1810626	0.6525185	0.781
EA vs. LP	0.4368256	0.8372914	-0.0732454	0.7656822	0.5100711	1.134604	0.653
EA vs. LP/S	-0.3105751	0.8486804	-1.363125	0.9178714	1.05255	1.248994	0.399
EA vs. PA	-1.104338	0.4849181	-0.5387033	0.2964284	-0.5656342	0.5683566	0.32
F vs. PCA*	0.5210063	0.2261205	0.830785	0.3073748	-0.3097787	0.3815164	0.417
F vs. F/O*	-0.5015881	0.8400269	-2.274233	1.51528	1.772645	1.726496	0.305
F vs. F/S	-0.2375952	0.3798188	-0.5702397	0.4616614	0.3326445	0.5977488	0.578
F vs. FIC*	-0.134221	0.8248396	1.259188	63.26171	-1.393409	63.26709	0.982
F vs. ITM	-2.391788	0.784061	1.931011	0.8011374	-4.322799	1.12097	0
F vs. LP	0.3977337	0.8387446	0.6226676	0.7735773	-0.2249339	1.140412	0.844
F vs. O*	0.1129985	0.8552468	1.353701	1.525744	-1.240703	1.750579	0.478
F vs. PA*	-0.1349605	0.3172818	-0.4755113	0.2702114	0.3405508	0.4166557	0.414
F/O vs. PA*	1.003181	0.8432656	-0.7710082	1.509892	1.77419	1.72651	0.304
F/S vs. PCA	2.015443	0.9899838	0.884162	0.3334388	1.131281	1.046263	0.28
F/S vs. LP	0.595534	0.8380252	1.172983	0.81792	-0.5774495	1.170668	0.622
F/S vs. Placebo	0.5026474	0.5918283	0.6421233	0.6850214	-0.1394759	0.9052763	0.878
ITM vs. PA	-2.136023	0.7795535	2.185731	0.8055217	-4.321754	1.120968	0
LP/S vs. PCA*	1.245208	0.6664858	0.0973941	1.548654	1.147814	1.686919	0.496
O vs. PCA*	-0.0753322	0.8536691	1.16537	1.528394	-1.240703	1.75058	0.478
PA vs. PCA	0.7899674	0.2690743	1.1791	0.3025254	-0.3891324	0.4044478	0.336
PA vs. Placebo	0.5806508	0.5845472	0.442419	0.6911551	0.1382318	0.9052086	0.879

Pain with movement - 72 hr. The overall chi-square test for inconsistency gave a p-value of 0.001

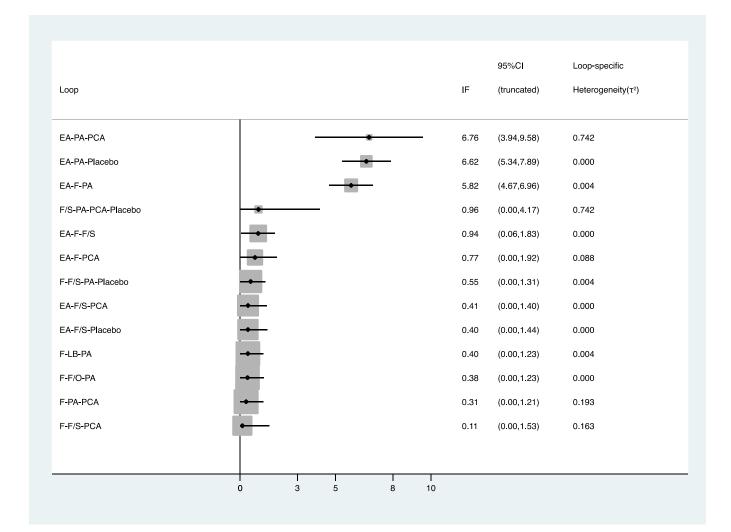
Statistically significant inconsistent loops are EA-PA-PCA, F-F/S-PA-Placebo, and EA-F-PCA.

Pain with movem	ent – 72 hr, n	ode-splitting	g approach fo	or assessme	nt of inconsis	stency	
	Dire	ect	Indi	rect	Differ	ence	
Comparison	Coefficient	SE	Coefficient	SE	Coefficient	SE	p value
ACB/S vs. F/S*	-0.5189985	0.6395477	-0.7852784	63.25646	0.2662799	63.25969	0.997
EA vs. PCA	0.4340065	0.3050286	-1.135381	0.2984533	1.569387	0.426833	0
EA vs. F	-1.027104	0.4561836	-0.4813277	0.3381279	-0.545776	0.5677962	0.336
EA vs. LP/S	-0.4034607	0.6442416	-0.9271575	0.7599495	0.5236968	0.9952569	0.599
EA vs. PA	-1.532643	0.4011699	-0.2200119	0.3344245	-1.312631	0.5222181	0.012
F vs. PCA	0.2048895	0.2216338	0.6138649	0.37199	-0.4089755	0.4328046	0.345
F vs. F/S*	-0.4999693	0.4083726	0.8780999	0.6197798	-1.378069	0.7422091	0.063
F vs. ITM*	-4.430711	0.771238	0.6237402	63.25528	-5.054451	63.25998	0.936
F vs. LP*	-5.04E-10	0.6240592	1.023978	1.406941	-1.023978	1.538387	0.506
F vs. PA	0.2725798	0.3525423	-0.3529663	0.3090088	0.6255461	0.4684568	0.182
F/S vs. LP*	0.4172906	0.6248991	-0.6065399	1.405987	1.02383	1.538535	0.506
F/S vs. Placebo	-0.4159181	0.4100642	0.9624571	0.6191368	-1.378375	0.7424279	0.063
LP/S vs. PCA*	0.4471118	0.499532	-0.8942496	1.241641	1.341361	1.338241	0.316
PA vs. PCA	-0.0338194	0.3418739	0.741158	0.3094024	-0.7749774	0.4610703	0.093
PA vs. Placebo	0.4069134	0.4004973	-0.970662	0.6248712	1.377575	0.7423063	0.063

Opioid consumption – 24 hr. The overall chi-square test for inconsistency gave a p-value of 0.

Loop					IF	95%Cl (truncated)	Loop-specific Heterogeneity(τ ²)
ACB-LP-PCA					4.65	(3.43,5.88)	0.000
F-LP-PCA			•		3.85	(1.94,5.76)	0.368
F/S-LP-PCA			•		3.13	(0.00,7.76)	1.795
EA-LP-PCA		•			 2.49	(0.00,7.24)	2.196
EA-LP/S-PCA		•			1.97	(0.00,4.61)	0.783
F/S-PA-PCA		•			1.90	(0.57,3.23)	0.205
F-PA-Placebo		+			1.78	(0.19,3.37)	0.213
F-F/S-Placebo		•			1.69	(0.00,4.11)	0.801
EA-F/S-LP					1.68	(0.00,5.70)	1.752
EA-F-F/S		•			1.68	(0.00,4.12)	1.020
EA-F-PCA		· · · · · · · · · · · · · · · · · · ·			1.40	,	0.788
EA-F-Placebo		_			1.33	(0.28,2.38)	0.000
EA-F/S-Placebo	•					(0.00,4.10)	1.516
EA-PA-PCA					1.19	(0.00,2.49)	0.301
F-TM-PA	-				1.16		0.299
EA-F/S-PCA					1.05	(0.00,3.75)	1.876
F/S-LP/S-PCA				-	1.00	(0.00,4.83)	1.650
F-O-PCA						(0.00,4.19)	0.615
ACB-EA-LP-PA					0.98	(0.00,5.66)	1.018
EA-F-PA					0.84		0.368
EA-F/S-LP/S						(0.00,2.70)	1.752
F-F/S-PCA					0.82	,	0.699
F-F/O-PCA						(0.00, 2.43) (0.00, 3.38)	0.585
F-PA-PCA					0.73	,	0.302
						(, ,	
F/S-PA-Placebo ACB-F-PCA					0.57	,	0.000
						(0.00,2.28)	0.473
ACB-F-LP						(0.02,1.02)	0.000
EA-PA-Placebo						(0.00,4.15)	1.134
F-LB-PA						(0.00,1.59)	0.162
F-F/S-LP						(0.00,2.17)	0.443
EA-F-FIC					0.41	(, ,	0.000
F-F/S-PA						(0.00,1.72)	0.341
ACB-F/S-LP-PA					0.37	,	0.000
F/O-PA-PCA						(0.00,1.73)	0.147
EA-F-LP	-	-				(0.00,1.49)	0.077
EA-F/S-PA						(0.00,4.01)	1.729
F-F/O-PA	-				0.27	(, ,	0.225
ACB-F-PA	•				0.16	(0.00,1.04)	0.180
ACB-PA-PCA	•				0.04	(0.00,1.02)	0.165
	0	2	4	6	8		

Statistically significant inconsistent loops are ACB-LP-PCA, F-LP-PCA, F/S-PA-PCA, F-PA-Placebo, EA-F-Placebo, and F-PA-PCA


Opioid consump	otion – 24 hr.	node-splittir	ng approach f	for assessm	ent of incons	istencv	
	Dire		Indi		Differ		
Comparison	Coefficient	SE	Coefficient	SE	Coefficient	SE	p value
ACB vs. PCA	0.3934252	0.6112926	0.9330026	0.3453741	-0.5395773	0.7021377	0.442
ACB vs. F	-0.0427588	0.42233	-0.1101992	0.4061811	0.0674404	0.5859568	0.908
ACB vs. LP	0.1512571	0.8210352	-0.9751001	0.50359	1.126357	0.9631727	0.242
ACB vs. PA	-0.0494757	0.5916114	0.0952171	0.3544652	-0.1446929	0.6896737	0.834
EA vs. PCA	2.256948	0.4568791	1.522964	0.3264736	0.7339837	0.5608253	0.191
EA vs. F	-0.0951828	0.8436535	1.002712	0.2833398	-1.097895	0.8900203	0.217
EA vs. F/S	0.8154464	0.4170429	-0.3199075	0.3586973	1.135354	0.5500732	0.039
EA vs. FIC	-0.0279877	0.8687246	0.5838968	0.8792135	-0.6118845	1.236001	0.621
EA vs. LP	-0.0887957	0.8485314	0.4251198	0.4785062	-0.5139156	0.9741528	0.598
EA vs. LP/S	2.39E-10	0.8615175	-1.123032	0.6291339	1.123032	1.066781	0.292
EA vs. PA	0.651906	0.5152802	1.16705	0.3168023	-0.5151435	0.6028939	0.393
EA vs. Placebo	0.1891846	0.6235113	1.396488	0.4920687	-1.207303	0.7942906	0.129
F vs. PCA*	0.9966504	0.1941991	0.7052989	0.2373574	0.2913515	0.3062101	0.341
F vs. F/O*	-1.448067	0.6065456	-0.251221	1.082011	-1.196846	1.235131	0.333
F vs. F/S	-0.7605096	0.3509125	-0.699916	0.3377338	-0.0605935	0.4866065	0.901
F vs. FIC	-0.3401409	0.8343699	-0.9498145	0.9118062	0.6096736	1.235947	0.622
F vs. ITN	-0.2789044	0.4922714	1.231491	0.868644	-1.510395	0.9984399	0.13
F vs. LB	0.1655087	0.8406189	0.0047624	0.5147833	0.1607463	0.985719	0.87
F vs. LP	-0.2959831	0.4948516	-0.9789033	0.5687568	0.6829201	0.7550973	0.366
F vs. O*	0.0281868	0.8666439	1.784536	1.530181	-1.756349	1.760058	0.028
F vs. PA	-0.1664306	0.2457503	0.3507327	0.2086765	-0.5171633	0.3223925	0.109
F vs. Placebo	1.611252	0.8799674	-0.3125766	0.4190111	1.923828	0.9746346	0.048
F/O vs. PCA	1.759446	0.8598127	2.226589	0.6869044	-0.4671432	1.09853	0.671
F/O vs. PA	1.009466	0.8625135	1.482809	0.6876359	-0.4733424	1.100429	0.667
F/S vs. PCA	2.586645	0.5010432	1.301807	0.2777952	1.284837	0.5726247	0.025
F/S vs. F/S/O*	-0.7136226	0.8552609	3.174943	63.26429	-3.888566	63.26999	0.951
F/S vs. LP	0.7697568	0.8500149	-0.0555852	0.4704824	0.8253421	0.9719142	0.396
F/S vs. LP/S	-4.38E-12	0.8619857	-1.341283	0.6082132	1.341283	1.054961	0.204
F/S vs. PA	0.2059065	0.8224711	0.9347282	0.2711632	-0.7288217	0.8660185	0.4
F/S vs. Placebo	0.691025	0.6020903	0.8247475	0.4967328	-0.1337225	0.7805566	0.864
ITM vs. PA	-1.057575	0.853869	0.4518959	0.5179359	-1.50947	0.9986741	0.131
LB vs. PA	0.1259974	0.4881853	-0.0362383	0.8560733	0.1622356	0.9854882	0.869
LP vs. PCA	4.499204	0.9482861	0.8612423	0.4056708	3.637962	1.044311	0
LP/S vs. PCA	3.524593	0.6080785	0.8272388	0.7803402	2.697354	1.005953	0.007
O vs. PCA*	-4.42E-12	0.8651201	1.756349	1.532766	-1.756349	1.760058	0.318
PA vs. PCA	0.442393	0.1652487	1.384193	0.2420434	-0.9418	0.2930122	0.001
PA vs. Placebo	0.0015634	0.8267914	-0.120238	0.4408192	0.1218014	0.9369662	0.897

Loop		IF	95%CI (truncated)	Loop-specific Heterogeneity(τ ²)
F-LB-PA	•	2.91	(1.42,4.40)	0.178
F-FIC-O		2.22	(1.36,3.07)	0.000
F/S-LB-PA	•	2.21	(0.00,6.84)	1.824
EA-O-PA		1.60	(0.27,2.93)	0.385
EA-O-PCA	•	1.39	(0.00,3.45)	0.382
F/S-O-PA	•	1.37	(0.00,3.41)	0.496
EA-F/S-PCA	•	1.31	(0.00,3.63)	0.526
EA-F-F/S		1.25	(0.00,3.62)	0.856
EA-LP-PA		1.15	(0.19,2.11)	0.000
F-F/S-O	•	1.14	(0.00,2.68)	0.358
EA-F-PA	•	1.11	(0.00,2.94)	0.341
F-F/S-LB	•	0.83	(0.00,3.85)	1.211
EA-F/S-LP	•	0.77	(0.00,3.09)	0.526
F-LP/S-PA	L	0.63	(0.00,2.91)	0.363
ACB-F-O		0.54	(0.00,1.12)	0.042
F-ITM-O		0.42	(0.00,1.22)	0.000
EA-F/S-O	· · · · · · · · · · · · · · · · · · ·	0.38	(0.00,2.14)	0.470
F/S-LP-PA		0.31	(0.00,4.90)	1.824
F/S-O-PCA		0.29	(0.00,0.91)	0.000
EA-F-O		0.28	(0.00,1.16)	0.065
F-O-PA		0.25	(0.00,0.98)	0.283
EA-F/S-PA	•	0.14	(0.00,2.21)	0.878
F-F/O-O	•	0.06	(0.00,0.88)	0.000
F-F/S-PA	•	0.04	(0.00,1.58)	0.614
		1 1 6 7		

Opioid consumption – 48 hr. The overall chi-square test for inconsistency gave a p-value of 0.000.

Statistically significant inconsistent loops are F-LB-PA, F-FIC-O, and EA-O-PA.

Opioid consump	otion – 48 hr,	node-splittir	ng approach f	or assessme	ent of incons	istency	
	Dire		Indi		Differ		
Comparison	Coefficient	SE	Coefficient	SE	Coefficient	SE	p value
ACB vs. F	-0.0451371	0.440078	-0.4712012	0.5680403	0.4260641	0.7185655	0.553
ACB vs. PA	-0.3802751	0.5364395	0.0452107	0.4781504	-0.4254857	0.7186066	0.554
EA vs. PCA	1.157585	0.4543816	0.3382258	0.3278999	0.8193597	0.5604889	0.144
EA vs. F	-0.591501	0.7733304	0.1149453	0.3011136	-0.7064463	0.8302649	0.395
EA vs. F/S	-0.2145541	0.3875068	-0.6145045	0.3863258	0.3999504	0.54717	0.465
EA vs. LP/S	-6.27E-12	0.7917229	0.656104	0.7625356	-0.656104	1.09922	0.551
EA vs. PA	-0.695977	0.4321457	0.5239744	0.3261567	-1.219951	0.5414214	0.024
EA vs. Placebo	0.7805657	0.8235268	-0.3389825	0.5821686	1.119548	1.008522	0.267
F vs. PCA*	0.6971738	0.1910494	0.3713052	0.2896372	0.3258686	0.3467144	0.347
F vs. F/O*	-7.07E-12	0.7854473	-0.3700371	1.407324	0.3700371	1.608557	0.818
F vs. F/S	-0.8343198	0.3896768	-0.147764	0.3317928	-0.6865558	0.5106673	0.179
F vs. FIC*	0.2740019	0.7641349	1.196817	63.25744	-0.9228148	63.26206	0.988
F vs. ITM	-0.9093796	0.7624215	1.238618	0.787932	-2.147998	1.096414	0.05
F vs. LB	-0.128729	0.7648096	0.179909	0.820993	-0.3086379	1.122035	0.783
F vs. LP*	-0.0478304	0.533762	-2.999612	1.038017	2.951782	1.163282	0.011
F vs. O*	0.0986537	0.7963281	1.141091	1.415635	-1.042437	1.625916	0.521
F vs. PA*	0.1959647	0.2971899	-0.0167848	0.2273927	0.2127496	0.3742043	0.57
F/O vs. PA*	0.2371381	0.7857057	-0.1336815	1.406893	0.3708195	1.608558	0.818
F/S vs. PCA	1.51531	0.4549129	0.8263765	0.2993577	0.6889333	0.5438673	0.205
F/S vs. F/S/O*	-0.7001188	0.7800574	2.028978	63.25958	-2.729097	63.26432	0.966
F/S vs. LP	0.2456816	0.7733353	-0.6251706	0.6998348	0.8708521	1.042768	0.404
F/S vs. LP/S	0.9795691	0.804297	0.5737417	0.7249637	0.4058275	1.082805	0.708
F/S vs. PA	-0.1047198	0.7439707	0.5845336	0.2809542	-0.6892534	0.7952532	0.386
F/S vs. Placebo	-0.3140906	0.7525572	0.9304278	0.5982055	-1.244518	0.9613482	0.195
ITM vs. PA	-1.121043	0.767787	1.026346	0.7827067	-2.14739	1.096415	0.05
LB vs. PA	-0.1095234	0.8003494	0.1984008	0.7864109	-0.3079242	1.122053	0.784
LP vs. PCA	3.411689	0.8111444	0.0777324	0.5893627	3.333956	1.018818	0.001
LP/S vs. PCA	0.2666319	0.7944227	0.2930357	0.7535492	-0.0264038	1.095092	0.981
O vs. PCA*	-7.54E-12	0.7946176	1.042437	1.418516	-1.042437	1.625916	0.521
PA vs. PCA	0.2544904	0.2008269	1.003763	0.2598804	-0.7492722	0.3283321	0.022
PA vs. lacebo	0.0813321	0.7497402	-0.135112	0.6102631	0.2164441	0.9667117	0.823

Opioid consumption – 72 hr. The overall chi-square test for inconsistency gave a p-value of 0.000

Statistically significant inconsistent loops are EA-PA-PCA, EA-PA-Placebo, and EA-F-PA.

Opioid consumpt	tion – 72 hr, n	ode-splitting	g approach fo	or assessme	nt of inconsi	stency	
	Dire	ect	Indi	rect	Differ	ence	
Comparison	Coefficient	SE	Coefficient	SE	Coefficient	SE	p value
ACB vs. PA*	0.1319769	1.250962	-0.8334669	63.29056	0.9654438	63.3029	0.988
EA vs. PCA	0.3443318	1.208146	-2.082595	0.8786343	2.426927	1.493867	0.104
EA vs. F	-0.6166799	1.274905	-2.045536	0.9071195	1.428856	1.565092	0.361
EA vs. F/S	0.3238554	1.25373	-1.629206	1.01208	1.953062	1.611255	0.225
EA vs. PA	-6.202009	0.6271277	0.2846962	0.3249497	-6.486706	0.7063136	0
EA vs. Placebo	0.5688595	1.273266	-1.659726	1.124441	2.228585	1.698698	0.19
F vs. PCA	0.3391712	0.4937275	0.226941	0.8593073	0.1122302	0.991051	0.91
F vs. F/O*	-0.432747	1.296771	-1.951314	2.469275	1.518567	2.785562	0.586
F vs. F/S	-1.56E-06	1.278503	1.079063	0.9313015	-1.079065	1.581739	0.495
F vs. LB	-0.0924208	1.295652	-0.02844	1.407515	-0.0639808	1.913064	0.973
F vs. PA*	0.2429541	0.6402661	-0.5284117	0.7001979	0.7713658	0.9487859	0.416
F/O vs. PA*	0.9808967	1.298935	-0.5400688	2.466047	1.520966	2.785717	0.585
F/S vs. PCA	0.4290706	1.294937	-0.8179321	0.9302951	1.247003	1.594463	0.434
F/S vs. Placebo	-0.1593145	1.290034	0.4785235	1.223331	-0.637838	1.777842	0.72
LB vs. PA	-0.0760045	1.316932	-0.0133661	1.38779	-0.0626384	1.913185	0.974
PA vs. PCA	-0.2070052	0.7293346	0.9515311	0.6739344	-1.158536	0.9929786	0.243
PA vs. Placebo	0.1558657	1.258396	1.692627	1.158383	-1.536761	1.710383	0.369

Range of motion and degree of flexion – 24 hr. The overall chi-square test for inconsistency gave a p-value of 0.092.

loop			IF	95%CI (truncated)	Loop-specific Heterogeneity(τ²)
EA-F/S-PA-Placebo			 1.46	(0.22,2.71)	0.130
ACB-F-PA		_	0.82	(0.07,1.57)	0.000
EA-PA-PCA	•		0.72	(0.23,1.22)	0.023
EA-F-F/S	<u> </u>		0.61	(0.08,1.14)	0.000
EA-F/S-PCA			0.59	(0.00,1.46)	0.000
EA-F-PCA			0.44	(0.00,0.95)	0.000
EA-F-LP			0.44	(0.00,1.20)	0.000
F/S-PA-Placebo			0.41	(0.00,1.71)	0.181
EA-F-PA			0.40	(0.01,0.80)	0.000
EA-F/S-LP			0.34	(0.00,1.16)	0.000
F-F/S-PCA			0.31	(0.00,1.25)	0.044
F-F/O-PA			0.24	(0.00,1.10)	0.000
F-F/S-LP			0.22	(0.00,1.01)	0.000
F/S-PA-PCA-Placebo		-	0.19	(0.00,1.57)	0.124
-LB-PA			0.17	(0.00,0.85)	0.000
-PA-PCA			0.06	(0.00,0.55)	0.024
T					

Statistically significant inconsistent loops are EA-F/S-PA-Placebo, ACB-F-PA, EA-PA-PCA, and EA-F-F/S.

Range of motion and degree of flexion – 24 hr, node-splitting approach for assessment of inconsistency

inconsistency							
	Dire	ect	Indi	rect	Differ	ence	
Comparison	Coefficient	SE	Coefficient	SE	Coefficient	SE	p value
ACB vs. F	0.1644806	0.4138363	0.8227014	0.383259	-0.6582208	0.5640457	0.243
ACB vs. PA	0.6506474	0.3620639	-0.0074774	0.4324929	0.6581248	0.5640395	0.243
EA vs. PCA	-0.8296398	0.2483948	-0.3601975	0.1620535	-0.4694423	0.2961994	0.113
EA vs. F	0.092968	0.184519	0.0028625	0.1843404	0.0901055	0.2609263	0.73
EA vs. F/S	-0.2498302	0.2755068	0.549093	0.1937002	-0.7989232	0.3367854	0.018
EA vs. LP	7.23E-07	0.3977868	0.310903	0.3703668	-0.3109023	0.5435124	0.567
EA vs. PA	0.2064996	0.1436703	-0.4490361	0.1626103	0.6555357	0.2170043	0.003
F vs. PCA	-0.5596402	0.1908188	-0.5460745	0.1853435	-0.0135657	0.2659507	0.959
F vs. F/O*	-0.0568688	0.4136307	0.7779422	0.7596677	-0.8348111	0.8596263	0.331
F vs. F/S	0.2844749	0.2212859	0.169953	0.2412042	0.1145219	0.3273042	0.726
F vs. LB	-0.2970668	0.3801699	-0.2692498	0.4024696	-0.0278171	0.5536343	0.96
F vs. LP	0.344015	0.3982262	-0.0818404	0.3748643	0.4258554	0.5468745	0.436
F vs. PA*	-0.314073	0.2270466	-0.0661832	0.1468472	-0.2478897	0.2704141	0.359
F/O vs. PA*	-0.4620586	0.4154618	0.3729492	0.7566624	-0.8350078	0.8596247	0.331
F/S vs. PCA	-1.142068	0.4625433	-0.7199757	0.195532	-0.4220928	0.5021743	0.401
F/S vs. LP	-0.0866823	0.4015103	-0.140901	0.4049181	0.0542187	0.569965	0.924
F/S vs. Placebo	-1.073834	0.2724392	-0.2854181	0.3302092	-0.7884164	0.4281346	0.066
LB vs. PA	0.1314693	0.3812828	0.1594012	0.4014136	-0.0279319	0.5536331	0.96
PA vs. PCA	-0.3143636	0.1308804	-0.6311689	0.1961808	0.3168053	0.2357224	0.179
PA vs. Placebo	-0.0599194	0.2744263	-0.8484485	0.3285904	0.7885291	0.4281269	0.066

Range of motion and degree of flexion – 48 hr. The overall chi-square test for inconsistency gave a p-value of 0.008

Loop				IF	95%CI (truncated)	Loop-specific Heterogeneity(τ^2)
EA-PA-PCA				1.29	(0.64,1.94)	0.090
EA-F-PCA		•		1.20	(0.31,2.08)	0.155
EA-PA-Placebo		•	_	0.65	(0.00,1.67)	0.105
EA-F/S-PCA				0.63	(0.00,1.83)	0.014
F-F/S-PCA				0.56	(0.00,1.97)	0.124
F-F/S-LP		<u> </u>		0.53	(0.00,1.31)	0.000
F/S-PA-PCA-Placebo	-		-	0.39	(0.00,1.51)	0.000
EA-F-PA	-			0.37	(0.00,1.27)	0.185
EA-F-LP	-			0.31	(0.00,2.22)	0.256
F-O-PCA				0.17	(0.00,1.94)	0.247
EA-F/S-LP	-			0.16	(0.00,1.32)	0.056
F-F/S-PA-Placebo	•			0.15	(0.00,0.86)	0.028
EA-F/S-Placebo	•			0.14	(0.00,1.10)	0.040
EA-F-F/S	•			0.10	(0.00,1.03)	0.141
F-PA-PCA	•	-		0.02	(0.00,0.64)	0.085

Statistically significant inconsistent loop are EA-PA-PCA and EA-F-PCA.

Range of motion and degree of flexion – 48 hr, node-splitting approach for assessment of inconsistency

Dire	ect	Indi	rect	Differ	ence	
Coefficient	SE	Coefficient	SE	Coefficient	SE	p value
-0.1530173	0.4308924	0.8217086	63.25507	-0.9747259	63.25657	0.988
-1.108258	0.2248582	0.1022041	0.150157	-1.210463	0.270127	0
0.24257	0.1990142	0.1761794	0.2023355	0.0663906	0.2841582	0.815
0.2005876	0.3018467	0.1082439	0.2322889	0.0923437	0.3807765	0.808
0.2260773	0.4665895	0.1146979	0.4291163	0.1113793	0.6339136	0.861
0.4371159	0.1808601	-0.2170346	0.1838576	0.6541505	0.2576293	0.011
-0.2791372	0.4777616	-0.0081357	0.2455046	-0.2710015	0.5371486	0.614
-0.4219575	0.185997	-0.6212832	0.2259784	0.1993257	0.2923526	0.495
-0.1459989	0.2345623	0.0366407	0.2700742	-0.1826396	0.3576506	0.61
-0.1980446	0.440524	-1.003895	63.25378	0.8058507	63.25531	0.99
-0.3379791	0.4629684	0.2117518	0.4324323	-0.5497309	0.6336691	0.386
0.1130044	0.501687	-0.3665943	0.9187376	0.4795986	1.048627	0.647
-0.1786446	0.2666266	-0.0574129	0.1757947	-0.1212318	0.3194602	0.704
-0.8186266	0.6431449	-0.3925017	0.2129412	-0.4261249	0.6771729	0.529
0.2254846	0.4654247	-0.173955	0.4596444	0.3994397	0.6541592	0.541
-0.2753396	0.3244157	-0.1436197	0.3138688	-0.1317199	0.4514706	0.77
-0.3955152	0.5003821	-0.8751139	0.92087	0.4795987	1.048627	0.647
-0.252343	0.1645334	-0.6800214	0.2194349	0.4276785	0.274001	0.119
-0.0646752	0.268605	-0.3443734	0.3193012	0.2796981	0.417263	0.503
	Coefficient -0.1530173 -1.108258 0.24257 0.2005876 0.2260773 0.4371159 -0.2791372 -0.4219575 -0.1459989 -0.1980446 -0.3379791 0.1130044 -0.3786446 -0.8186266 0.2254846 -0.2753396 -0.3955152 -0.252343	-0.15301730.4308924-1.1082580.22485820.242570.19901420.20058760.30184670.22607730.46658950.43711590.1808601-0.27913720.4777616-0.42195750.185997-0.14599890.2345623-0.19804460.440524-0.33797910.46296840.11300440.501687-0.17864460.2666266-0.81862660.64314490.22548460.4654247-0.27533960.3244157-0.39551520.5003821-0.2523430.1645334	CoefficientSECoefficient-0.15301730.43089240.8217086-1.1082580.22485820.10220410.242570.19901420.17617940.20058760.30184670.10824390.22607730.46658950.11469790.43711590.1808601-0.2170346-0.27913720.4777616-0.0081357-0.42195750.185997-0.6212832-0.14599890.23456230.0366407-0.19804460.440524-1.003895-0.33797910.46296840.21175180.11300440.501687-0.3665943-0.17864460.2666266-0.0574129-0.81862660.6431449-0.39250170.22548460.4654247-0.173955-0.27533960.3244157-0.1436197-0.39551520.5003821-0.8751139-0.2523430.1645334-0.6800214	CoefficientSECoefficientSE-0.15301730.43089240.821708663.25507-1.1082580.22485820.10220410.1501570.242570.19901420.17617940.20233550.20058760.30184670.10824390.23228890.22607730.46658950.11469790.42911630.43711590.1808601-0.21703460.1838576-0.27913720.4777616-0.00813570.2455046-0.42195750.185997-0.62128320.2259784-0.14599890.23456230.03664070.2700742-0.19804460.440524-1.00389563.25378-0.33797910.46296840.21175180.43243230.11300440.501687-0.36659430.9187376-0.17864460.2666266-0.05741290.1757947-0.81862660.6431449-0.39250170.21294120.22548460.4654247-0.1739550.4596444-0.27533960.3244157-0.14361970.3138688-0.39551520.5003821-0.87511390.92087-0.2523430.1645334-0.68002140.2194349	CoefficientSECoefficientSECoefficient-0.15301730.43089240.821708663.25507-0.9747259-1.1082580.22485820.10220410.150157-1.2104630.242570.19901420.17617940.20233550.06639060.20058760.30184670.10824390.23228890.09234370.22607730.46658950.11469790.42911630.11137930.43711590.1808601-0.21703460.18385760.6541505-0.27913720.4777616-0.00813570.2455046-0.2710015-0.42195750.185997-0.62128320.22597840.1993257-0.14599890.23456230.03664070.2700742-0.1826396-0.19804460.440524-1.00389563.253780.8058507-0.33797910.46296840.21175180.4324323-0.54973090.11300440.501687-0.36659430.91873760.4795986-0.17864460.2666266-0.05741290.1757947-0.1212318-0.81862660.6431449-0.39250170.2129412-0.42612490.22548460.4654247-0.1739550.45964440.3994397-0.27533960.3244157-0.14361970.3138688-0.1317199-0.39551520.5003821-0.87511390.920870.4795987-0.2523430.1645334-0.68002140.21943490.4276785	CoefficientSECoefficientSECoefficientSE-0.15301730.43089240.821708663.25507-0.974725963.25657-1.1082580.22485820.10220410.150157-1.2104630.2701270.242570.19901420.17617940.20233550.06639060.28415820.20058760.30184670.10824390.23228890.09234370.38077650.22607730.46658950.11469790.42911630.11137930.63391360.43711590.1808601-0.21703460.18385760.65415050.2576293-0.27913720.4777616-0.00813570.2455046-0.27100150.5371486-0.42195750.185997-0.62128320.22597840.19932570.2923526-0.14598990.23456230.03664070.2700742-0.18263960.3576506-0.19804460.440524-1.00389563.253780.805850763.25531-0.33797910.46296840.21175180.4324323-0.54973090.63366910.11300440.501687-0.36659430.91873760.47959861.048627-0.17864460.2666266-0.05741290.1757947-0.12123180.3194602-0.81862660.6431449-0.39250170.2129412-0.42612490.67717290.22548460.4654247-0.1739550.45964440.39943970.6541592-0.27533960.3244157-0.14361970.3138688-0.13171990.4514706-0.39551520.5003821-0.87511

Range of motion and degree of flexion – 72 hr. The overall chi-square test for inconsistency gave a p-value of 0.00

			95%CI	Loop-specific
оор		IF	(truncated)	Heterogeneity(τ^2)
-PA-PCA		1.51	(0.00,3.08)	0.370
EA-F-PCA	-	1.47	(0.68,2.27)	0.099
EA-PA-PCA	-	1.30	(0.59,2.01)	0.066
-F/S-PA-Placebo		1.23	(0.09,2.36)	0.092
EA-F-PA		1.08	(0.08,2.08)	0.124
EA-PA-Placebo	•	0.60	(0.05,1.15)	0.000
F-F/S-LP	•	0.57	(0.00,1.35)	0.000
EA-F/S-Placebo	+	0.24	(0.00,0.85)	0.001
EA-F-F/S	-	0.22	(0.00,1.18)	0.162

Statistically significant inconsistent loops are: EA-F-PCA, EA-PA-PCA, F-F/S-PA-Placebo, and EA-F-PA.

Range of motion	and degree of	flexion – 72 h	nr, node-splitti	ng approach	for assessme	ent of inconsi	stency
	Dir	rect	Indi	rect	Differ	rence	
Comparison	Coefficient	SE	Coefficient	SE	Coefficient	SE	p value
ACB vs. F*	-0.3333433	0.5341046	1.315371	63.25201	-1.648714	63.25425	0.979
EA vs. PCA	-1.348411	0.3130676	-0.1455156	0.245568	-1.202895	0.397693	0.002
EA vs. F	0.3311445	0.2458648	-0.3639623	0.291335	0.6951067	0.381488	0.068
EA vs. F/S	0.0616776	0.4111625	-0.0185808	0.313525	0.0802585	0.517062	0.877
EA vs. PA	0.3557507	0.3126832	-0.084731	0.281675	0.4404817	0.420891	0.295
EA vs. Placebo	-0.44378	0.3942789	-0.1265486	0.343011	-0.3172314	0.522615	0.544
F vs. PCA	-0.8004314	0.2587349	-0.3967944	0.356510	-0.4036371	0.439535	0.358
F vs. F/S*	-0.0525342	0.3224021	-0.0060463	0.376479	-0.0464879	0.495681	0.925
F vs. LB*	-0.0495111	0.5420836	-1.322157	63.25193	1.272646	63.25425	0.984
F vs. LP*	3.07E-09	0.5637277	-0.9420123	1.114131	0.9420123	1.247709	0.45
F vs. PA	1.103037	0.4808016	-0.1545393	0.230138	1.257577	0.533042	0.018
F/S vs. LP*	-0.3513431	0.5643847	0.5902556	1.113164	-0.9415987	1.247737	0.45
F/S vs. Placebo	-0.2568904	0.3992619	-0.2918441	0.403844	0.0349537	0.567929	0.951
ITM vs. PA*	0.1767092	0.5693702	1.460844	63.25261	-1.284135	63.25517	0.984
PA vs. PCA	-0.4085029	0.2339589	-1.303983	0.314287	0.8954803	0.391783	0.022
PA vs. Placebo	-0.2031902	0.4029434	-0.5200287	0.370774	0.3168386	0.547578	0.563

Incidence of nausea. The overall chi-square test for inconsistency gave a p-value of 0.78

_oop			IF	95%CI (truncated)	Loop-specific Heterogeneity(τ ²)
EA-LP-PCA			1.76	(0.00,4.80)	0.535
ACB-LP-PCA			 1.30	(0.00,3.81)	0.000
F-ITM-PA	•		1.18	(0.00,2.83)	0.266
F-F/S-PCA	•		0.98	(0.00,2.18)	0.051
EA-F-F/S	•		0.74	(0.00,2.34)	0.245
EA-PA-Placebo			0.71	(0.00,3.01)	0.871
F-LB-PA	•		0.55	(0.00,2.51)	0.087
F-F/S-PA	•		0.53	(0.00,2.59)	0.419
ACB-EA-F-LP	•		0.49	(0.00,2.61)	0.126
EA-F/S-Placebo	•		0.47	(0.00,2.52)	0.326
F-O-PCA	•		0.47	(0.00,2.30)	0.000
F-F/O-PCA	•		0.34	(0.00,2.19)	0.000
EA-F/S-PCA	•		0.23	(0.00,2.07)	0.387
EA-F-PA	•		0.21	(0.00,1.78)	0.504
ACB-F-PCA	•		0.18	(0.00,2.27)	0.000
F-PA-PCA	•		0.15	(0.00,1.10)	0.137
F/S-PA-PCA			0.12	(0.00,1.83)	0.269
EA-PA-PCA	•		0.09	(0.00,1.29)	0.429
EA-F-PCA	•		0.08	(0.00,1.14)	0.137
F/S-PA-Placebo	•	_	0.05	(0.00,1.52)	0.000
EA-F/S-PA	•		0.00	(0.00,2.35)	0.703
		1 1 2 3	Τ		

No statistically significant inconsistent loop.

Incidence of nat	usea, node-si	plitting appro	oach for asse	ssment of ir	consistency		
	Dire		Indi		Differ		
Comparison	Coefficient	SE	Coefficient	SE	Coefficient	SE	p value
ACB vs. PCA	0.6931472	1.052239	0.8764852	0.5083377	-0.183338	1.168595	0.875
ACB vs. F	0.0645389	0.6247811	0.194086	0.6665603	-0.1295471	0.9135939	0.887
ACB vs. LP	0.6076771	0.6373092	0.3243995	0.7574876	0.2832775	0.9899245	0.775
EA vs. PCA	-0.3475195	0.3165566	-0.0310423	0.2633837	-0.3164772	0.4096381	0.44
EA vs. F	-1.061652	0.3857529	-0.7857488	0.2695573	-0.2759035	0.4706926	0.558
EA vs. F/S	-1.012338	0.4881651	-1.027084	0.3428157	0.0147463	0.5946565	0.98
EA vs. FIC*	-0.8109302	1.024982	-0.4360011	177.1063	-0.3749291	177.1079	0.998
EA vs. LP	-0.0237372	0.6451976	-0.9678038	0.6227758	0.9440665	0.8978143	0.293
EA vs. PA	-0.8606707	0.3140512	-0.8877863	0.2703333	0.0271156	0.4144838	0.948
EA vs. Placebo	-0.4857773	0.4721532	-1.025841	0.4745298	0.540064	0.6702228	0.42
F vs. PCA*	0.8101371	0.1910932	0.4990138	0.2908007	0.3111232	0.3476041	0.371
F vs. F/O*	-1.339148	0.795221	-0.8795541	1.306543	-0.4595935	1.440739	0.75
F vs. F/S	-0.6857874	0.4721208	0.1141248	0.3254895	-0.7999122	0.5738268	0.163
F vs. ITM	-0.1641101	0.403795	1.155188	0.5193302	-1.319298	0.6579017	0.045
F vs. LB	0.538999	0.6835886	-0.0819795	0.7893912	0.6209786	1.044238	0.552
F vs. O*	0.7731899	0.7967708	1.499716	1.399377	-0.7265257	1.637156	0.657
F vs. PA	0.0041231	0.4221491	-0.0021237	0.2128128	0.0062468	0.4722136	0.989
F/O vs. PCA*	1.837901	0.7895154	2.297494	1.316883	-0.4595935	1.440739	0.75
F/S vs. PCA	0.5448988	0.4469654	1.035963	0.3308681	-0.4910643	0.5547069	0.376
F/S vs. LP/S*	-0.2513144	0.829033	1.717814	141.6229	-1.969128	141.6251	0.989
F/S vs. PA	0.0378069	0.5837985	0.1760267	0.3105053	-0.1382197	0.6612369	0.834
F/S vs. Placebo	0.0594187	0.632025	0.3779076	0.4574204	-0.318489	0.7801849	0.683
ITM vs. PA	-1.041959	0.4840993	0.2772134	0.4454132	-1.319173	0.6579086	0.045
LB vs. PA	0.0606246	0.7655006	-0.5604571	0.7102462	0.6210816	1.044242	0.552
LP vs. PCA	1.386294	0.8292657	-0.0563938	0.5215976	1.442688	0.9796661	0.141
O vs. PCA*	-0.4054651	0.7743302	0.3210606	1.436672	-0.7265257	1.637156	0.657
PA vs. PCA	0.6288444	0.1956505	0.8826101	0.2694704	-0.2537657	0.3324658	0.445
PA vs. Placebo	-0.1034821	0.575261	0.2474491	0.4280168	-0.3509312	0.7187812	0.625

			95%CI	Loop-specific
Loop		IF	(truncated)	Heterogeneity(τ^2)
EA-LP-PCA		2.96	(0.00,6.63)	0.000
ACB-LP-PCA		1.76	(0.00,4.40)	0.000
F-F/O-PCA	•	0.68	(0.00,3.37)	0.002
F-F/S-PA	•	0.55	(0.00,2.85)	0.000
EA-F-PCA		0.45	(0.00,1.96)	0.028
F-PA-PCA	-	0.28	(0.00,1.73)	0.000
EA-PA-PCA	•	0.20	(0.00,2.61)	0.131
EA-PA-Placebo	—	0.13	(0.00,2.49)	0.000
EA-F-PA	—	0.12	(0.00,2.48)	0.000
F-ITM-PA		0.02	(0.00,2.02)	0.000

Incidence of vomiting. The overall chi-square test for inconsistency gave a p-value of 0.86

No statistically significant inconsistent loops.

Incidence of vo	miting, node-	splitting app	roach for as	sessment of	inconsistenc	ÿ	
	Dire		Indi		Differ		
Comparison	Coefficient	SE	Coefficient	SE	Coefficient	SE	p value
ACB vs. PCA	-0.2231436	0.7472171	0.8477664	1.035006	-1.07091	1.276546	0.402
ACB vs. LP	0.4344528	0.6675763	-0.6364882	1.088096	1.070941	1.276562	0.402
EA vs. PCA	-0.1562231	0.3862708	0.3629983	0.5233694	-0.5192214	0.6442798	0.42
EA vs. F	-0.6398547	0.5605111	-0.8654923	0.4352848	0.2256377	0.7097481	0.751
EA vs. LP	1.723824	1.585753	-0.3513512	0.7441885	2.075175	1.751688	0.236
EA vs. PA	-0.6931541	0.939857	-0.9001252	0.3962995	0.2069711	1.019992	0.839
EA vs. Placebo	-0.5680925	0.4239398	-0.959295	0.7551563	0.3912025	0.8660153	0.651
F vs. PCA*	0.9054095	0.275122	0.4611106	0.5101542	0.4442989	0.577987	0.442
F vs. F/O*	-0.1381503	1.034067	-1.657462	1.444945	1.519311	1.779527	0.393
F vs. F/S	-0.4855155	0.9967893	0.2197364	0.4957511	-0.705252	1.113264	0.526
F vs. ITM	0.6526574	0.6601412	0.7921057	0.6790425	-0.1394483	0.947041	0.883
F vs. LB*	-0.7472144	0.8967126	1.494736	240.1165	-2.24195	240.1172	0.993
F vs. PA	-0.1868546	0.4911909	-0.0288454	0.3814063	-0.1580092	0.6218835	0.799
F/O vs. PCA*	1.642228	0.8501378	0.1229163	1.768487	1.519311	1.779527	0.393
F/S vs. LP/S*	0.8109302	0.931695	1.337916	177.1416	-0.5269858	177.1454	0.998
F/S vs. PA	-0.2518938	0.3836442	0.453057	1.044982	-0.7049508	1.11318	0.527
ITM vs. PA	-0.8644211	0.5988898	-0.7250697	0.7336324	-0.1393514	0.9470413	0.883
LP vs. PCA	1.098612	0.9067647	-0.965299	0.8517918	2.063911	1.244095	0.097
PA vs. PCA	0.8006114	0.476907	0.9611731	0.4030602	-0.1605618	0.624418	0.797
PA vs. Placebo	-5.26E-12	0.6299408	0.3913136	0.59429	-0.3913136	0.8660289	0.651

			95%CI	Loop-specific
_oop		IF	(truncated)	Heterogeneity(τ^2)
EA-F/S-PCA		2.23	(0.00,5.42)	0.894
-F/S-PCA		1.63	(0.00,5.94)	0.000
EA-F/S-LP/S		1.55	(0.00,6.07)	0.000
EA-PA-PCA	•	1.27	(0.00,4.00)	1.187
EA-LP/S-PCA	*	0.95	(0.00,7.61)	3.084
F-ITM-PA	•	0.94	(0.00,2.65)	0.000
F/S-LP/S-PCA		0.93	(0.00,5.46)	0.000
EA-F-F/S		0.70	(0.00,5.14)	0.000
EA-F-PCA	•	0.46	(0.00,2.82)	0.927
F-O-PCA	•	0.40	(0.00,5.08)	0.000
EA-F-PA	•	0.33	(0.00,2.67)	0.000
EA-F/S-Placebo	•	0.30	(0.00,2.25)	0.000
F-PA-PCA	•	0.26	(0.00,1.82)	0.000

Incidence of pruritus. The overall chi-square test for inconsistency gave a p-value of 0.53

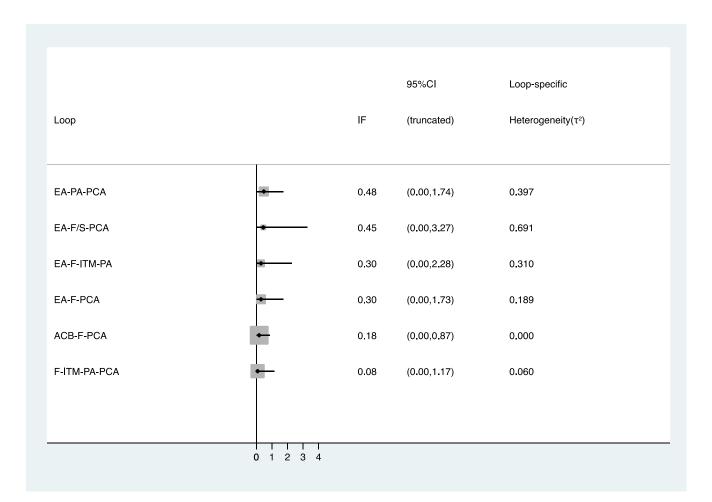
No statistically significant inconsistent loops.

Incidence of prur	Incidence of pruritus, node-splitting approach for assessment of inconsistency							
	Dire		Indi		Differ	ence		
Comparison	Coefficient	SE	Coefficient	SE	Coefficient	SE	p value	
ACB vs. F*	-0.3007541	0.6382014	-0.5683913	72.00921	0.2676372	72.01205	0.997	
ACB vs. LP*	0.3103735	0.6639063	0.4117093	174.5371	-0.1013358	174.5385	1	
EA vs. PCA	0.1060982	0.4592298	-0.3984662	0.6437125	0.5045645	0.7869844	0.521	
EA vs. F	-0.767923	0.6902078	-0.4557962	0.5556416	-0.3121268	0.8867636	0.725	
EA vs. F/S	0.1056915	0.8499	-1.043021	0.749233	1.148712	1.113892	0.302	
EA vs. LP/S	-3.378403	1.408454	-2.038614	1.373608	-1.339789	1.550906	0.388	
EA vs. PA	-1.323586	0.8935378	-0.2040484	0.5238123	-1.119538	1.035759	0.28	
EA vs. Placebo	0.5453094	0.5398764	-0.7127965	0.9414772	1.258106	1.087555	0.247	
F vs. PCA*	0.3780215	0.4458265	0.7270593	0.558428	-0.3490378	0.7121334	0.624	
F vs. F/S	-1.57E-11	2.099053	0.0233761	0.6730268	-0.0233761	2.204311	0.992	
F vs. ITM	1.866984	0.5245982	1.017863	0.7642936	0.8491206	0.9251792	0.359	
F vs. O*	1.098612	1.735358	2.259706	3.490437	-1.161094	4.226262	0.784	
F vs. PA	-0.2431781	0.7520428	0.2162203	0.4712606	-0.4593984	0.8873718	0.605	
F/S vs. PCA	2.074159	0.6980782	-0.9432318	0.6425759	3.01739	0.916774	0.001	
F/S vs. LP/S	-1.712167	1.657606	-2.523869	1.625823	0.8117023	2.321821	0.727	
F/S vs. Placebo	0.3043682	0.6562206	1.562581	0.8673087	-1.258212	1.087589	0.247	
ITM vs. PA	-1.133911	0.6171749	-1.982881	0.6894147	0.8489708	0.9251777	0.359	
LB vs. PA*	-0.9444616	0.994068	-0.659309	221.2806	-0.2851526	221.2842	0.999	
LP/S vs. PCA	2.19731	1.448461	2.999251	1.400938	-0.8019403	1.623688	0.621	
O vs. PCA*	-1.148623	1.734637	0.0124709	3.491512	-1.161094	4.226261	0.784	
PA vs. PCA	0.2649019	0.4809304	0.6766642	0.5966115	-0.4117623	0.7688093	0.592	


oop			IF	(truncated)	Heterogeneity(τ ²)
-F/S-ITM-PCA			- 2.51	(0.00,7.36)	0.714
/S-PA-PCA			2.20	(0.00,5.29)	0.000
A-F/S-PCA			1.72	(0.00,5.30)	0.000
A-F-PCA	•		1.34	(0.00,3.45)	0.369
A-F-PA	•		1.30	(0.00,5.69)	0.000
A-F/S-PA			1.20	(0.00,5.62)	0.000
-O-PCA	•		1.16	(0.00,4.77)	0.851
A-LP/S-PCA	•		0.78	(0.00,5.50)	0.136
/S-ITM-PA	•		0.31	(0.00,4.82)	0.000
-PA-PCA	•		0.20	(0.00,1.76)	0.000
A-PA-PCA	•	-	0.19	(0.00,4.35)	0.000
-ITM-PA	•	_	0.15	(0.00,4.45)	0.000
A-F-F/S-ITM	•		0.06	(0.00,3.43)	0.000

Incidence of urinary retention. The overall chi-square test for inconsistency gave a p-value of 0.63

No statistically significant inconsistent loops.


Incidence of uri	Incidence of urinary retention, node-splitting approach for assessment of inconsistency							
	Dire		Indi		Differ			
Comparison	Coefficient	SE	Coefficient	SE	Coefficient	SE	p value	
EA vs. PCA*	0.088126	0.4418928	-1.038561	0.7279835	1.126687	0.850891	0.185	
EA vs. F	-1.824365	0.7144198	-0.1950287	0.5626932	-1.629337	0.9250737	0.078	
EA vs. F/S	-0.8105212	0.91417	-1.13609	0.6560755	0.3255683	1.078982	0.763	
EA vs. LP*	-1.453435	0.7262349	-0.8229078	143.4533	-0.6305267	143.4535	0.996	
EA vs. LP/S*	-1.707076	1.586799	-0.9198667	2.466891	-0.7872097	2.32659	0.735	
EA vs. PA	-9.12E-09	2.033523	-0.6067226	0.4665893	0.6067226	2.086365	0.771	
EA vs. Placebo*	0.429277	0.6919675	-0.1066558	112.7308	0.5359329	112.7325	0.996	
F vs. PCA*	0.3329958	0.3718422	1.228497	0.5511468	-0.8955008	0.6596033	0.175	
F vs. ITM	0.2231456	0.685264	-0.1011038	1.063917	0.3242494	1.265507	0.798	
F vs. O*	1.054937	0.7846104	3.578254	1.807607	-2.523317	2.057952	0.22	
F vs. PA	0.3296232	0.5929673	0.1975347	0.4805999	0.1320885	0.7659751	0.863	
F/S vs. PCA	3.353683	1.212436	0.5409379	0.428353	2.812745	1.252677	0.025	
F/S vs. ITM	0.0571583	1.078968	0.5006949	0.8346525	-0.4435365	1.364118	0.745	
F/S vs. PA	0.3375085	0.3621657	1.009578	0.8159435	-0.6720698	0.8927079	0.452	
ITM vs. PA	-0.0344862	2.019648	0.1287357	0.636131	-0.1632219	2.117461	0.939	
LP/S vs. PCA*	1.14624	1.66796	1.93345	2.30066	-0.78721	2.326585	0.735	
O vs. PCA*	-1.578185	0.8805315	0.9451311	1.669814	-2.523316	2.057952	0.22	
PA vs. PCA	0.2771923	0.4153753	0.5087147	0.5454447	-0.2315224	0.6851182	0.735	

Incidence of deep vein thrombosis. The overall chi-square test for inconsistency gave a p-value of 0.72.

No statistically significant inconsistent loops.

Incidence of deep	Incidence of deep vein thrombosis, node-splitting approach for assessment of inconsistency							
	Direct		Indi	rect	Differ			
Comparison	Coefficient	SE	Coefficient	SE	Coefficient	SE	p value	
ACB vs. PA*	0.082521	2.0103	-0.3550928	629.2057	0.4376138	629.2089	0.999	
EA vs. PCA*	0.3125372	0.2862823	0.7419815	178.8849	-0.4294443	178.8851	0.998	
EA vs. F/S*	-1.098612	1.653621	-1.3847	2.194278	0.2860872	2.209673	0.897	
EA vs. LP*	1.198696	1.65333	0.3398967	357.9519	0.858799	357.9594	0.998	
EA vs. LP/S*	-1.03E-12	2.023122	0.6378487	3.551563	-0.6378487	4.087374	0.876	
F vs. PCA	0.5349014	0.7274506	-0.6346232	0.7257708	1.169525	1.027583	0.255	
F vs. PA	-0.7035206	0.6552993	0.4660159	0.7915335	-1.169536	1.027593	0.255	
F/S vs. PCA*	1.543841	1.570237	1.257753	2.370931	0.2860872	2.209673	0.897	
ITM vs. PA*	5.14E-12	2.019513	-0.3533907	460.4444	0.3533907	460.4488	0.999	
LP/S vs. PCA	-1.83E-12	2.023122	0.6378487	3.551563	-0.6378487	4.087373	0.876	
PA vs. PCA	0.0688774	0.3120075	1.238251	0.9790194	-1.169373	1.027535	0.255	
PA vs. Placebo*	-0.6688502	1.272822	0.3226509	372.0425	-0.991501	372.0437	0.998	

Estimated blood loss. The overall chi-square test for inconsistency gave a p-value of 0.94

No statistically significant inconsistent loops.

Estimated blood loss, node-splitting approach for assessment of inconsistency							
	Dire	Direct		rect	Differ		
Comparison	Coefficient	SE	Coefficient	SE	Coefficient	SE	p value
ACB vs. PCA	0.0401001	0.3161038	-0.0640787	0.58337	0.1041788	0.6634959	0.875
ACB vs. F	-0.2064229	0.5387896	-0.1022561	0.3872606	-0.1041668	0.6635246	0.875
EA vs. PCA	0.709248	0.323955	0.2618191	0.2823378	0.4474289	0.4293504	0.297
EA vs. F	0.3059553	0.4958643	0.298442	0.3204351	0.0075132	0.5903898	0.99
EA vs. F/S*	-0.1815293	0.2992853	-1.528499	0.8524654	1.34697	0.8977675	0.134
EA vs. PA	-0.1757482	0.2395254	0.2800382	0.3574382	-0.4557865	0.430816	0.29
F vs. PCA	0.1147157	0.2580575	0.2328201	0.3641744	-0.1181043	0.4463698	0.791
F vs. ITM	0.1081509	0.3922176	-0.0871463	0.6014805	0.1952972	0.7180627	0.786
F/S vs. PCA	1.041871	0.4146569	0.3564336	0.5186457	0.6854377	0.6666675	0.304
F/S vs. LP/S*	0.1579156	0.5402522	1.551419	63.24934	-1.393503	63.25165	0.982
ITM vs. PA	-0.2788404	0.5250596	-0.474294	0.4898589	0.1954535	0.7180872	0.785
PA vs. PCA	0.349773	0.2656194	0.7027329	0.329575	-0.3529599	0.4233473	0.404

Length of hospital stay. The overall chi-square test for inconsistency gave a p-value of 0.98

						95%Cl	Loop-specific
loop					IF	(truncated)	Heterogeneity(τ ²)
EA-F/S-PCA		٠		 	1.30	(0.00,3.13)	0.446
EA-F/S-PA					0.79	(0.00,2.86)	0.564
EA-LP/S-PCA	•				0.77	(0.00,3.85)	1.022
EA-F-F/S	•				0.68	(0.00,1.79)	0.091
EA-LP-PCA	•				0.59	(0.00,2.34)	0.240
F-O-PCA	•				0.59	(0.00,2.24)	0.134
EA-F-PCA	•				0.57	(0.00,1.33)	0.095
ACB-F-PA	•				0.57	(0.00,2.19)	0.414
F-LB-PA	•	-			0.55	(0.00,1.10)	0.000
EA-PA-PCA			-		0.37	(0.00,2.62)	0.730
EA-F-PA	-				0.27	(0.00,1.03)	0.154
F-PA-PCA					0.26	(0.00,1.50)	0.412
F-F/S-PA					0.25	(0.00,0.81)	0.000
EA-PA-Placebo	+				0.15	(0.00,1.54)	0.344
F/S-PA-PCA	•				0.08	(0.00,4.38)	0.839
F-F/S-PCA	•				0.02	(0.00,1.51)	0.176
				1			

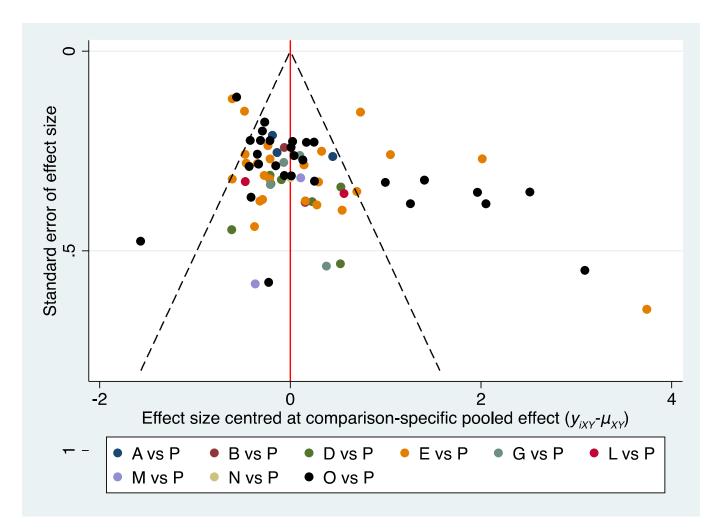
No statistically significant inconsistent loops.

Length of hospit	tal stay, n <u>ode</u>	-splitting ap	proach fo <u>r as</u>	sessmen <u>t o</u>	f inconsis <u>ten</u>	су	
	Dire		Indi		Differ		
Comparison	Coefficient	SE	Coefficient	SE	Coefficient	SE	p value
ACB vs. F	0.6466502	0.4828304	0.2385961	0.8598234	0.4080541	0.9860736	0.679
ACB vs. PA	-6.66E-07	0.832368	0.4070327	0.5290899	-0.4070334	0.9862925	0.68
EA vs. PCA	0.6650946	0.4375904	0.0409441	0.3140443	0.6241506	0.5389688	0.247
EA vs. F	-0.001331	0.4286922	-0.0930043	0.3410327	0.0916733	0.5477357	0.867
EA vs. F/S	-0.7513885	0.6280676	0.2613329	0.5235785	-1.012721	0.8164724	0.215
EA vs. LP	-1.94E-07	0.8491109	0.1781461	0.9088472	-0.1781463	1.243781	0.886
EA vs. LP/S	-0.9071609	0.8662528	-0.0091181	0.9098322	-0.8980428	1.251621	0.473
EA vs. PA	-0.3369344	0.4248725	-0.3050182	0.3199119	-0.0319162	0.5318858	0.952
EA vs. Placebo	-0.0913773	0.5958636	-0.219619	0.6524874	0.1282417	0.8835986	0.885
F vs. PCA*	0.253808	0.2724868	0.3953328	0.3228413	-0.1415248	0.422107	0.737
F vs. F/S	0.0554405	0.8359556	-0.1456975	0.4633272	0.201138	0.9557682	0.833
F vs. LB	-0.4737497	0.8390425	-0.1360737	0.6255839	-0.337676	1.046589	0.747
F vs. O*	1.644228	0.8776458	3.003368	1.568768	-1.35914	1.779549	0.445
F vs. PA	-0.067647	0.3230523	-0.3993951	0.2777636	0.3317481	0.4260538	0.436
F/S vs. PCA	0.3214547	0.6422589	0.4662873	0.5047088	-0.1448326	0.8146432	0.859
F/S vs. PA	-0.3793671	0.8240394	-0.0929553	0.4584158	-0.2864119	0.9429665	0.761
ITM vs. PA*	-0.2860966	0.8436401	-1.138077	63.25996	0.85198	63.26558	0.989
LB vs. PA	-0.1082627	0.5870797	0.2284359	0.8662437	-0.3366986	1.046447	0.748
LP vs. PCA	0.0855412	0.868532	0.2635141	0.8902644	-0.1779729	1.243752	0.886
LP/S vs. PCA*	0.7775993	0.663243	0.4802097	1.595281	0.2973896	1.728263	0.863
P vs. PCA*	-1.973074	0.8823793	-0.6139336	1.560782	-1.35914	1.779549	0.445
PA vs. PCA	0.6242624	0.2537391	0.489313	0.3171146	0.1349494	0.4058158	0.739
PA vs. Placebo	0.1084668	0.5948837	0.2373507	0.6533291	-0.1288839	0.8835733	0.884

* Note: all the evidence about these contrasts comes from the trials that directly compare them. Positive values favor the first treatment while negative value favor the second treatment.

Sensitivity analyses:

For pain at rest – 24 hr


_oop		IF	95%C I (truncated)	Loop-specific Heterogeneity(τ²)
ACB-LP-PCA		1.48	(0.61,2.35)	0.000
=/S-LP-PCA		1.36	(0.43,2.28)	0.000
-O-PCA		1.13	(0.00,3.96)	0.570
F/S-PA-PCA-Placebo		1.09	(0.00,3.37)	0.668
-F/S-PA-Placebo	_	0.93	(0.00,1.90)	0.109
ACB-F-PCA		0.82	(0.00,3.14)	0.558
EA-F-F/S		0.72	(0.00,2.30)	0.336
EA-F/S-PCA		0.70	(0.00,2.19)	0.339
F-ITM-PA	_	0.64	(0.00,1.87)	0.152
F-F/S-LP		0.62	(0.00,1.64)	0.063
EA-PA-Placebo		0.62	(0.00,2.55)	0.771
F-F/S-PCA	_	0.53	(0.00,1.87)	0.404
EA-F-PCA		0.53	(0.00,2.04)	0.548
F-PA-PCA		0.49	(0.00,1.72)	0.678
EA-LP/S-PCA		0.36	(0.00,1.33)	0.000
EA-F-PA	-	0.32	(0.00,1.85)	0.717
F-LP-PCA		0.26	(0.00,2.81)	0.615
ACB-F-LP		0.26	(0.00,0.91)	0.000
EA-PA-PCA -		0.11	(0.00,1.67)	0.928
EA-F/S-Placebo		0.10	(0.00,0.94)	0.000

Statistically significant inconsistent loops are ACB-LP-PCA and F/S-LP-PCA. The heterogeneity standard deviation is 0.81, reasonable. The overall chi-square test for inconsistency gave a p-value of 0.85.

PCA]												
0.16 (- 0.55,0.87)	Placebo												
0.99 (0.61,1.3 7)	0.83 (0.17,1.4 9)	ΡΑ											
0.63 (- 0.86,2.13)	0.47 (- 1.16,2.11)	-0.36 (- 1.88,1.17)	0										
0.90 (- 0.60,2.40)	0.74 (- 0.88,2.36)	-0.09 (- 1.61,1.43)	0.27 (- 1.84,2.38)	LP/S									
1.10 (0.16,2.0 4)	0.94 (- 0.20,2.08)	0.11 (- 0.88,1.09)	0.46 (- 1.28,2.21)	0.20 (- 1.56,1.96)	LP								
1.04 (- 0.62,2.71)	0.88 (- 0.87,2.63)	0.05 (- 1.57,1.67)	0.41 (- 1.81,2.63)	0.14 (- 2.08,2.36)	-0.06 (- 1.95,1.84)	LB							
0.33 (- 0.70,1.35)	0.17 (- 1.02,1.35)	-0.67 (- 1.68,0.35)	-0.31 (- 2.09,1.47)	-0.57 (- 2.37,1.22)	-0.77 (- 2.12,0.58)	-0.72 (- 2.63,1.20)	ІТМ		1				
1.26 (0.03,2.4 8)	1.10 (- 0.28,2.47)	0.26 (- 0.98,1.51)	0.62 (- 1.27,2.52)	0.36 (- 1.57,2.28)	0.16 (- 1.34,1.65)	0.21 (- 1.83,2.26)	0.93 (- 0.60,2.46)	FIC					
1.18 (0.59,1.7 7)	1.02 (0.23,1.8 0)	0.19 (- 0.44,0.81)	0.54 (- 1.04,2.13)	0.28 (- 1.31,1.86)	0.08 (- 0.94,1.10)	0.14 (- 1.60,1.87)	0.85 (- 0.28,1.98)	-0.08 (- 1.39,1.23)	F/S				
0.92 (0.55,1.2 8)	0.76 (0.03,1.4 9)	-0.07 (- 0.50,0.36)	0.28 (- 1.21,1.78)	0.02 (- 1.51,1.54)	-0.18 (- 1.11,0.75)	-0.12 (- 1.80,1.55)	0.59 (- 0.40,1.58)	-0.34 (- 1.51,0.83)	-0.26 (- 0.85,0.33)	F		1	
0.59 (0.09,1.1 0)	0.43 (- 0.29,1.15)	-0.40 (- 0.87,0.08)	-0.04 (- 1.60,1.52)	-0.31 (- 1.81,1.19)	-0.50 (- 1.53,0.52)	-0.45 (- 2.14,1.24)	0.27 (- 0.81,1.35)	-0.66 (- 1.94,0.62)	-0.58 (- 1.25,0.08)	-0.32 (- 0.85,0.20)	EA		
0.98 (0.10,1.8 7)	0.82 (- 0.29,1.93)	-0.01 (- 0.95,0.93)	0.35 (- 1.37,2.07)	0.08 (- 1.65,1.82)	-0.11 (- 1.19,0.96)	-0.06 (- 1.93,1.81)	0.66 (- 0.66,1.98)	-0.27 (- 1.74,1.20)	-0.19 (- 1.21,0.83)	0.07 (- 0.83,0.96)	0.39 (- 0.60,1.38)	АСВ	
0.29 (- 0.89,1.47)	0.13 (- 1.25,1.51)	-0.70 (- 1.94,0.54)	-0.34 (- 2.25,1.56)	-0.61 (- 2.52,1.30)	-0.81 (- 2.32,0.70)	-0.75 (- 2.79,1.29)	-0.04 (- 1.60,1.53)	-0.97 (- 2.67,0.74)	-0.89 (- 2.21,0.43)	-0.63 (- 1.86,0.61)	-0.30 (- 1.59,0.98)	-0.69 (- 2.17,0.78)	AA

Sensitivity analysis, pain at rest – 24 hr

GRADE analyses

Comparison-adjusted funnel plot. Assuming that in all PCA studies, the other drug is favored in smaller studies will give a large effect favoring the other drug that is compared to PCA. Egger's test gave p-value of 0 suggesting that there are small study effects in PCA studies. Since we do not know the direction of small study effects in each comparison (which drug will it favor). A = AA, B = ACB, D = EA, E = F, G = F/S, L = LP, M = LP/S, N = O, and P = PCA.

	AA vs. PCA	ACB vs F	ACB vs. LP	ACB vs. PA	ACB vs PCA	ACB/S vs. F/S	EA vs. F	EA vs. F/S	EA vs. FIC	EA vs. LP	EA vs. LP/S	EA vs. PA	EA vs. PCA	EA vs. Placebo	F vs. F/O	F vs. F/S	F vs. FIC	F vs. ITM	F vs. LB	F vs. LP	F vs. O	F vs. PA	F vs. PCA	F vs. Placebo	F/O vs. PA	F/S vs. F/S/O	F/S vs. LP	F/S vs. LP/S	F/S vs. PA	F/S vs. PCA	F/S vs. Placebo	ITM vs. PA	LB vs. PA	LP vs. PCA	LP/S vs. PCA	O vs. PCA	PA vs. PCA	PA vs. Placebo
AA vs. PCA	100	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ACB vs F	0	22.6	13.3	2.1	13.2	0	3	0.2	0.7	3.6	0.1	0.4	1.1	0.4	0.4	7.2	0.7	0.3	1.2	5.3	0.7	3.6	5.7	0.4	0.4	0	3.7	0.4	0.1	2.9	0	0.3	1.2	0.7	0.4	0.7	3.2	0.1
ACB vs. LP	0	13.6	33.4	1.4	9.6	0	1.7	0.1	0.4	7.6	0.4	0.6	3.9	0.4	0	4.2	0.4	0	0.1	8.3	0.1	0.3	0.6	0.1	0	0	6.7	0.1	0.4	2.1	0.1	0	0.1	1.9	0.5	0.1	0.4	0.3
ACB vs. PA	0	16.3	10.6	2.6	11.9	0	0.1	0	0	3.5	0	2.3	0.2	0.8	1.6	0.3	0	0.9	4.1	3.4	0	13	0	0.6	1.6	0	2.9	0	2.2	0.1	0.3	0.9	4.1	0.8	0	0	13	1.7
ACB vs PCA	0	16.1	11.4	1.9	16.3	0	1.6	0.1	0.4	4.1	0.4	0	9	0.2	0.3	3.9	0.4	0.2	0.9	2.9	0.9	2.8	7.7	0.3	0.3	0	3.1	0.6	0.2	6	0	0.2	0.9	1.4	1.1	0.9	6.4	0.1
ACB/S vs. F/S	0	0	0	0	0	100	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
EA vs. F	0	3.5	2	0	1.5	0	12.6	1.5	3.1	5.8	2.6	3.3	15.5	2.3	0.6	8.4	3.1	0.3	1.6	2.6	0.8	4.9	7	1.2	0.6	0	1.2	1.6	0.2	3.7	0.3	0.3	1.6	0	1	0.8	3.4	0.8
EA vs. F/S	0	1.4	0.8	0	0.6	0	9.7	2.1	2.4	5.5	З	2.9	15.2	2.1	0.2	21.1	2.4	0.1	0.6	1	0.3	1.9	2.7	0.7	0.2	0	3.8	2.7	2	10.5	0.8	0.1	0.6	0	0.3	0.3	1.3	0.6
EA vs. FIC	0	2.1	1.2	0	0.9	0	7.5	0.9	18.1	3.4	1.5	2	9.3	1.4	0.4	5	26	0.2	0.9	1.6	0.5	2.9	4.2	0.7	0.4	0	0.7	1	0.1	2.2	0.2	0.2	0.9	0	0.6	0.5	2	0.5
EA vs. LP	0	5.7	11.8	0.7	5.4	0	7.8	1.1	1.9	13.9	2	2.3	12.2	1.6	0.2	1.4	1.9	0.1	0.5	8.1	0.2	1.7	2.1	0.6	0.2	0	7	1.2	0.4	2.5	0.3	0.1	0.5	2	0.8	0.2	0.8	0.6
EA vs. LP/S	0	0.2	1.2	0	Ч	0	6.5	1.2	1.6	3.7	17.2	2.1	14	1.4	0	7.7	1.6	0	0	0.6	0.2	0.1	1.5	0.4	0	0	1.6	12.9	0.6	1.4	0.4	0	0	0.3	17.6	0.2	1.9	0.6

	0	1.1	2	6.0	0.1	0	6	1.2	2.2	4.6	2.3	5	15	2.5	1.4	2	2.2	0.8	3.7	1.4	0.2	11.7	1.6	0.1	1.4	0	1	1.1	2.2	0.8	0	0.8	3.7	0.2	1.2	0.2	13.6	2.5
EA vs. PA	0	0.8	2.8	0	3.6	0	9.6	1.4	2.4	5.6	3.5	3.4	26.5	2.1	0.2	2.5	2.4	0.1	0.5	0.9	0.9	1.5	7.1	0.6	0.2	0	1.1	0.7	0.1	9	0.3	0.1	0.5	0.8	2.8	0.9	7	1.2
EA vs. PCA EA vs. Placebo	0	1.4	1.3	0.4	0.5	0	7.3	Ļ	1.8	3.6	1.8	2.9	10.8	13.6	0.4	0.5	1.8	0.2	1	1.3	0.3	3.1	2.5	10.3	0.4	0	1	1.1	0.6	2.3	4.4	0.2	1	0.1	0.7	0.3	9	14.5
F vs. F/O	0	1.3	0.1	0.6	0.8	0	1.5	0.1	0.4	0.4	0	1.3	0.7	0.3	28.4	3.6	0.4	0.7	3.3	0.6	0.4	10.3	ю	0.6	25.5	0	0	0.2	1.5	1.6	0.2	0.7	3.3	0.1	0.2	0.4	6.7	1.1
F vs. F/S	0	2.8	1.6	0	1.3	0	2.8	1.1	0.7	0.3	1	0.2	1.3	0	0.5	43.8	0.7	0.3	1.3	2.1	0.7	4	5.7	0.7	0.5	0	4	1.9	2.7	10.8	0.9	0.3	1.3	0	0.9	0.7	2.8	0.2
F vs. FIC	0	1.6	0.9	0	0.7	0	5.7	0.7	19.8	2.6	1.2	1.5	7	1.1	0.3	3.8	37.7	0.2	0.7	1.2	0.4	2.2	3.2	0.6	0.3	0	0.5	0.7	0.1	1.7	0.1	0.2	0.7	0	0.4	0.4	1.6	0.4
F vs. ITM	0	1.6	0.1	0.8	1	0	1.9	0.1	0.5	0.5	0	1.7	0.9	0.4	1.6	4.6	0.5	6.3	4.2	0.8	0.5	13.1	3.8	0.8	1.6	0	0	0.3	1.9	2	0.2	33.3	4.2	0.2	0.3	0.5	8.6	1.4
F vs. LB	0	1.7	0.1	0.8	1.1	0	1.9	0.1	0.5	0.5	0	1.7	0.9	0.4	1.6	4.7	0.5	1	14	0.8	0.5	13.5	3.9	0.9	1.6	0	0	0.3	1.9	2	0.2	1	30.8	0.2	0.3	0.5	8.8	1.5
F vs. LP	0	9.8	15	0.8	4.4	0	4.2	0.2	1	9.5	0.4	0.8	2.2	0.6	0.4	10.1	1	0.2	1	11.7	0.6	3.1	4.8	0.5	0.4	0	8.9	0.3	0.3	0.9	0	0.2	1	2.2	0.1	0.6	2.6	0.1
F vs. O	0	2.4	0.2	0	2.6	0	2.4	0.1	0.6	0.5	0.2	0.2	4	0.3	0.4	5.9	0.6	0.2	1.1	1.1	26.4	3.5	7.3	0.4	0.4	0	0.1	0.6	0.1	4.9	0	0.2	1.1	0.4	0.8	25.3	5.3	0.1
F vs. PA	0	2.6	0.2	1.2	1.7	0	ß	0.2	0.7	0.8	0	2.7	1.5	0.6	2.6	7.3	0.7	1.5	6.7	1.2	0.7	21.1	6.1	1.3	2.6	0	0.1	0.5	Э	3.2	0.4	1.5	6.7	0.3	0.4	0.7	13.8	2.3
F vs. PCA	0	4.7	0.5	0	5.2	0	4.9	0.3	1.2	1.1	0.4	0.4	8	0.6	0.8	11.8	1.2	0.5	2.2	2.1	1.8	6.9	14.7	0.8	0.8	0	0.3	1.2	0.3	9.8	0	0.5	2.2	0.8	1.6	1.8	10.5	0.2
F vs. Placebo	0	2	0.6	0.4	1	0	4.6	0.4	1.1	1.8	0.6	0.1	3.7	12.4	1	7.8	1.1	0.6	2.6	1.3	0.5	8.1	4.2	12.3	Ч	0	0	0.4	0.8	1.2	5	0.6	2.6	0.1	0.2	0.5	3.1	16.4

F/O vs. PA	0	1.3	0.1	0.6	0.8	0	1.5	0.1	0.4	0.4	0	1.3	0.7	0.3	25.7	3.6	0.4	0.7	3.3	0.6	0.4	10.3	ю	0.7	27.8	0	0	0.2	1.5	1.6	0.2	0.7	3.3	0.1	0.2	0.4	6.8	1.1
F/S vs. F/S/O	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	100	0	0	0	0	0	0	0	0	0	0	0	0
F/S vs. LP	0	7.2	12.9	0.7	4.9	0	2	0.9	0.5	8.6	1.1	0.6	з	0.6	0	20.1	0.5	0	0.1	9.4	0.1	0.2	0.6	0	0	0	11	1.6	1.6	8.1	0.5	0	0.1	2.1	0.5	0.1	0.6	0
F/S vs. LP/S	0	1.2	0.3	0	1.5	0	3.9	1	1	2.2	12.5	1	2.6	0.8	0.2	14.1	1	0.1	0.6	0.5	0.5	1.8	4.1	0.3	0.2	0	2.3	14.4	1.4	9.3	0.5	0.1	0.6	0.3	16.2	0.5	3.1	0.1
F/S vs. PA	0	0.2	1.3	1	0.5	0	0.5	0.9	0.1	0.9	0.7	2.3	0.3	0.5	1.7	23.8	0.1	1	4.6	0.5	0.1	14.3	1.1	0.6	1.7	0	2.8	1.7	4.3	9.9	0.9	1	4.6	0.2	1	0.1	13	2
F/S vs. PCA	0	2.3	1.7	0	3.9	0	2.5	1.1	0.6	1.3	0.4	0.2	6.5	0.5	0.4	21.8	0.6	0.2	1.1	0.4	1.1	3.5	9.5	0.2	0.4	0	3.3	2.6	2.3	17.4	0.7	0.2	1.1	0.8	2.2	1.1	7.8	0.4
F/S vs. Placebo	0	0	0.5	0.3	0.1	0	2.2	1	0.6	1.8	1.2	0	4	10.6	0.6	19.8	0.6	0.3	1.5	0.2	0	4.6	0.2	10.2	0.6	0	2.5	1.5	2.3	7.6	4.8	0.3	1.5	0.1	0.4	0	4.3	14
ITM vs. PA	0	0.5	0	0.2	0.3	0	0.6	0	0.1	0.2	0	0.5	0.3	0.1	0.5	1.4	0.1	10.6	1.3	0.2	0.1	4.2	1.2	0.3	0.5	0	0	0.1	0.6	0.6	0.1	70.2	1.3	0.1	0.1	0.1	2.7	0.5
LB vs. PA	0	0.8	0.1	0.4	0.5	0	0.9	0.1	0.2	0.2	0	0.8	0.4	0.2	0.8	2.1	0.2	0.4	14.1	0.4	0.2	6.2	1.8	0.4	0.8	0	0	0.1	0.9	0.9	0.1	0.4	60.5	0.1	0.1	0.2	4.1	0.7
LP vs. PCA	0	5.1	14.1	0.7	8.3	0	0.2	0	0.1	9.5	0.7	0.4	8.6	0.1	0.4	0.6	0.1	0.2	0.9	8.9	0.9	2.9	7.7	0.2	0.4	0	7.9	0.7	0.4	7.3	0.1	0.2	0.9	2.7	1.4	0.9	6.3	0.3
LP/S vs. PCA	0	0.9	1.3	0	2.2	0	2.1	0.1	0.5	1.3	15.1	0.9	9.7	0.5	0.2	5.9	0.5	0.1	0.5	0.1	0.6	1.5	5	0.1	0.2	0	0.7	14.3	0.7	7	0.1	0.1	0.5	0.5	21.3	0.6	4.4	0.5
O vs. PCA	0	2.3	0.2	0	2.6	0	2.4	0.1	0.6	0.5	0.2	0.2	3.9	0.3	0.4	5.8	0.6	0.2	1.1	1	25	3.4	7.2	0.4	0.4	0	0.1	0.6	0.1	4.9	0	0.2	1.1	0.4	0.8	27.4	5.2	0.1
PA vs. PCA	0	2.1	0.2	1.1	3.5	0	1.9	0.1	0.5	0.3	0.4	2.8	6.3	1.1	1.5	4.7	0.5	0.9	4.1	0.9	1	12.7	8.5	0.5	1.5	0	0.2	0.7	2.5	6.5	0.3	0.9	4.1	0.6	1.2	1	22.8	1.9

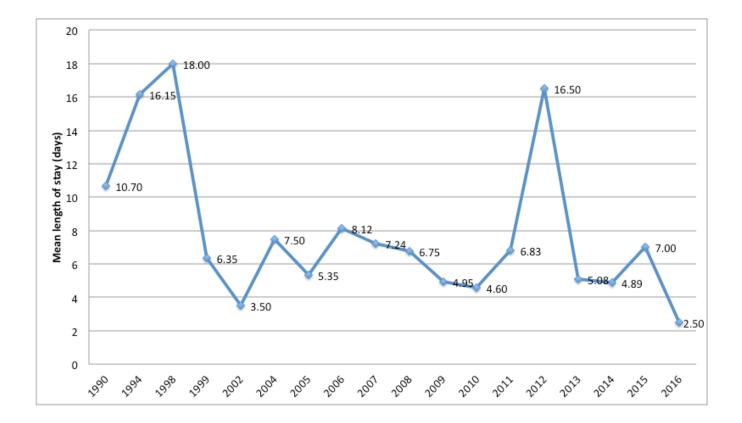
PA vs. Placebo	0	0.2	0.8	0.7	0.4	0	2.2	0.2	0.5	1.2	0.6	2.5	5.2	12.4	1.2	1.8	0.5	0.7	3.2	0.3	0.1	10	0.9	11.7	1.2	0	0	0.1	1.9	1.6	4.9	0.7	3.2	0.1	0.6	0.1	8.9	19.2
AA vs. ACB	31.4	11.1	7.8	1.3	11.2	0	1.1	0.1	0.3	2.8	0.3	0	4.1	0.1	0.2	2.7	0.3	0.1	0.6	2	0.6	1.9	5.3	0.2	0.2	0	2.1	0.4	0.1	4.1	0	0.1	0.6	0.9	0.7	0.6	4.4	0.1
AA vs. ACB/S	24.8	1.1	0.8	0	2	24.8	1.2	0.5	0.3	0.6	0.2	0.1	3.3	0.2	0.2	11	0.3	0.1	0.6	0.2	0.6	1.8	4.8	0.1	0.2	0	1.7	1.3	1.2	8.8	0.3	0.1	0.6	0.4	1.1	0.6	3.9	0.2
AA vs. EA	35.3	0.5	1.8	0	2.3	0	6.2	0.9	1.5	3.7	2.2	2.2	17.1	1.4	0.1	1.6	1.5	0.1	0.3	0.6	0.6	1	4.6	0.4	0.1	0	0.7	0.4	0	3.9	0.2	0.1	0.3	0.5	1.8	0.6	4.5	0.8
AA vs. F	34.4	3.1	0.3	0	3.4	0	3.2	0.2	0.8	0.7	0.3	0.3	5.2	0.4	0.6	7.8	0.8	0.3	1.4	1.4	1.2	4.5	9.6	0.5	0.6	0	0.2	0.8	0.2	6.5	0	0.3	1.4	0.6	1.1	1.2	6.9	0.2
AA vs. F/O	27.4	1.8	0.2	0.3	2.3	0	1.8	0.1	0.4	0.4	0.2	0.9	3.8	0.4	14	4.4	0.4	0.1	0.5	0.8	0.7	1.6	6.2	0.1	13.4	0	0.1	0.5	0.6	4.4	0.1	0.1	0.5	0.4	0.7	0.7	8.9	0.4
AA vs. F/S	32.9	1.5	1.1	0	2.6	0	1.7	0.7	0.4	0.8	0.2	0.1	4.3	0.3	0.3	14.7	0.4	0.2	0.7	0.3	0.8	2.3	6.4	0.1	0.3	0	2.2	1.7	1.5	11.6	0.4	0.2	0.7	0.5	1.5	0.8	5.2	0.3
AA vs. F/S/O	24.8	1.1	0.8	0	2	0	1.2	0.5	0.3	0.6	0.2	0.1	3.3	0.2	0.2	11	0.3	0.1	0.6	0.2	0.6	1.8	4.8	0.1	0.2	24.8	1.7	1.3	1.2	8.8	0.3	0.1	0.6	0.4	1.1	0.6	3.9	0.2
AA vs. FIC	27.7	1.7	0.7	0	2.4	0	0.2	0.2	10.2	0.7	0.8	0.5	7.6	0.2	0.3	4.4	17.5	0.2	0.8	0.5	0.7	2.6	6.2	0.1	0.3	0	0.1	0.3	0.1	4.4	0.1	0.2	0.8	0.4	1.1	0.7	4.8	0.3
AA vs. ITM	25.9	1.2	0.1	0.5	1.9	0	1.2	0.1	0.3	0.2	0.2	1.3	3.3	0.5	0.6	2.9	0.3	3.8	1.7	0.6	0.6	5.2	4.8	0.2	0.6	0	0.1	0.4	1.1	3.6	0.1	22	1.7	0.3	0.6	0.6	10.8	0.8
AA vs. LB	26.8	1.4	0.2	0.5	2	0	1.3	0.1	0.3	0.3	0.2	1.2	3.5	0.5	0.6	3.3	0.3	0.3	7.2	0.6	0.6	4.5	5.2	0.1	0.6	0	0.1	0.4	1	3.8	0.1	0.3	19.5	0.3	0.7	0.6	10.7	0.8
AA vs. LP	30.1	3.6	9.8	0.5	5.8	0	0.2	0	0	6.7	0.5	0.3	6	0.1	0.2	0.4	0	0.1	0.6	6.2	0.6	2	5.4	0.1	0.2	0	5.5	0.5	0.3	5.1	0	0.1	0.6	1.9	1	0.6	4.4	0.2
AA vs. LP/S	33.7	0.6	0.9	0	1.5	0	1.4	0.1	0.3	0.8	10	0.6	6.4	0.3	0.1	3.9	0.3	0.1	0.3	0.1	0.4	1	3.3	0.1	0.1	0	0.4	9.5	0.5	4.7	0.1	0.1	0.3	0.3	14.2	0.4	2.9	0.3

AA vs O	34.4	1.5	0.2	0	1.7	0	1.6	0.1	0.4	0.3	0.1	0.1	2.6	0.2	0.3	3.8	0.4	0.2	0.7	0.7	16.4	2.2	4.7	0.3	0.3	0	0.1	0.4	0.1	3.2	0	0.2	0.7	0.3	0.5	18	3.4	0.1
AA vs PA	33.5	1.4	0.2	0.7	2.3	0	1.3	0.1	0.3	0.2	0.3	1.9	4.2	0.7	1	3.1	0.3	0.6	2.7	0.6	0.7	8.4	5.7	0.3	1	0	0.1	0.5	1.7	4.3	0.2	0.6	2.7	0.4	0.8	0.7	15.2	1.2
AA vs Placebo	29.9	1.4	0.7	0.2	2.3	0	0.2	0.1	0	0.6	0.7	0.2	7	8.3	0.2	1.7	0	0.1	0.4	0.4	0.7	1.3	5.6	7.5	0.2	0	0.1	0.4	0.4	4.8	3.2	0.1	0.4	0.4	1	0.7	8	10.8
ACB vs ACB/S	0	12.1	8.6	1.2	8.4	30.3	0.5	0.6	0.1	2	0.5	0.1	0	0.2	0	16.1	0.1	0	0.1	2.2	0.1	0.3	0.8	0.1	0	0	4.1	1.1	1.3	6.7	0.4	0	0.1	0.4	0.6	0.1	0.6	0.1
ACB vs EA	0	15	12.3	1.7	11.9	0	8.6	1.2	2.1	7.9	2.2	2.6	14.4	1.7	0.2	1.6	2.1	0.1	0.4	1.9	0.2	1.4	1.6	0.7	0.2	0	1.9	1.1	0.1	0.9	0.3	0.1	0.4	0.6	1.1	0.2	0.5	0.8
ACB vs F/O	0	14	8.6	1.7	9.1	0	1	0.1	0.3	2.6	0	1	0.3	0.4	17.3	2.5	0.3	0.3	1.3	3.1	0.2	4	1.9	0.1	16.1	0	2.4	0.1	0.9	0.9	0.1	0.3	1.3	0.5	0.1	0.2	6.2	0.6
ACB vs F/S	0	17.4	12.3	1.8	12	0	0.7	0.9	0.2	2.8	0.7	0.1	0	0.3	0.1	23.1	0.2	0	0.1	3.1	0.1	0.4	1.1	0.1	0.1	0	5.8	1.6	1.9	9.6	0.6	0	0.1	0.6	0.9	0.1	0.8	0.2
ACB vs F/S/O	0	12.1	8.6	1.2	8.4	0	0.5	0.6	0.1	2	0.5	0.1	0	0.2	0	16.1	0.1	0	0.1	2.2	0.1	0.3	0.8	0.1	0	30.3	4.1	1.1	1.3	6.7	0.4	0	0.1	0.4	0.6	0.1	0.6	0.1
ACB vs FIC	0	14.7	9.8	1.4	9.6	0	1.5	0.3	12.7	4.1	0.7	0.7	5.1	0.4	0.1	2.6	22.7	0.1	0.4	2.9	0.2	1.1	2	0	0.1	0	2.2	0.2	0	1	0.1	0.1	0.4	0.5	0.5	0.2	1.2	0.3
ACB vs ITM	0	12.3	7.8	1.8	8.7	0	0.3	0	0.1	2.5	0	1.5	0.1	0.5	1	0.8	0.1	4.7	2.6	2.6	0.1	8	0.5	0.4	1	0	2.2	0	1.4	0.2	0.2	25.9	2.6	0.5	0	0.1	8.6	1.1
ACB vs LB	0	13.1	8.3	1.9	9.1	0	0.5	0	0.1	2.6	0	1.5	0	0.5	0.9	1.2	0.1	0.5	9.4	2.8	0.1	7.4	0.8	0.3	0.9	0	2.3	0.1	1.4	0.3	0.2	0.5	23	0.6	0	0.1	8.4	1
ACB vs LP/S	0	12.7	9.4	1.4	10.7	0	2.6	0.1	0.6	3.9	10.5	0.7	2.1	0.4	0.1	6.9	0.6	0.1	0.3	2.1	0.3	1.1	2.4	0.3	0.1	0	2.8	10.1	0.4	0.2	0.1	0.1	0.3	0.7	13.6	0.3	1.8	0.2
ACB vs O	0	15.9	10.2	1.6	12.3	0	0.4	0	0.1	3.2	0.2	0.1	2.2	0.1	0	1.1	0.1	0	0.1	3.3	19.9	0.2	1.2	0	0	0	2.8	0.1	0.1	1.6	0	0	0.1	0.9	0.3	20.1	1.6	0

ACB vs Placebo	0	13.7	9.3	1.7	9.6	0	1.4	0.2	0.4	3.7	0.4	0.2	3.5	9.5	0.4	Ч	0.4	0.3	1.2	2.6	0.1	3.6	0.7	8.9	0.4	0	2.4	0	0.5	1	3.7	0.3	1.2	0.5	0.4	0.1	4.4	12.3
ACB/S vs EA	0	1	0.5	0	0.4	30	6.8	1.4	1.7	3.9	2.1	2	10.6	1.5	0.2	14.7	1.7	0.1	0.4	0.7	0.2	1.3	1.9	0.5	0.2	0	2.6	1.9	1.4	7.3	0.6	0.1	0.4	0	0.2	0.2	0.9	0.4
ACB/S vs F	0	1.7	1	0	0.8	39.5	1.7	0.6	0.4	0.2	0.6	0.1	0.8	0	0.3	26.5	0.4	0.2	0.8	1.3	0.4	2.4	3.4	0.4	0.3	0	2.4	1.2	1.7	6.5	0.5	0.2	0.8	0	0.6	0.4	1.7	0.1
ACB/S vs F/O	0	0.5	0.7	0.3	0.1	27.3	0.4	0.5	0.1	0.3	0.4	0.8	0.2	0.2	14.2	16.5	0.1	0.3	1.1	0.6	0.1	3.6	0.9	0	13.1	0	1.7	0.9	1.9	5.3	0.5	0.3	1.1	0.1	0.5	0.1	4.6	0.7
ACB/S vs F/S/O	0	0	0	0	0	50	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	50	0	0	0	0	0	0	0	0	0	0	0	0
ACB/S vs FIC	0	0.5	0.3	0	0.2	28.7	1.6	0.8	10.2	1.5	1	0.6	4.1	0.5	0.1	17.4	18.5	0	0.2	0.3	0.1	0.6	0.9	0	0.1	0	2.1	1.2	1.3	5.6	0.4	0	0.2	0	0.2	0.1	0.4	0.1
ACB/S vs ITM	0	0	0.7	0.5	0.2	24.8	0.1	0.5	0	0.4	0.4	1.1	0.1	0.3	0.8	13.8	0	3.8	2.2	0.3	0	6.7	0.2	0.3	0.8	0	1.6	0.9	2.2	5.4	0.5	21	2.2	0.1	0.5	0	6.5	1
ACB/S vs LB	0	0.2	0.7	0.5	0.1	26.3	0	0.5	0	0.4	0.4	1.1	0	0.2	0.8	14.9	0	0.4	7.7	0.4	0	6.3	0	0.2	0.8	0	1.7	1	2.3	5.6	0.5	0.4	18.6	0.1	0.5	0	6.3	1
ACB/S vs LP	0	5	8.9	0.5	3.4	30.5	1.4	0.7	0.3	6	0.7	0.4	2.1	0.4	0	14	0.3	0	0	6.5	0.1	0.1	0.4	0	0	0	7.6	1.1	1.1	5.6	0.4	0	0	1.4	0.4	0.1	0.4	0
ACB/S vs LP/S	0	0.8	0.2	0	1.1	30.1	2.7	0.7	0.7	1.5	8.7	0.7	1.8	0.6	0.2	9.9	0.7	0.1	0.4	0.3	0.3	1.3	2.9	0.2	0.2	0	1.6	10.1	1	6.5	0.3	0.1	0.4	0.2	11.3	0.3	2.2	0
ACB/S vs O	0	0.1	0.9	0	0.9	29.9	0.1	0.6	0	0.5	0.3	0	1.7	0.1	0	16.7	0	0	0.1	0.4	15	0.2	1.6	0.1	0	0	1.9	1.2	1.3	7.8	0.4	0	0.1	0.2	0.9	15	1.8	0.2
ACB/S vs PA	0	0.1	0.9	0.7	0.3	30.6	0.4	0.6	0.1	0.6	0.5	1.6	0.2	0.4	1.2	16.5	0.1	0.7	3.2	0.3	0.1	9.9	0.7	0.4	1.2	0	1.9	1.2	3	6.9	0.6	0.7	3.2	0.1	0.7	0.1	6	1.4
ACB/S vs PCA	0	1.5	1.1	0	2.6	32.9	1.7	0.7	0.4	0.8	0.2	0.1	4.3	0.3	0.3	14.7	0.4	0.2	0.7	0.3	0.8	2.3	6.4	0.1	0.3	0	2.2	1.7	1.5	11.6	0.4	0.2	0.7	0.5	1.5	0.8	5.2	0.3

ACB/S vs Placebo	0	0	0.3	0.2	0.1	28.3	1.6	0.7	0.4	1.3	0.8	0	2.9	7.6	0.4	14.2	0.4	0.2	Ч	0.2	0	3.3	0.1	7.3	0.4	0	1.8	1.1	1.7	5.4	3.4	0.2	7	0	0.3	0	3.1	10
EA vs F/O	0	1.7	1.5	0.4	0.6	0	8	1	2	3.9	1.8	3.1	11.4	1.8	17	3.8	2	0.2	0.9	1.5	0.4	2.8	3.1	0.5	16.1	0	0.8	1	0.8	1.6	0.1	0.2	0.9	0.1	0.8	0.4	6.6	1.3
EA vs F/S/O	0	1	0.5	0	0.4	0	6.8	1.4	1.7	3.9	2.1	2	10.6	1.5	0.2	14.7	1.7	0.1	0.4	0.7	0.2	1.3	1.9	0.5	0.2	30	2.6	1.9	1.4	7.3	0.6	0.1	0.4	0	0.2	0.2	0.9	0.4
EA vs ITM	0	1	1.4	0.6	0.2	0	6.8	0.9	1.7	3.4	1.7	3.5	10.9	1.8	0.9	2	1.7	4.6	2.2	1.1	0.2	7	1.6	0.2	0.9	0	0.7	0.8	1.4	0.9	0	26	2.2	0.1	0.8	0.2	8.9	1.6
EA vs LB	0	1.2	1.5	0.6	0.3	0	7.3	0.9	1.8	3.6	1.8	3.5	11.3	1.9	0.8	2.4	1.8	0.4	8.9	1.3	0.2	6.3	2	0.2	0.8	0	0.8	0.9	1.3	1.1	0	0.4	23.2	0.1	0.9	0.2	8.7	1.6
EA vs O	0	1.2	1.9	0	0.7	0	8.8	1.1	2.2	4.5	2.4	2.7	16.3	1.8	0.2	2.6	2.2	0.1	0.5	1.4	19.6	1.5	0.3	0.7	0.2	0	0.9	0.9	0.1	0.7	0.2	0.1	0.5	0.3	1.4	20.2	1.1	0.8
F vs F/S/O	0	1.7	1	0	0.8	0	1.7	0.6	0.4	0.2	0.6	0.1	0.8	0	0.3	26.5	0.4	0.2	0.8	1.3	0.4	2.4	3.4	0.4	0.3	39.5	2.4	1.2	1.7	6.5	0.5	0.2	0.8	0	0.6	0.4	1.7	0.1
F vs LP/S	0	2.8	0.7	0	2.2	0	5.3	0.3	1.3	1.8	12.2	1.1	1.6	0.8	0.5	13.6	1.3	0.3	1.3	1.7	0.9	4.1	7.3	0.7	0.5	0	0.3	12.1	0.4	2	0.1	0.3	1.3	0.3	15.5	0.9	4.5	0.2
F/O vs F/S	0	0.7	1	0.4	0.2	0	0.6	0.7	0.1	0.5	0.6	1	0.3	0.2	19.5	22.7	0.1	0.3	1.6	0.8	0.1	4.9	1.2	0.1	18.1	0	2.4	1.3	2.6	7.3	0.6	0.3	1.6	0.1	0.7	0.1	6.3	0.9
F/O vs F/S/O	0	0.5	0.7	0.3	0.1	0	0.4	0.5	0.1	0.3	0.4	0.8	0.2	0.2	14.2	16.5	0.1	0.3	1.1	0.6	0.1	3.6	0.9	0	13.1	27.3	1.7	0.9	1.9	5.3	0.5	0.3	1.1	0.1	0.5	0.1	4.6	0.7
F/O vs FIC	0	0.1	0.6	0.4	0.1	0	2.5	0.3	12.1	1.3	0.7	1.7	4.7	0.8	17.9	0	22.3	0.4	1.7	0.3	0	5.2	0	0.1	16.4	0	0.3	0.3	0.9	0	0	0.4	1.7	0.1	0.4	0	5.2	0.9
F/O vs ITM	0	0.7	0.1	0.3	0.4	0	0.8	0	0.2	0.2	0	0.7	0.4	0.2	18.6	1.9	0.2	5.5	1.7	0.3	0.2	5.4	1.6	0.3	19.6	0	0	0.1	0.8	0.8	0.1	32.7	1.7	0.1	0.1	0.2	3.5	0.6
F/O vs LB	0	0.6	0	0.3	0.4	0	0.6	0	0.2	0.2	0	0.6	0.3	0.1	20.2	1.6	0.2	0.3	10.4	0.3	0.2	4.5	1.3	0.3	21	0	0	0.1	0.7	0.7	0.1	0.3	30.9	0.1	0.1	0.2	3	0.5

F/O vs LP	0	5.7	9.9	0.9	3.3	0	1.9	0.1	0.5	6.4	0.3	1.3	1.9	0.6	16.1	4.5	0.5	0.3	1.2	7.3	0.2	3.9	1.4	0	14.9	0	5.8	0.1	1	0.3	0.1	0.3	1.2	1.5	0.2	0.2	5.6	0.7
F/O vs LP/S	0	1.4	0.6	0.3	1.2	0	3.1	0.2	0.8	1.1	8.9	1.5	1.5	0.7	15	8.1	0.8	0.2	0.8	0.9	0.4	2.6	3.7	0.2	14.2	0	0.3	8.8	1.1	0.6	0.1	0.2	0.8	0.1	11.5	0.4	7	0.7
F/0 vs 0	0	0.7	0.1	0.4	1.2	0	0.7	0	0.2	0.1	0.1	1	2.2	0.4	17.6	1.6	0.2	0.3	1.3	0.3	17.1	4.2	2.9	0.2	16.3	0	0.1	0.2	0.9	2.2	0.1	0.3	1.3	0.2	0.4	16.8	7.7	0.6
F/O vs PCA	0	2.5	0.3	0.4	3.2	0	2.5	0.1	0.6	0.5	0.3	1.2	5.3	0.6	19.3	6	0.6	0.2	0.7	1.1	1	2.2	8.5	0.1	18.5	0	0.2	0.7	0.9	9	0.1	0.2	0.7	0.5	1	1	12.3	0.6
F/O vs Placebo	0	0.7	0.6	0.1	0.3	0	2.8	0.3	0.7	1.2	0.5	1	3.6	10.1	19.4	4	0.7	0	0.2	0.6	0.2	0.6	1.4	9.8	19	0	0	0.2	0.4	0.1	4	0	0.2	0	0.3	0.2	2.2	14.5
FIS vs FIC	0	0.6	0.4	0	0.3	0	2.3	1.1	14.3	2.1	1.5	0.9	5.8	0.7	0.1	24.4	26	0.1	0.3	0.5	0.2	0.9	1.3	0	0.1	0	2.9	1.7	1.8	7.9	0.6	0.1	0.3	0	0.3	0.2	0.6	0.1
F/S vs ITM	0	0.1	0.9	0.6	0.2	0	0.1	0.6	0	0.6	0.5	1.5	0.1	0.3	1.1	18.4	0	5.1	2.9	0.5	0	6	0.3	0.3	1.1	0	2.1	1.2	3	7.1	0.6	28	2.9	0.1	0.7	0	8.6	1.3
F/S vs LB	0	0.2	1	0.6	0.2	0	0	0.7	0	0.6	0.6	1.5	0	0.3	1	20.3	0	0.6	10.5	0.6	0	8.6	0	0.3	1	0	2.3	1.3	3.1	7.6	0.7	0.6	25.3	0.1	0.7	0	8.6	1.3
F/S vs O	0	0.1	1.2	0	1.3	0	0.2	0.8	0	0.7	0.5	0	2.4	0.2	0	23.8	0	0	0.1	0.5	21.4	0.3	2.4	0.1	0	0	2.8	1.8	1.9	11.1	0.6	0	0.1	0.3	1.3	21.3	2.5	0.2
F/S/O vs FIC	0	0.5	0.3	0	0.2	0	1.6	0.8	10.2	1.5	1	0.6	4.1	0.5	0.1	17.4	18.5	0	0.2	0.3	0.1	0.6	0.9	0	0.1	28.7	2.1	1.2	1.3	5.6	0.4	0	0.2	0	0.2	0.1	0.4	0.1
F/S/O vs ITM	0	0	0.7	0.5	0.2	0	0.1	0.5	0	0.4	0.4	1.1	0.1	0.3	0.8	13.8	0	3.8	2.2	0.3	0	6.7	0.2	0.3	0.8	24.8	1.6	0.9	2.2	5.4	0.5	21	2.2	0.1	0.5	0	6.5	1
F/S/O vs LB	0	0.2	0.7	0.5	0.1	0	0	0.5	0	0.4	0.4	1.1	0	0.2	0.8	14.9	0	0.4	7.7	0.4	0	6.3	0	0.2	0.8	26.3	1.7	1	2.3	5.6	0.5	0.4	18.6	0.1	0.5	0	6.3	1
F/S/O vs LP	0	5	8.9	0.5	3.4	0	1.4	0.7	0.3	9	0.7	0.4	2.1	0.4	0	14	0.3	0	0	6.5	0.1	0.1	0.4	0	0	30.5	7.6	1.1	1.1	5.6	0.4	0	0	1.4	0.4	0.1	0.4	0


F/S/O vs LP/S	0	0.8	0.2	0	1.1	0	2.7	0.7	0.7	1.5	8.7	0.7	1.8	0.6	0.2	9.9	0.7	0.1	0.4	0.3	0.3	1.3	2.9	0.2	0.2	30.1	1.6	10.1	1	6.5	0.3	0.1	0.4	0.2	11.3	0.3	2.2	0
F/S/O vs O	0	0.1	0.9	0	0.9	0	0.1	0.6	0	0.5	0.3	0	1.7	0.1	0	16.7	0	0	0.1	0.4	15	0.2	1.6	0.1	0	29.9	1.9	1.2	1.3	7.8	0.4	0	0.1	0.2	0.9	15	1.8	0.2
F/S/O vs PA	0	0.1	0.9	0.7	0.3	0	0.4	0.6	0.1	0.6	0.5	1.6	0.2	0.4	1.2	16.5	0.1	0.7	3.2	0.3	0.1	9.9	0.7	0.4	1.2	30.6	1.9	1.2	3	6.9	0.6	0.7	3.2	0.1	0.7	0.1	6	1.4
F/S/O vs PCA	0	1.5	1.1	0	2.6	0	1.7	0.7	0.4	0.8	0.2	0.1	4.3	0.3	0.3	14.7	0.4	0.2	0.7	0.3	0.8	2.3	6.4	0.1	0.3	32.9	2.2	1.7	1.5	11.6	0.4	0.2	0.7	0.5	1.5	0.8	5.2	0.3
F/S/O vs Placebo	0	0	0.3	0.2	0.1	0	1.6	0.7	0.4	1.3	0.8	0	2.9	7.6	0.4	14.2	0.4	0.2	1	0.2	0	3.3	0.1	7.3	0.4	28.3	1.8	1.1	1.7	5.4	3.4	0.2	1	0	0.3	0	3.1	10
FIC vs ITM	0	0.4	0.6	0.6	0.4	0	1.5	0.3	10.2	1	0.6	2	4.2	0.8	1	1.4	18.5	4.5	2.7	0.1	0.1	8.4	1.2	0.3	1	0	0.2	0.2	1.3	0.6	0.1	24.3	2.7	0.1	0.4	0.1	7	1.2
FIC vs LB	0	0.3	0.6	0.5	0.4	0	1.8	0.3	11	1.1	0.6	2	4.5	0.8	1	1.2	20	0.6	9.3	0.1	0.1	8.1	1	0.3	1	0	0.3	0.2	1.3	0.5	0.1	0.6	21.7	0.1	0.4	0.1	7	1.2
FIC vs LP	0	6.6	11	0.6	3.8	0	0.4	0.2	13.3	6	0.4	0.3	2.8	0.2	0.1	5.3	23.1	0.1	0.3	8.2	0.2	1	1.7	0.1	0.1	0	6.5	0.2	0.3	0.4	0.1	0.1	0.3	1.7	0.2	0.2	1	0.1
FIC vs LP/S	0	1.5	0	0	1.4	0	1.2	0.1	12.8	0	11	0	2.8	0.1	0.3	9.3	21.1	0.2	0.7	0.8	0.5	2.2	4.3	0.3	0.3	0	0.6	9.9	0.4	0.7	0.1	0.2	0.7	0.2	12.9	0.5	2.9	0.1
FIC vs O	0	0.6	0.7	0	1.3	0	1.9	0.3	12.6	1.3	0.9	0.8	7.1	0.5	0.1	1.7	22.9	0.1	0.3	0	17.9	1	3.1	0.1	0.1	0	0.2	0	0	2.3	0.1	0.1	0.3	0.3	0.8	17.6	2.6	0.3
FIC vs PA	0	0.7	0.7	0.8	0.7	0	1.6	0.3	13.1	1.2	0.7	2.7	5.5	1.1	1.5	2.4	23.5	0.9	4	0	0.2	12.6	2	0.5	1.5	0	0.3	0.2	2	1.1	0.2	0.9	4	0.2	0.6	0.2	10.2	1.8
FIC vs PCA	0	2.4	0.9	0	3.3	0	0.2	0.2	14.1	1	1.1	0.7	10.5	0.3	0.4	6.1	24.2	0.3	1.1	0.8	1	3.6	8.6	0.2	0.4	0	0.2	0.4	0.1	6.1	0.1	0.3	1.1	0.6	1.5	1	6.7	0.4
FIC vs Placebo	0	0.6	0.1	0.3	0.4	0	0	0.1	13.8	0.2	0.2	0.9	1.6	10.7	0.6	3.8	23.5	0.4	1.6	0.2	0.2	5.1	1.3	9.6	0.6	0	0.3	0.1	0.6	0.1	3.9	0.4	1.6	0.1	0.1	0.2	3.5	13

ITM vs LB	0	0.2	0	0.1	0.1	0	0.2	0	0.1	0.1	0	0.2	0.1	0	0.2	0.5	0.1	6.4	9.7	0.1	0.1	1.5	0.4	0.1	0.2	0	0	0	0.2	0.2	0	40.6	37.4	0	0	0.1	1	0.2
ITM vs LP	0	4.7	6	1	3.3	0	1.1	0.1	0.3	6	0.2	1.7	2	0.6	0.9	2.7	0.3	4.3	2.4	6.4	0	7.5	0.2	0.3	0.9	0	5.2	0	1.5	0.9	0.2	23.7	2.4	1.4	0.2	0	7.6	1.1
ITM vs LP/S	0	0.8	0.6	0.5	0.8	0	2.4	0.1	0.6	0.9	8.3	1.9	1.7	0.8	0.8	6.2	0.6	4.1	2	0.7	0.3	6.3	2.3	0.1	0.8	0	0.3	8.1	1.6	0	0.2	23.1	2	0.1	10.8	0.3	6	1.1
ITM vs O	0	0.1	0	0.6	0.8	0	0	0	0	0.1	0.1	1.4	1.7	0.5	1	0	0	4.8	2.7	0	15.6	8.3	1.4	0.4	1	0	0	0.1	1.4	1.4	0.2	26.5	2.7	0.1	0.3	15.7	10	1.1
ITM vs PCA	0	1.7	0.2	0.7	2.5	0	1.6	0.1	0.4	0.3	0.3	1.7	4.5	0.7	0.9	3.9	0.4	5.2	2.2	0.8	0.8	7	6.4	0.2	0.9	0	0.1	0.5	1.5	4.8	0.2	29.7	2.2	0.4	0.8	0.8	14.6	1.1
ITM vs Placebo	0	0.1	0.6	0.4	0.1	0	1.8	0.2	0.4	0.9	0.5	1.5	3.6	6	0.7	1.9	0.4	5	1.7	0.3	0	5.4	0.2	8.5	0.7	0	0	0.1	1.1	0.9	3.5	29.6	1.7	0.1	0.4	0	5.2	13.6
LB vs LP	0	5	9.5	1	3.4	0	1.3	0.1	0.3	6.3	0.2	1.6	2	0.6	0.9	3.2	0.3	0.5	8.6	6.8	0.1	7	0.4	0.2	0.9	0	5.5	0	1.4	0.8	0.2	0.5	20.9	1.5	0.2	0.1	7.5	1.1
LB vs LP/S	0	1	0.6	0.5	0.9	0	2.6	0.1	0.6	1	8.7	1.8	1.7	0.8	0.7	6.8	0.6	0.4	7.9	0.7	0.3	5.7	2.7	0.1	0.7	0	0.3	8.5	1.5	0.1	0.2	0.4	20.5	0.1	11.3	0.3	8.9	1.1
LB vs O	0	0.3	0	0.6	0.9	0	0.1	0	0	0	0.1	1.4	1.9	0.5	0.9	0.3	0	0.5	9.6	0.1	16.5	7.7	1.8	0.4	0.9	0	0.1	0.2	1.4	1.6	0.2	0.5	23.4	0.1	0.3	16.5	9.9	1
LB vs PCA	0	1.9	0.2	0.6	2.8	0	1.8	0.1	0.5	0.3	0.3	1.7	4.8	0.7	0.8	4.5	0.5	0.4	9.9	0.9	0.8	6.2	7.1	0.1	0.8	0	0.2	0.6	1.4	5.2	0.2	0.4	26.7	0.4	0.9	0.8	14.6	1
LB vs Placebo	0	0.2	0.6	0.3	0	0	2.1	0.2	0.5	1	0.5	1.5	3.7	9.4	0.6	2.4	0.5	0.3	9.3	0.4	0	4.5	0.2	6	0.6	0	0	0.1	1	0.7	3.7	0.3	27.1	0.1	0.4	0	4.7	14.1
LP vs LP/S	0	4.9	10.7	0.6	5.3	0	1.6	0.1	0.4	8.8	11.2	0.3	0.3	0.2	0.2	4.6	0.4	0.1	0.4	7.3	0.3	1.3	2.9	0.2	0.2	0	7	10.7	0.1	1.1	0	0.1	0.4	1.9	13.8	0.3	2.1	0.1
LP vs O	0	5.7	11.3	0.6	5	0	1.4	0.1	0.4	7.4	0.4	0.5	4.3	0.3	0	3.4	0.4	0	0	7.9	17.5	0.1	1.4	0.1	0	0	6.5	0.2	0.3	2.7	0	0	0	1.9	0.6	17.6	1.6	0.2

LP vs PA	0	5.8	11.6	1.4	4.4	0	1.2	0.1	0.3	7.8	0.3	2.4	2.7	0.9	1.4	2.9	0.3	0.8	3.7	8.1	0	11.5	0.3	0.5	1.4	0	6.8	0.1	2.2	1.4	0.3	0.8	3.7	1.9	0.4	0	11.1	1.6
LP vs Placebo	0	5.9	10.8	0.9	4.1	0	0.4	0.1	0.1	8.5	0.2	0.5	1.2	10	0.5	1.5	0.1	0.3	1.3	7.8	0	3.9	0.4	9.1	0.5	0	6.6	0.1	0.8	0.2	3.9	0.3	1.3	1.7	0.1	0	4.4	12.5
LP/S vs O	0	0.9	0.8	0	0.2	0	3.1	0.2	0.8	1.2	10.6	0.8	4.1	0.5	0.2	8	0.8	0.1	0.4	0.8	17.2	1.3	1.4	0.3	0.2	0	0.4	10.3	0.4	1.6	0.1	0.1	0.4	0.1	14.3	18	0.4	0.2
LP/S vs PA	0	0.8	0.8	0.8	0.9	0	2.8	0.1	0.7	1.1	10.9	2.7	2.3	1.1	1.2	7.4	0.7	0.7	3.2	0.8	0.3	10	2.5	0.2	1.2	0	0.3	10.5	2.3	0.3	0.3	0.7	3.2	0.1	14.1	0.3	13	1.7
LP/S vs Placebo	0	1	0.1	0.3	1.1	0	1.2	0	0.3	0.2	11	0.8	1.4	10	0.3	9	0.3	0.2	0.8	0.6	0.4	2.6	3.1	8.6	0.3	0	0.3	10.2	0.9	0.8	3.8	0.2	0.8	0.2	13.3	0.4	6.3	12.2
O vs PA	0	0.1	0	0.9	0.8	0	0.3	0	0.1	0.2	0.2	2.2	2.1	0.7	1.6	0.8	0.1	0.9	4.2	0.1	20.7	13.2	1.3	0.7	1.6	0	0.1	0.1	2.2	1.5	0.3	0.9	4.2	0.1	0.3	21	14.7	1.7
O vs Placebo	0	0.1	0.6	0.3	0.9	0	1.8	0.2	0.4	1	0.6	0.1	5.3	9.2	0.5	1.9	0.4	0.3	1.2	0.2	16.9	3.7	1.7	8.8	0.5	0	0.1	0.1	0.5	2.3	3.6	0.3	1.2	0.2	0.7	16.9	5.7	12.1
PCA vs Placebo	0	2	0.9	0.3	3.3	0	0.3	0.1	0.1	0.8	0.9	0.2	9.9	11.9	0.2	2.4	0.1	0.1	0.6	0.6	1	1.9	8	10.8	0.2	0	0.2	0.6	0.5	6.9	4.6	0.1	0.6	0.6	1.5	1	11.4	15.4
Entire network	4.3	3	3	0.5	2.6	4.3	2.1	0.4	2	2.2	1.9	1.1	4	1.7	2.6	8.2	3.2	0.9	2.3	1.7	2.4	4.3	2.8	1.3	2.5	4.3	1.9	1.9	1.2	4	0.7	3.9	4.2	0.4	2.2	2.4	5.5	2.1

Contribution matrix for pain at rest – 24 hr; Numbers indicate percentage. Blue color; direct comparisons, green color; mixed comparisons, and yellow color indicate indirect comparisons.

Mean duration of hospital stay by year

STATA commands

First download the network command. You can do that by typing within STATA net from <u>http://www.mrc-bsu.cam.ac.uk/IW_Stata/</u>

Then choose 'meta' and it will guide you

For the commands of network graphs you type within STATA net from http://www.mtm.uoi.gr

Download network_graphs

Note that the examples below are for the pain at rest -24 hr. The commands need to be modified each time accordingly

Setup the data

Once you open the data, type within stata network setup m sd n, trt(t) stud(id) smd ref(PCA)

This would bring the data to the right format for conducting NMA (m=mean, sd=standard deviation, n=sample size, t=treatment, id=study, smd=standardized mean difference, ref(PCA) means that the reference treatment is PCA). If the data are not combined correctly you will get the following error message

variables id t do not uniquely identify the observations

Then type within STATA network convert pairs

To convert the data in the right format for drawing the network plot and inconsistency plot, type edit to see the data

for the network plot type (TREATMENTS ALPHABETICALLY AS THEY ARE GIVEN BY STATA ABOVE)

networkplot _t1 _t2,lab(ACB ACB/S AP EA F F/S F/S/O FIC LB LP LP/S O PA PCA Placebo SA)

For contribution matrix

netweight y _stderr _t1 _t2

The ifplot command sorts inconsistency factors

set matsize 11000

ifplot _y _stderr _t1 _t2 id, lab(ACB AP EA FIC F F/S F/S/O LB LP LP/S O PA PCA Placebo SA)

For the egger test and funnel plot

network convert pairs

netfunnel _y _stderr _t1 _t2 if _t2=="N"

metabias _y _stderr if _t2=="N",egger

For consistency tests

network meta c

For the node-split analysis

network sidesplit

For ranking treatments you should type

mvmeta, pbest(min, zero all reps(1000) gen(prob))

sucra prob*, mvmeta rankog lab (ACB AP EA FIC F F/S F/S/O LB LP LP/S O PA PCA Placebo SA)

To estimate the relative effectiveness between each pair of treatments (league table) type

netleague,mvmeta

To employ an inconsistency model type

network meta i

For the meta-regression analyses

network setup m sd n, trt(t) stud(id) smd ref(EA) set matsize 11000 set more off network meta consistency, eq(_y*:Bupivacaine Ropivacaine)

the example above used to tested the difference between bupivacaine and ropivacaine, and for each meta-regression analysis should be adjusted.

Reference (trials included in the analyses):

- 1. Raj PP, Knarr DC, Vigdorth E, et al. Comparison of continuous epidural infusion of a local anesthetic and administration of systemic narcotics in the management of pain after total knee replacement surgery. Anesth Analg 1987; 66(5): 401-6.
- 2. Nielsen PT, Blom H, Nielsen SE. Less pain with epidural morphine after knee arthroplasty. Acta Orthop Scand 1989; 60(4): 447-8.
- 3. Pettine KA, Wedel DJ, Cabanela ME, Weeks JL. The use of epidural bupivacaine following total knee arthroplasty. Orthop Rev 1989; 18(8): 894-901.
- 4. Mahoney OM, Noble PC, Davidson J, Tullos HS. The effect of continuous epidural analgesia on postoperative pain, rehabilitation, and duration of hospitalization in total knee arthroplasty. Clin Orthop Relat Res. 1990 Nov;(260):30-7.
- Serpell MG, Millar FA, Thomson MF. Comparison of lumbar plexus block versus conventional opioid analgesia after total knee replacement. Anaesthesia 1991; 46(4): 275-7.
- 6. Edwards ND, Wright EM. Continuous low-dose 3-in-1 nerve blockade for postoperative pain relief after total knee replacement. Anesth Analg 1992; 75(2): 265-7.
- 7. Sharrock NE, Urquhart BL, Ganz S, Williams-Russo PG. Epidural infusions of bupivacaine and fentanyl do not improve rehabilitation following one-stage bilateral total knee arthroplasty. Ann Acad Med Singapore 1994; 23(6 Suppl): 3-9.
- 8. Badner NH, Bourne RB, Rorabeck CH, MacDonald SJ, Doyle JA. Intra-articular injection of bupivacaine in knee-replacement operations. Results of use for analgesia and for preemptive blockade. J Bone Joint Surg Am 1996; 78(5): 734-8.
- 9. Hirst GC, Lang SA, Dust WN, Cassidy JD, Yip RW. Femoral nerve block. Single injection versus continuous infusion for total knee arthroplasty. Reg Anesth 1996; 21(4): 292-7.
- Williams-Russo P, Sharrock NE, Haas SB, et al. Randomized trial of epidural versus general anesthesia: outcomes after primary total knee replacement. Clin Orthop Relat Res 1996; (331): 199-208.
- 11. Mauerhan DR, Campbell M, Miller JS, Mokris JG, Gregory A, Kiebzak GM. Intra-articular morphine and/or bupivacaine in the management of pain after total knee arthroplasty. J Arthroplasty 1997; 12(5): 546-52.
- 12. Allen HW, Liu SS, Ware PD, Nairn CS, Owens BD. Peripheral nerve blocks improve analgesia after total knee replacement surgery. Anesth Analg 1998; 87(1): 93-7.
- 13. Singelyn FJ, Deyaert M, Joris D, Pendeville E, Gouverneur JM. Effects of intravenous patientcontrolled analgesia with morphine, continuous epidural analgesia, and continuous threein-one block on postoperative pain and knee rehabilitation after unilateral total knee arthroplasty. Anesth Analg 1998; 87(1): 88-92.
- 14. Tarkkila P, Tuominen M, Huhtala J, Lindgren L. Comparison of intrathecal morphine and continuous femoral 3-in-1 block for pain after major knee surgery under spinal anaesthesia. Eur J Anaesthesiol. 1998 Jan;15(1):6-9.
- 15. Capdevila X, Barthelet Y, Biboulet P, Ryckwaert Y, Rubenovitch J, d'Athis F. Effects of perioperative analgesic technique on the surgical outcome and duration of rehabilitation after major knee surgery. Anesthesiology 1999; 91(1): 8-15.
- 16. Ganapathy S, Wasserman RA, Watson JT, et al. Modified continuous femoral three-in-one block for postoperative pain after total knee arthroplasty. Anesth Analg 1999; 89(5): 1197-202.

- Klasen JA, Opitz SA, Melzer C, Thiel A, Hempelmann G. Intraarticular, epidural, and intravenous analgesia after total knee arthroplasty. Acta Anaesthesiol Scand 1999; 43(10): 1021-6.
- 18. Ritter MA, Koehler M, Keating EM, Faris PM, Meding JB. Intra-articular morphine and/or bupivacaine after total knee replacement. J Bone Joint Surg Br 1999; 81(2): 301-3.
- 19. Chelly JE, Greger J, Gebhard R, et al. Continuous femoral blocks improve recovery and outcome of patients undergoing total knee arthroplasty. J Arthroplasty 2001; 16(4): 436-45.
- 20. McNamee DA, Convery PN, Milligan KR. Total knee replacement: a comparison of ropivacaine and bupivacaine in combined femoral and sciatic block. Acta Anaesthesiol Scand 2001; 45(4): 477-81.
- 21. Tanaka N, Sakahashi H, Sato E, Hirose K, Ishii S. The efficacy of intra-articular analgesia after total knee arthroplasty in patients with rheumatoid arthritis and in patients with osteoarthritis. J Arthroplasty 2001; 16(3): 306-11.
- 22. Adams HA, Saatweber P, Schmitz CS, Hecker H. Postoperative pain management in orthopaedic patients: no differences in pain score, but improved stress control by epidural anaesthesia. Eur J Anaesthesiol 2002; 19(9): 658-65.
- 23. McNamee DA, Parks L, Milligan KR. Post-operative analgesia following total knee replacement: an evaluation of the addition of an obturator nerve block to combined femoral and sciatic nerve block. Acta Anaesthesiol Scand 2002; 46(1): 95-9.
- 24. Wang H, Boctor B, Verner J. The effect of single-injection femoral nerve block on rehabilitation and length of hospital stay after total knee replacement. Reg Anesth Pain Med 2002; 27(2): 139-44.
- Browne C, Copp S, Reden L, Pulido P, Colwell C, Jr. Bupivacaine bolus injection versus placebo for pain management following total knee arthroplasty. J Arthroplasty 2004; 19(3): 377-80.
- 26. Davies AF, Segar EP, Murdoch J, Wright DE, Wilson IH. Epidural infusion or combined femoral and sciatic nerve blocks as perioperative analgesia for knee arthroplasty. Br J Anaesth 2004; 93(3): 368-74.
- 27. Kaloul I, Guay J, Cote C, Fallaha M. The posterior lumbar plexus (psoas compartment) block and the three-in-one femoral nerve block provide similar postoperative analgesia after total knee replacement. Can J Anaesth 2004; 51(1): 45-51.
- 28. Macalou D, Trueck S, Meuret P, et al. Postoperative analgesia after total knee replacement: the effect of an obturator nerve block added to the femoral 3-in-1 nerve block. Anesth Analg 2004; 99(1): 251-4.
- 29. Sites BD, Beach M, Gallagher JD, Jarrett RA, Sparks MB, Lundberg CJ. A single injection ultrasound-assisted femoral nerve block provides side effect-sparing analgesia when compared with intrathecal morphine in patients undergoing total knee arthroplasty. Anesth Analg 2004; 99(5): 1539-43; table of contents.
- Szczukowski MJ, Jr., Hines JA, Snell JA, Sisca TS. Femoral nerve block for total knee arthroplasty patients: a method to control postoperative pain. J Arthroplasty 2004; 19(6): 720-5.
- 31. Axelsson K, Johanzon E, Essving P, Weckstrom J, Ekback G. Postoperative extradural analgesia with morphine and ropivacaine. A double-blind comparison between placebo and ropivacaine 10 mg/h or 16 mg/h. Acta Anaesthesiol Scand 2005; 49(8): 1191-9.
- 32. Barrington MJ, Olive D, Low K, Scott DA, Brittain J, Choong P. Continuous femoral nerve blockade or epidural analgesia after total knee replacement: a prospective randomized controlled trial. Anesth Analg 2005; 101(6): 1824-9.

- Pham Dang C, Gautheron E, Guilley J, et al. The value of adding sciatic block to continuous femoral block for analgesia after total knee replacement. Reg Anesth Pain Med 2005; 30(2): 128-33.
- 34. Farag E, Dilger J, Brooks P, Tetzlaff JE. Epidural analgesia improves early rehabilitation after total knee replacement. J Clin Anesth 2005; 17(4): 281-5.
- 35. Morin AM, Kratz CD, Eberhart LH, et al. Postoperative analgesia and functional recovery after total-knee replacement: comparison of a continuous posterior lumbar plexus (psoas compartment) block, a continuous femoral nerve block, and the combination of a continuous femoral and sciatic nerve block. Reg Anesth Pain Med 2005; 30(5): 434-45.
- Nechleba J, Rogers V, Cortina G, Cooney T. Continuous intra-articular infusion of bupivacaine for postoperative pain following total knee arthroplasty. J Knee Surg 2005; 18(3): 197-202.
- 37. Busch CA, Shore BJ, Bhandari R, et al. Efficacy of periarticular multimodal drug injection in total knee arthroplasty. A randomized trial. J Bone Joint Surg Am 2006; 88(5): 959-63.
- 38. Mistraletti G, De La Cuadra-Fontaine JC, Asenjo FJ, et al. Comparison of analgesic methods for total knee arthroplasty: metabolic effect of exogenous glucose. Reg Anesth Pain Med 2006; 31(3): 260-9.
- 39. Ozen M, Inan N, Tumer F, Uyar A, Baltaci B. The effect of 3-in-1 femoral nerve block with ropivacaine 0.375% on postoperative morphine consumption in elderly patients after total knee replacement surgery. Agri 2006; 18(4): 44-50.
- 40. Chang Kil Park JHC, Choon Kyu Cho, Young Ju Kim. Comparison of Continuous Three-in-One Block and Intravenous Patient-Controlled Analgesia for Postoperative Pain after Total Knee Replacement. Korean J Anesthesiol 2006; 51(1): 76-81.
- 41. Seet E, Leong WL, Yeo AS, Fook-Chong S. Effectiveness of 3-in-1 continuous femoral block of differing concentrations compared to patient controlled intravenous morphine for post total knee arthroplasty analgesia and knee rehabilitation. Anaesth Intensive Care 2006; 34(1): 25-30.
- 42. Tugay N, Saricaoglu F, Satilmis T, et al. Single-injection femoral nerve block. Effects on the independence level in functional activities in the early postoperative period in patients with total knee arthroplasty. Neurosciences (Riyadh) 2006; 11(3): 175-9.
- 43. Vendittoli PA, Makinen P, Drolet P, et al. A multimodal analgesia protocol for total knee arthroplasty. A randomized, controlled study. J Bone Joint Surg Am 2006; 88(2): 282-9.
- 44. Zaric D, Boysen K, Christiansen C, Christiansen J, Stephensen S, Christensen B. A comparison of epidural analgesia with combined continuous femoral-sciatic nerve blocks after total knee replacement. Anesth Analg 2006; 102(4): 1240-6.
- 45. Good RP, Snedden MH, Schieber FC, Polachek A. Effects of a preoperative femoral nerve block on pain management and rehabilitation after total knee arthroplasty. Am J Orthop (Belle Mead NJ) 2007; 36(10): 554-7.
- 46. Han CD, Lee DH, Yang IH. Intra-synovial ropivacaine and morphine for pain relief after total knee arthroplasty: a prospective, randomized, double blind study. Yonsei Med J 2007; 48(2): 295-300.
- 47. Kardash K, Hickey D, Tessler MJ, Payne S, Zukor D, Velly AM. Obturator versus femoral nerve block for analgesia after total knee arthroplasty. Anesth Analg 2007; 105(3): 853-8.
- 48. Mejía-Terrazas GE Z-LG, Gaspar-Carrillo SP. Postoperative analgesia for total knee arthroplasty; a comparative study. Rev Mex Anest 2007; 30(4): 197-200.
- 49. Ozalp G, Kaya M, Tuncel G, et al. The analgesic efficacy of two different approaches to the lumbar plexus for patient-controlled analgesia after total knee replacement. J Anesth 2007; 21(3): 409-12.

- 50. Raimer C, Priem K, Wiese AA, et al. Continuous psoas and sciatic block after knee arthroplasty: good effects compared to epidural analgesia or i.v. opioid analgesia: a prospective study of 63 patients. Acta Orthop 2007; 78(2): 193-200.
- 51. Rajeev S, Batra YK, Panda NB, Kumar M, Nagi ON. Combined continuous "3-in-1" and sciatic nerve blocks provide improved postoperative analgesia with no correlation to catheter tip location after unilateral total knee arthroplasty. J Arthroplasty 2007; 22(8): 1181-6.
- 52. Toftdahl K, Nikolajsen L, Haraldsted V, Madsen F, Tonnesen EK, Soballe K. Comparison of peri- and intraarticular analgesia with femoral nerve block after total knee arthroplasty: a randomized clinical trial. Acta Orthop 2007; 78(2): 172-9.
- 53. Zugliani AH, Vercosa N, Amaral JL, Barrucand L, Salgado C, Karam MB. [Control of postoperative pain following total knee arthroplasty: is it necessary to associate sciatic nerve block to femoral nerve block?]. Rev Bras Anestesiol 2007; 57(5): 514-24.
- 54. Parvataneni HK, Shah VP, Howard H, Cole N, Ranawat AS, Ranawat CS. Controlling pain after total hip and knee arthroplasty using a multimodal protocol with local periarticular injections: a prospective randomized study. J Arthroplasty. 2007 Sep;22(6 Suppl 2):33-8.
- 55. Bagry H, de la Cuadra Fontaine JC, Asenjo JF, Bracco D, Carli F. Effect of a continuous peripheral nerve block on the inflammatory response in knee arthroplasty. Reg Anesth Pain Med 2008; 33(1): 17-23.
- 56. Campbell A, McCormick M, McKinlay K, Scott NB. Epidural vs. lumbar plexus infusions following total knee arthroplasty: randomized controlled trial. Eur J Anaesthesiol 2008; 25(6): 502-7.
- 57. Casati A, Ostroff R, Casimiro C, et al. 72-hour epidural infusion of 0.125% levobupivacaine following total knee replacement: a prospective, randomized, controlled, multicenter evaluation. Acta Biomed 2008; 79(1): 28-35.
- 58. Martin F, Martinez V, Mazoit JX, et al. Antiinflammatory effect of peripheral nerve blocks after knee surgery: clinical and biologic evaluation. Anesthesiology 2008; 109(3): 484-90.
- 59. Andersen LO, Husted H, Otte KS, Kristensen BB, Kehlet H. High-volume infiltration analgesia in total knee arthroplasty: a randomized, double-blind, placebo-controlled trial. Acta Anaesthesiol Scand 2008; 52(10): 1331-5.
- 60. Bozkurt M, Yilmazlar A, Bilgen OF. [Comparing the effects of analgesia techniques with controlled intravenous and epidural on postoperative pain and knee rehabilitation after total knee arthroplasty]. Eklem Hastalik Cerrahisi 2009; 20(2): 64-70.
- 61. Essving P, Axelsson K, Kjellberg J, Wallgren O, Gupta A, Lundin A. Reduced hospital stay, morphine consumption, and pain intensity with local infiltration analgesia after unicompartmental knee arthroplasty. Acta Orthop 2009; 80(2): 213-9.
- 62. Fu P, Wu Y, Wu H, Li X, Qian Q, Zhu Y. Efficacy of intra-articular cocktail analgesic injection in total knee arthroplasty a randomized controlled trial. Knee 2009; 16(4): 280-4.
- 63. Hunt KJ, Bourne MH, Mariani EM. Single-injection femoral and sciatic nerve blocks for pain control after total knee arthroplasty. J Arthroplasty 2009; 24(4): 533-8.
- 64. Kadic L, Boonstra MC, MC DEWM, Lako SJ, J VANE, Driessen JJ. Continuous femoral nerve block after total knee arthroplasty? Acta Anaesthesiol Scand 2009; 53(7): 914-20.
- 65. Jeong-min Park YSL, Woo Suk Lee, Ja-hyun Ku, Po-Soon Kang, Hee Uk Kwon, Choon-kyu Cho, Sung Mee Jung, Chun Woo Yang. Continuous epidural analgesia versus continuous intravenous analgesia with peri-articular infiltration following total knee arthroplasty in geriatric patients. Korean J Anesthesiol 2009; 56(1): 47-53.
- 66. Shum CF, Lo NN, Yeo SJ, Yang KY, Chong HC, Yeo SN. Continuous femoral nerve block in total knee arthroplasty: immediate and two-year outcomes. J Arthroplasty 2009; 24(2): 204-9.

- 67. Sundarathiti P, Ruananukul N, Channum T, et al. A comparison of continuous femoral nerve block (CFNB) and continuous epidural infusion (CEI) in postoperative analgesia and knee rehabilitation after total knee arthroplasty (TKA). J Med Assoc Thai 2009; 92(3): 328-34.
- 68. Andersen KV, Bak M, Christensen BV, Harazuk J, Pedersen NA, Soballe K. A randomized, controlled trial comparing local infiltration analgesia with epidural infusion for total knee arthroplasty. Acta Orthop 2010; 81(5): 606-10.
- 69. Kazak Bengisun Z, Aysu Salviz E, Darcin K, Suer H, Ates Y. Intraarticular levobupivacaine or bupivacaine administration decreases pain scores and provides a better recovery after total knee arthroplasty. J Anesth 2010; 24(5): 694-9.
- 70. Carli F, Clemente A, Asenjo JF, et al. Analgesia and functional outcome after total knee arthroplasty: periarticular infiltration vs continuous femoral nerve block. Br J Anaesth 2010; 105(2): 185-95.
- 71. Essving P, Axelsson K, Kjellberg J, Wallgren O, Gupta A, Lundin A. Reduced morphine consumption and pain intensity with local infiltration analgesia (LIA) following total knee arthroplasty. Acta Orthop 2010; 81(3): 354-60.
- 72. Frassanito L, Vergari A, Zanghi F, Messina A, Bitondo M, Antonelli M. Post-operative analgesia following total knee arthroplasty: comparison of low-dose intrathecal morphine and single-shot ultrasound-guided femoral nerve block: a randomized, single blinded, controlled study. Eur Rev Med Pharmacol Sci 2010; 14(7): 589-96.
- 73. Fu PL, Xiao J, Zhu YL, et al. Efficacy of a multimodal analgesia protocol in total knee arthroplasty: a randomized, controlled trial. J Int Med Res 2010; 38(4): 1404-12.
- 74. Garcia JB, Barbosa Neto JO, Vasconcelos JW, Ferro LS, Silva RC. Analgesic efficacy of the intra-articular administration of high doses of morphine in patients undergoing total knee arthroplasty. Rev Bras Anestesiol 2010; 60(1): 1-12.
- 75. Gomez-Cardero P, Rodriguez-Merchan EC. Postoperative analgesia in TKA: ropivacaine continuous intraarticular infusion. Clin Orthop Relat Res 2010; 468(5): 1242-7.
- 76. Kazak Bengisun Z, Aysu Salviz E, Darcin K, Suer H, Ates Y. Intraarticular levobupivacaine or bupivacaine administration decreases pain scores and provides a better recovery after total knee arthroplasty. Journal Anesthesia 2010; 24(5): 694-9.
- 77. Brisbane O, Sports Medicine Centre Writing C, McMeniman TJ, et al. Femoral nerve block vs fascia iliaca block for total knee arthroplasty postoperative pain control: a prospective, randomized controlled trial. J Arthroplasty 2010; 25(8): 1246-9.
- Ong JC, Chin PL, Fook-Chong SM, Tang A, Yang KY, Tay BK. Continuous infiltration of local anaesthetic following total knee arthroplasty. J Orthop Surg (Hong Kong) 2010; 18(2): 203-7.
- 79. Rosen AS, Colwell CW, Jr., Pulido PA, Chaffee TL, Copp SN. A randomized controlled trial of intraarticular ropivacaine for pain management immediately following total knee arthroplasty. HSS J 2010; 6(2): 155-9.
- 80. Spreng UJ, Dahl V, Hjall A, Fagerland MW, Raeder J. High-volume local infiltration analgesia combined with intravenous or local ketorolac+morphine compared with epidural analgesia after total knee arthroplasty. Br J Anaesth 2010; 105(5): 675-82.
- 81. Thorsell M, Holst P, Hyldahl HC, Weidenhielm L. Pain control after total knee arthroplasty: a prospective study comparing local infiltration anesthesia and epidural anesthesia. Orthopedics 2010; 33(2): 75-80.
- 82. Wang Huai-jiang ZD-z, Li Shi-zhong. Comparing the analgesic efficacy of continuous femoral nerve blockade and continuous intravenous analgesia after total knee arthroplasty. Natl Med J China 2010; 90(33): 2360-2.

- 83. Affas F, Nygards EB, Stiller CO, Wretenberg P, Olofsson C. Pain control after total knee arthroplasty: a randomized trial comparing local infiltration anesthesia and continuous femoral block. Acta Orthop 2011; 82(4): 441-7.
- 84. Baranovic S, Maldini B, Milosevic M, Golubic R, Nikolic T. Peripheral regional analgesia with femoral catheter versus intravenous patient controlled analgesia after total knee arthroplasty: a prospective randomized study. Coll Antropol 2011; 35(4): 1209-14.
- 85. Essving P, Axelsson K, Aberg E, Spannar H, Gupta A, Lundin A. Local infiltration analgesia versus intrathecal morphine for postoperative pain management after total knee arthroplasty: a randomized controlled trial. Anesth Analg 2011; 113(4): 926-33.
- 86. Fetherston CM, Ward S. Relationships between post operative pain management and short term functional mobility in total knee arthroplasty patients with a femoral nerve catheter: a preliminary study. J Orthop Surg Res 2011; 6: 7.
- 87. Gallardo J, Contreras-Dominguez V, Begazo H, Chavez J, Rodriguez R, Monardes A. [Efficacy of the fascia iliaca compartment block vs continuous epidural infusion for analgesia following total knee replacement surgery]. Rev Esp Anestesiol Reanim 2011; 58(8): 493-8.
- 88. Wegener JT, van Ooij B, van Dijk CN, Hollmann MW, Preckel B, Stevens MF. Value of singleinjection or continuous sciatic nerve block in addition to a continuous femoral nerve block in patients undergoing total knee arthroplasty: a prospective, randomized, controlled trial. Reg Anesth Pain Med 2011; 36(5): 481-8.
- 89. Zhang S, Wang F, Lu ZD, Li YP, Zhang L, Jin QH. Effect of single-injection versus continuous local infiltration analgesia after total knee arthroplasty: a randomized, double-blind, placebo-controlled study. J Int Med Res 2011; 39(4): 1369-80.
- 90. Fajardo M, Collins J, Landa J, Adler E, Meere P, Di Cesare PE. Effect of a perioperative intraarticular injection on pain control and early range of motion following bilateral TKA. Orthopedics 2011; 34(5): 354.
- 91. Joo JH, Park JW, Kim JS, Kim YH. Is intra-articular multimodal drug injection effective in pain management after total knee arthroplasty? A randomized, double-blinded, prospective study. J Arthroplasty 2011; 26(7): 1095-9.
- 92. Raul Carvalho LC, Jose Pedro Braganca. Effect of a Single Shot Sciatic Nerve Block Combined with a Continuous Femoral Block on Pain Scores after Knee Arthroplasty. A Randomized Controlled Trial. Open Journal of Anesthesiology 2012; 2: 107-12.
- 93. Chan MH, Chen WH, Tung YW, Liu K, Tan PH, Chia YY. Single-injection femoral nerve block lacks preemptive effect on postoperative pain and morphine consumption in total knee arthroplasty. Acta Anaesthesiol Taiwan 2012; 50(2): 54-8.
- 94. Chang LH, Hsu CH, Jong GP, Ho S, Tsay SL, Lin KC. Auricular acupressure for managing postoperative pain and knee motion in patients with total knee replacement: a randomized sham control study. Evid Based Complement Alternat Med 2012; 2012: 528452.
- 95. Chen Y, Zhang Y, Zhu YL, Fu PL. Efficacy and safety of an intra-operative intra-articular magnesium/ropivacaine injection for pain control following total knee arthroplasty. J Int Med Res 2012; 40(5): 2032-40.
- 96. Jaeger P, Grevstad U, Henningsen MH, Gottschau B, Mathiesen O, Dahl JB. Effect of adductorcanal-blockade on established, severe post-operative pain after total knee arthroplasty: a randomised study. Acta Anaesthesiol Scand 2012; 56(8): 1013-9.
- 97. Jenstrup MT, Jaeger P, Lund J, et al. Effects of adductor-canal-blockade on pain and ambulation after total knee arthroplasty: a randomized study. Acta Anaesthesiol Scand 2012; 56(3): 357-64.

- 98. Lee JJ, Choi SS, Lee MK, Lim BG, Hur W. Effect of continuous psoas compartment block and intravenous patient controlled analgesia on postoperative pain control after total knee arthroplasty. Korean J Anesthesiol 2012; 62(1): 47-51.
- 99. Ng FY, Chiu KY, Yan CH, Ng KF. Continuous femoral nerve block versus patient-controlled analgesia following total knee arthroplasty. J Orthop Surg (Hong Kong) 2012; 20(1): 23-6.
- 100. Ng FY, Ng JK, Chiu KY, Yan CH, Chan CW. Multimodal periarticular injection vs continuous femoral nerve block after total knee arthroplasty: a prospective, crossover, randomized clinical trial. J Arthroplasty 2012; 27(6): 1234-8.
- 101. Shanthanna H, Huilgol M, Manivackam VK, Maniar A. Comparative study of ultrasoundguided continuous femoral nerve blockade with continuous epidural analgesia for pain relief following total knee replacement. Indian J Anaesth 2012; 56(3): 270-5.
- 102. Widmer BJ, Scholes CJ, Pattullo GG, Oussedik SI, Parker DA, Coolican MR. Is femoral nerve block necessary during total knee arthroplasty?: a randomized controlled trial. J Arthroplasty 2012; 27(10): 1800-5.
- 103. Yuenyongviwat V, Pornrattanamaneewong C, Chinachoti T, Chareancholvanich K. Periarticular injection with bupivacaine for postoperative pain control in total knee replacement: a prospective randomized double-blind controlled trial. Adv Orthop 2012; 2012: 107309.
- 104. Ashraf A, Raut VV, Canty SJ, McLauchlan GJ. Pain control after primary total knee replacement. A prospective randomised controlled trial of local infiltration versus single shot femoral nerve block. Knee 2013; 20(5): 324-7.
- 105. Chan EY, Fransen M, Sathappan S, Chua NH, Chan YH, Chua N. Comparing the analgesia effects of single-injection and continuous femoral nerve blocks with patient controlled analgesia after total knee arthroplasty. J Arthroplasty 2013; 28(4): 608-13.
- 106. Chaumeron A, Audy D, Drolet P, Lavigne M, Vendittoli PA. Periarticular injection in knee arthroplasty improves quadriceps function. Clin Orthop Relat Res 2013; 471(7): 2284-95.
- 107. M. Dauri SF, L. Celidonio, P. David, A. Bianco, E. Fabbi, M.B. Silvi. The Comparing of Ultrasound-guided Techniques: Sciatic Block with Continuous Lumbar Plexus Block or Continuous Femoral Nerve Block for Anesthesia and Analgesia of Total knee Replacement. The Open Anesthesiology Journal 2013; 7: 19-25.
- 108. Goyal N, McKenzie J, Sharkey PF, Parvizi J, Hozack WJ, Austin MS. The 2012 Chitranjan Ranawat award: intraarticular analgesia after TKA reduces pain: a randomized, doubleblinded, placebo-controlled, prospective study. Clin Orthop Relat Res 2013; 471(1): 64-75.
- 109. He BJ, Tong PJ, Li J, Jing HT, Yao XM. Auricular acupressure for analgesia in perioperative period of total knee arthroplasty. Pain Med 2013; 14(10): 1608-13.
- 110. Ikeuchi M, Kamimoto Y, Izumi M, et al. Local infusion analgesia using intra-articular double lumen catheter after total knee arthroplasty: a double blinded randomized control study. Knee Surg Sports Traumatol Arthrosc 2013; 21(12): 2680-4.
- 111. Jaeger P, Zaric D, Fomsgaard JS, et al. Adductor canal block versus femoral nerve block for analgesia after total knee arthroplasty: a randomized, double-blind study. Reg Anesth Pain Med 2013; 38(6): 526-32.
- 112. Liu Bing-shan LG-j, Wang Xiao, Zhang Song, Liu Yang, Zhang Yong-le. Multimodal analgesia after total knee arthroplasty. Chinese Journal of Tissue Engineering Research 2013; 22.
- 113. Mehdi Moghtadaei HF, Hamid Reza Faiz, Farzam Mokarami , Razieh Nabi. Local infiltration analgesia an effective method for pain relief and patient's satisfaction after total knee arthroplasty: a randomized clinical trial. Tehran University Medical Journal 2013; 71(7): 429-36.

- 114. Nakai T, Tamaki M, Nakamura T, Nakai T, Onishi A, Hashimoto K. Controlling pain after total knee arthroplasty using a multimodal protocol with local periarticular injections. J Orthop 2013; 10(2): 92-4.
- 115. Sakai N, Inoue T, Kunugiza Y, Tomita T, Mashimo T. Continuous femoral versus epidural block for attainment of 120 degrees knee flexion after total knee arthroplasty: a randomized controlled trial. J Arthroplasty 2013; 28(5): 807-14.
- 116. Tammachote N, Kanitnate S, Manuwong S, Yakumpor T, Panichkul P. Is pain after TKA better with periarticular injection or intrathecal morphine? Clin Orthop Relat Res 2013; 471(6): 1992-9.
- 117. Williams D, Petruccelli D, Paul J, Piccirillo L, Winemaker M, de Beer J. Continuous infusion of bupivacaine following total knee arthroplasty: a randomized control trial pilot study. J Arthroplasty 2013; 28(3): 479-84.
- 118. Abdallah FW, Chan VW, Gandhi R, Koshkin A, Abbas S, Brull R. The analgesic effects of proximal, distal, or no sciatic nerve block on posterior knee pain after total knee arthroplasty: a double-blind placebo-controlled randomized trial. Anesthesiology 2014; 121(6): 1302-10.
- 119. Albrecht E, Morfey D, Chan V, et al. Single-injection or continuous femoral nerve block for total knee arthroplasty? Clin Orthop Relat Res 2014; 472(5): 1384-93.
- 120. Denisa Mădălina Anastase JW, Peter Geiger. Effects of regional anaesthesia techniques on patients' satisfaction after total knee arthroplasty. Romanian Journal of Anaesthesia and Intensive Care 2014; 21(1): 35-43.
- 121. Binici Bedir E, Kurtulmus T, Basyigit S, Bakir U, Saglam N, Saka G. A comparison of epidural analgesia and local infiltration analgesia methods in pain control following total knee arthroplasty. Acta Orthop Traumatol Turc 2014; 48(1): 73-9.
- 122. Chan EY, Teo YH, Assam PN, Fransen M. Functional discharge readiness and mobility following total knee arthroplasty for osteoarthritis: a comparison of analgesic techniques. Arthritis Care Res (Hoboken) 2014; 66(11): 1688-94.
- Kim DH, Lin Y, Goytizolo EA, et al. Adductor canal block versus femoral nerve block for total knee arthroplasty: a prospective, randomized, controlled trial. Anesthesiology 2014; 120(3): 540-50.
- 124. Kim TW, Park SJ, Lim SH, Seong SC, Lee S, Lee MC. Which analgesic mixture is appropriate for periarticular injection after total knee arthroplasty? Prospective, randomized, double-blind study. Knee Surg Sports Traumatol Arthrosc 2015; 23(3): 838-45.
- Lamplot JD, Wagner ER, Manning DW. Multimodal pain management in total knee arthroplasty: a prospective randomized controlled trial. J Arthroplasty 2014; 29(2): 329-34.
- 126. Post-op pain and blood loss in total knee arthroplasty: an RCT using periarticular injection with diclofenac-based multimodal drugs. J Med Assoc Thai 2014; 97(12): 1332-7.
- 127. Liu J, Yuan W, Wang X, et al. Peripheral nerve blocks versus general anesthesia for total knee replacement in elderly patients on the postoperative quality of recovery. Clin Interv Aging 2014; 9: 341-50.
- 128. Mangar D, Karlnoski RA, Sprenker CJ, et al. Knee strength retention and analgesia with continuous perineural fentanyl infusion after total knee replacement: randomized controlled trial. J Anesth 2014; 28(2): 214-21.
- 129. Moghtadaei M, Farahini H, Faiz SH, Mokarami F, Safari S. Pain Management for Total Knee Arthroplasty: Single-Injection Femoral Nerve Block versus Local Infiltration Analgesia. Iran Red Crescent Med J 2014; 16(1): e13247.

- 130. Niemelainen M, Kalliovalkama J, Aho AJ, Moilanen T, Eskelinen A. Single periarticular local infiltration analgesia reduces opiate consumption until 48 hours after total knee arthroplasty. A randomized placebo-controlled trial involving 56 patients. Acta Orthop 2014; 85(6): 614-9.
- 131. Peng L, Ren L, Qin P, et al. Continuous Femoral Nerve Block versus Intravenous Patient Controlled Analgesia for Knee Mobility and Long-Term Pain in Patients Receiving Total Knee Replacement: A Randomized Controlled Trial. Evid Based Complement Alternat Med 2014; 2014: 569107.
- 132. Safa B, Gollish J, Haslam L, McCartney CJ. Comparing the effects of single shot sciatic nerve block versus posterior capsule local anesthetic infiltration on analgesia and functional outcome after total knee arthroplasty: a prospective, randomized, double-blinded, controlled trial. J Arthroplasty 2014; 29(6): 1149-53.
- Sahin L, Korkmaz HF, Sahin M, Atalan G. Ultrasound-guided single-injection femoral nerve block provides effective analgesia after total knee arthroplasty up to 48 hours. Agri 2014; 26(3): 113-8.
- 134. Shah NA, Jain NP. Is continuous adductor canal block better than continuous femoral nerve block after total knee arthroplasty? Effect on ambulation ability, early functional recovery and pain control: a randomized controlled trial. J Arthroplasty 2014; 29(11): 2224-9.
- 135. Spangehl MJ, Clarke HD, Hentz JG, Misra L, Blocher JL, Seamans DP. The Chitranjan Ranawat Award: Periarticular injections and femoral & sciatic blocks provide similar pain relief after TKA: a randomized clinical trial. Clin Orthop Relat Res 2015; 473(1): 45-53.
- 136. Surdam JW, Licini DJ, Baynes NT, Arce BR. The use of exparel (liposomal bupivacaine) to manage postoperative pain in unilateral total knee arthroplasty patients. J Arthroplasty 2015; 30(2): 325-9.
- 137. Tsukada S, Wakui M, Hoshino A. Postoperative epidural analgesia compared with intraoperative periarticular injection for pain control following total knee arthroplasty under spinal anesthesia: a randomized controlled trial. J Bone Joint Surg Am 2014; 96(17): 1433-8.
- 138. Uesugi K, Kitano N, Kikuchi T, Sekiguchi M, Konno S. Comparison of peripheral nerve block with periarticular injection analgesia after total knee arthroplasty: a randomized, controlled study. Knee 2014; 21(4): 848-52.
- 139. Wu JW, Wong YC. Elective unilateral total knee replacement using continuous femoral nerve blockade versus conventional patient-controlled analgesia: perioperative patient management based on a multidisciplinary pathway. Hong Kong Med J 2014; 20(1): 45-51.
- 140. Jaeger P, Koscielniak-Nielsen ZJ, Schroder HM, et al. Adductor canal block for postoperative pain treatment after revision knee arthroplasty: a blinded, randomized, placebo-controlled study. PLoS One 2014; 9(11): e111951.
- 141. Zhang W, Hu Y, Tao Y, Liu X, Wang G. Ultrasound-guided continuous adductor canal block for analgesia after total knee replacement. Chin Med J (Engl) 2014; 127(23): 4077-81.
- 142. J. Zinkus GM, A. Gelmanas, R. Tamošiūnas, J. Masiliūnas, A. Macas. POSTOPERATIVE ANALGESIA FOR TOTAL KNEE ARTHROPLASTY: EPIDURAL ANALGESIA OR NERVUS BLOCK. SVEIKATOS MOKSLAI / HEALTH SCIENCES 2014; 24(6): 128-33.
- Chen CC, Yang CC, Hu CC, Shih HN, Chang YH, Hsieh PH. Acupuncture for pain relief after total knee arthroplasty: a randomized controlled trial. Reg Anesth Pain Med 2015; 40(1): 31-6.
- 144. Al-Zahrani T, Doais KS, Aljassir F, Alshaygy I, Albishi W, Terkawi AS. Randomized clinical trial of continuous femoral nerve block combined with sciatic nerve block versus epidural analgesia for unilateral total knee arthroplasty. J Arthroplasty 2015; 30(1): 149-54.

- 145. Wang F, Liu LW, Hu Z, Peng Y, Zhang XQ, Li Q. [Ultrasound and nerve stimulator guided continuous femoral nerve block analgesia after total knee arthroplasty: a multicenter randomized controlled study]. Rev Bras Anestesiol 2015; 65(1): 14-20.
- 146. Song MH, Kim BH, Ahn SJ, et al. Peri-articular injections of local anaesthesia can replace patient-controlled analgesia after total knee arthroplasty: a randomised controlled study. Int Orthop 2016; 40(2): 295-9.
- 147. Ren L, Peng L, Qin P, Min S. [Effects of two analgesic regimens on the postoperative analgesia and knee functional recovery after unilateral total knee arthroplasty-a randomized controlled trial]. Zhonghua Wai Ke Za Zhi 2015; 53(7): 522-7.
- 148. Shen SJ, Peng PY, Chen HP, Lin JR, Lee MS, Yu HP. Analgesic Effects of Intra-Articular Bupivacaine/Intravenous Parecoxib Combination Therapy versus Intravenous Parecoxib Monotherapy in Patients Receiving Total Knee Arthroplasty: A Randomized, Double-Blind Trial. Biomed Res Int 2015; 2015: 450805.
- 149. Kutzner KP, Paulini C, Hechtner M, Rehbein P, Pfeil J. [Postoperative analgesia after total knee arthroplasty: Continuous intra-articular catheter vs. continuous femoral nerve block]. Orthopade 2015; 44(7): 566-73.
- 150. Amr M.A. Sayed KY. Continuous femoral nerve against psoas compartment block for analgesia in total knee arthroplasty. Ain-Shams J Anaesthesiol 2015; 8: 200-5.
- 151. Kurosaka K, Tsukada S, Seino D, Morooka T, Nakayama H, Yoshiya S. Local Infiltration Analgesia Versus Continuous Femoral Nerve Block in Pain Relief After Total Knee Arthroplasty: A Randomized Controlled Trial. J Arthroplasty 2016; 31(4): 913-7.
- 152. Milani P, Castelli P, Sola M, Invernizzi M, Massazza G, Cisari C. Multimodal Analgesia in Total Knee Arthroplasty: A Randomized, Double-Blind, Controlled Trial on Additional Efficacy of Periarticular Anesthesia. J Arthroplasty 2015; 30(11): 2038-42.
- 153. Mulford JS, Watson A, Broe D, Solomon M, Loefler A, Harris I. Short-term outcomes of local infiltration anaesthetic in total knee arthroplasty: a randomized controlled double-blinded controlled trial. ANZ J Surg 2016; 86(3): 152-6.
- 154. Nasr A Hegazy SSS. Comparison between effects of adductor canal block and femoral nerve block on early postoperative course in total knee arthroplasty: A prospective double-blind, randomized controlled study. Ain-Shams J Anaesthesiol 2015; 8(1): 124-8.
- 155. Kasture S, Saraf H. Epidural versus intra-articular infusion analgesia following total knee replacement. J Orthop Surg (Hong Kong) 2015; 23(3): 287-9.
- 156. Tsukada S, Wakui M, Hoshino A. Pain control after simultaneous bilateral total knee arthroplasty: a randomized controlled trial comparing periarticular injection and epidural analgesia. J Bone Joint Surg Am 2015; 97(5): 367-73.
- 157. Olive DJ, Barrington MJ1, Simone SA2, Kluger R. A randomised controlled trial comparing three analgesia regimens following total knee joint replacement: continuous femoral nerve block, intrathecal morphine or both. Anaesth Intensive Care. 2015 Jul;43(4):454-60.
- 158. Memtsoudis SG, Yoo D, Stundner O, Danninger T, Ma Y, Poultsides L, Kim D, Chisholm M, Jules-Elysee K, Valle AG, Sculco TP. Subsartorial adductor canal vs femoral nerve block for analgesia after total knee replacement. Int Orthop. 2015 Apr;39(4):673-80.
- 159. Henshaw DS, Jaffe JD, Reynolds JW, Dobson S, Russell GB, Weller RS. An Evaluation of Ultrasound-Guided Adductor Canal Blockade for Postoperative Analgesia After Medial Unicondylar Knee Arthroplasty. Anesth Analg 2016; 122(4): 1192-201.
- 160. Wiesmann T, Piechowiak K, Duderstadt S, et al. Continuous adductor canal block versus continuous femoral nerve block after total knee arthroplasty for mobilisation capability and pain treatment: a randomised and blinded clinical trial. Arch Orthop Trauma Surg 2016; 136(3): 397-406.

- Vaishya R, Wani AM, Vijay V. Local Infiltration Analgesia reduces pain and hospital stay after primary TKA: randomized controlled double blind trial. Acta Orthop Belg 2015; 81(4): 720-9.
- 162. Fan L, Yu X, Zan P, Liu J, Ji T, Li G. Comparison of Local Infiltration Analgesia With Femoral Nerve Block for Total Knee Arthroplasty: A Prospective, Randomized Clinical Trial. J Arthroplasty 2015.
- 163. Schwarzkopf R, Drexler M, Ma MW, et al. Is There a Benefit for Liposomal Bupivacaine Compared to a Traditional Periarticular Injection in Total Knee Arthroplasty Patients With a History of Chronic Opioid Use? J Arthroplasty 2016.
- 164. Youm YS, Cho SD, Cho HY, Hwang CH, Jung SH, Kim KH. Preemptive Femoral Nerve Block Could Reduce the Rebound Pain After Periarticular Injection in Total Knee Arthroplasty. J Arthroplasty. 2016 Aug;31(8):1722-6.
- 165. Elkassabany NM, Antosh S, Ahmed M, Nelson C, Israelite C, Badiola I, Cai LF, Williams R, Hughes C, Mariano ER, Liu J. The Risk of Falls After Total Knee Arthroplasty with the Use of a Femoral Nerve Block Versus an Adductor Canal Block: A Double-Blinded Randomized Controlled Study. Anesth Analg. 2016 May;122(5):1696-703.
- 166. Sawhney M, Mehdian H, Kashin B, Ip G, Bent M, Choy J, McPherson M, Bowry R. Pain After Unilateral Total Knee Arthroplasty: A Prospective Randomized Controlled Trial Examining the Analgesic Effectiveness of a Combined Adductor Canal Peripheral Nerve Block with Periarticular Infiltration Versus Adductor Canal Nerve Block Alone Versus Periarticular Infiltration Alone. Anesth Analg. 2016 Jun;122(6):2040-6.
- 167. Beausang DH, Pozek JJ, Chen AF, Hozack WJ, Kaufmann MW, Torjman MC, Baratta JL. A Randomized Controlled Trial Comparing Adductor Canal Catheter and Intraarticular Catheter After Primary Total Knee Arthroplasty. J Arthroplasty. 2016 Mar 15. pii: S0883-5403(16)00267-9.
- 168. Jain RK, Porat MD, Klingenstein GG, Reid JJ, Post RE, Schoifet SD. Liposomal Bupivacaine and Periarticular Injection Are Not Superior to Single-Shot Intra-articular Injection for Pain Control in Total Knee Arthroplasty. J Arthroplasty. 2016 Mar 26. pii: S0883-5403(16)00325-9.
- 169. Runge C, Børglum J, Jensen JM, Kobborg T, Pedersen A, Sandberg J, Mikkelsen LR, Vase M, Bendtsen TF. The Analgesic Effect of Obturator Nerve Block Added to a Femoral Triangle Block After Total Knee Arthroplasty: A Randomized Controlled Trial. Reg Anesth Pain Med. 2016 Jul-Aug;41(4):445-51.
- 170. Barrington JW, Emerson RH, Lovald ST, Lombardi AV, Berend KR. No Difference in Early Analgesia Between Liposomal Bupivacaine Injection and Intrathecal Morphine After TKA. Clin Orthop Relat Res. 2016 Jun 23. [Epub ahead of print]