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UDD and Dose-Finding Glossary (alphabetically ordered)

Note: the glossary includes only terms specifically relevant to UDDs and dose-finding. 

Definitions of other statistical terms can be readily found online.

Adaptive Designs: procedures in which the rule for allocating subjects to treatments changes 

during the study, and current allocations may depend on prior data. In addition to UDDs and 

other dose-finding designs, this includes adaptive randomization rules for controlled clinical 

trials, designs with stopping rules that depend on the data, and those that plan for sample size 

re-estimation during the course of the study.

Boundary Doses: the highest and lowest dose permitted in a specific experiment. 

Dose-Response Curve: for binary outcome variables, this is a curve with the probability of a 

positive response on the y-axis and the dose magnitude on the x-axis.

Dose-Transition Rules or Dose-Allocation Rules: these rules determine the dose allocated to

the next patient, given the doses and responses of previous patients.

Monotone Dose-Response Relationship: in a monotone relationship as the dose increases, 

the probability of positive response never changes direction: it either increases or decreases 

throughout the entire dose range. 

Reversal Points: points in a UDD experiment where the response changed from positive to 

negative, or vice versa.

Target Dose: the dose that a dose-finding experiment is formally tasked with estimating. Most 

dose-finding designs aun to concentrate dose-allocations around target.
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Using R’s     ‘cir’     Package for UDD Target Estimation  

R is a free open-source, cross-platform statistical programming language, and also currently the

world’s most popular statistical language. One of R’s strengths is that in addition to its core 

capabilities bundled with the standard installation, there are numerous, easily-installed add-on 

packages contributed by researchers and software experts. R is available from the 

Comprehensive R Archive Network (CRAN: https://cran.r-project.org/). Despite its ease of 

installation, using R proficiently requires some understanding of programming, because its 

standard interface is a command line where the user types programming statements, or invokes

a file with a sequence of such statements (known in programming as a “script”). Most current R 

users prefer to interact with the language via the interface provided by another free software 

known as Rstudio. 

The ‘cir’ package (authored and maintained by Dr. Oron) provides functions that produce 

centered isotonic regression (CIR) and “plain” isotonic regression estimates with their 

confidence intervals, as well as basic utilities for handling and plotting dose-response data such 

as those from UDD experiments.1 The package incorporates the learnings documented in 

recent methodological articles, in particular, Oron and Flournoy presenting CIR and its 

confidence interval12 and Flournoy and Oron describing the bias induced by dose-finding 

designs.3

To install ‘cir’, either use drop-down menu installation utilities of the R or RStudio user 

interfaces, or open an R session and type

install.packages("cir")

(Note: code to be typed is in blue, whereas comments are in black and preceded by a hash 

‘#’)

The command above will install the latest stable version the maintainer has uploaded to CRAN. 

All software undergoes continuous changes and improvements, usually minor. If for any reason,

you would like to install the current “live” version Dr. Oron is working on, this version is shared 

on the GitHub public repository, and can be installed via

install.packages("devtools")  

# Comment: this will install a package enabling installation from GitHub.

# Just like ‘cir’ itself, you can install ‘devtools’ using drop-down menus.

library(devtools)  # this actually loads the ‘devtools’ package
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install_github("assaforon/cir")  

Before doing the latter, it is a good idea to contact Dr. Oron (current emails: 

assaf.oron@gmail.com or assaf@uw.edu) and make sure the live version is not in an unusable 

“under construction” state.

Once ‘cir’ is installed, you can load it into an active R session via the command

library(cir)

A tutorial (called “vignette” in R jargon) showing the use of ‘cir’ with UDD data from Benhamou 

et al.,4 is available here. This tutorial is bundled with the package’s CRAN version. If you install 

‘cir’ from GitHub you will get the tutorial’s latest version (as of spring 2022 there have been no 

recent changes to it). After loading ‘cir’, you can see and click into any of its vignettes using the 

command

browseVignettes("cir")

Here we only show in brief, how to carry out a UDD target estimate.

The target estimation function is called quickInverse()  [“Inverse” because this is an 

inverse estimate from the dose-response curve, that is, estimating a dose (x) value from the 

response (y) value]. It accepts many input formats, but the preferable format is an x-y-n 

summary by dose called a doseResponse object. Here is this object for Benhamou et al.’s 

ropivacaine arm data:

x         y weight
0.07 0.0000000      3
0.08 0.3750000      8
0.09 0.3846154     13
0.10 0.8000000     10
0.11 0.7500000      4
0.12 1.0000000      1

In this case, the ‘weight’ column is simply the number of observations (n) made at each dose. 

The vignette shows how to create such an object from the raw data. Assuming we have already 

created it under the name bhamou03ropiDR, the recommended code for estimating the target 

(the ED50 in this illustration) is

ropiTargetCIR = quickInverse(bhamou03ropiDR, target=0.5, adaptiveShrink=TRUE)
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# You should get this back as the result:

  target point lower90conf upper90conf

1    0.5 0.09383622  0.08090006   0.1060014

Notes:

● The target estimate appears under the word point: in this case, 0.0938% (after adding 

units).

● The probability of a positive response, a fraction between 0 and 1, defines the target via 

the target argument. For finding the ED50, the value is 0.5, as above.

● The “adaptiveShrink” option performs an empirical correction for bias induced by 

the adaptive design, as mentioned in the main article.2 The bias is minimal near the 

target, but increases rapidly away from it. We perform the correction mainly in order to 

expand the confidence intervals, since the bias makes dose-response slope estimates 

too steep.

● Because of this bias, we strongly recommend to *not* report any dose estimates 

except for the UDD’s designated target.

● The default confidence interval is 90%, which as explained in the main article, is the 

maximum confidence level that should be reported unless you use a very large n. To 

change it use the “conf” argument, which is specified as a fraction (i.e., the default is 

conf=0.9).

● In an experiment that does not target the ED50, but targets another dose such as 

the ED90, we recommend adding the argument “adaptiveCurve=TRUE” to the 

command above. This broadens the confidence intervals a bit more to ensure proper 

coverage, which is more challenging the closer the target is to the edge of the dose-

response curve.

● To use the older IR method instead of CIR, add the argument “estfun=oldPAVA”.

If you would like to obtain the CIR-estimated dose-response curve, then the function 

quickIsotone() with the same arguments will give you the y estimates at all doses used. To

get data for generating the complete x-y curve, add the argument full=TRUE. Note again that 
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outside the target area, this curve will be biased (upward at doses above the target and vice 

versa), and the empirical bias correction only partially corrects the bias. See the vignette and 

other ‘cir’ package help pages for more information on manipulating and plotting UDD data.

Comparing UDD Estimation Methods: Performance Simulations

A. Overview 

This section demonstrates how design and estimator performance are examined in practice, 

and also provides some evidence for statements made about estimation performance in the 

main article.

Most theoretical results about the performance of designs and estimates have to do with long-

term behavior as n approaches infinity. In the realm of actual sample sizes used in UDD 

experiments, theoretical results are very rare and one has to resort to comparative simulations. 

Using simulation to evaluate UDDs has a history almost as long as the design family itself.7 To 

run such a simulation we need to decide upon

● The designs and/or estimation methods to compare

● Design parameters such as n, number of dose levels, starting dose, etc.

● The form of F(x)

The last decision is all-important. Some choices of F(x) might favor one design or estimate, but 

the very same design or estimate would do very poorly given another choice. Until recently, 

researchers usually chose a few specific curves to use in their simulations. These curves, 

besides falling far short of representing the broad range of conditions encountered in practice, 

also tended to favor whatever method the researcher performing the simulation had favored. 

Remarkably, Wetherill himself in his seminal 1960s work decided that a reversal-only estimate 

is better than using all doses, based on a narrow performance advantage in his simulations on a

very specific F(x).5 The extreme narrowness of this body of evidence was quickly forgotten, or 

misunderstood, as reversal-only averages became popular, and to this day remain the most 

popular choice. Ironically, for reversal-only estimates one can obtain theoretical results 

suggesting they are generally inferior to using all doses, so simulations are not as necessary.6,7 
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More recently, in order to make simulations more robust, the dose-finding field has moved 

towards random-curve simulations.2,8,9 In this approach we let curve parameters, or sometimes 

the entire curve, be chosen randomly, generating a large and diverse ensemble of curves. For 

each curve, we “run” and estimate a simulated UDD experiment under various choices for the 

other design elements. 

Figure S1 shows some curves generated to examine estimates for the ED50 (left) and the ED90 

(right) with 10 dose levels. The left panel of curves come from the asymmetric Gamma family; 

the right panel from the symmetric Logistic family. All curves are constrained to cross their 

respective targets (y=0.5 and 0.9, respectively) between doses 5 and 6. This enables one to 

separate the resilience of estimates to curve shapes, from their resilience to starting-dose and 

boundary effects: we can shift the curves and starting dose left or right to impose different 

relations between starting dose, target and boundary. For each such shift, the entire ensemble 

is run and the results tallied.

Figure S1: a selection of randomly simulated dose-response curves used in our performance

simulations. In each pane, the target response rate is shown by a horizontal dotted line.

B. Comparing Estimation Methods

The most standard estimation performance metrics are the mean-squared error (MSE) and its 

square root, the root-mean-squared error (RMSE). As the name indicates, the MSE is the 
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average of squared distances between the estimate and the targeted dose. The MSE follows a 

famous and insightful decomposition formula:

MSE = (Bias)2 + (SD)2,

where SD2 is the variance of the estimate. Methods that focus only on eliminating bias while 

letting estimators run very noisily (large SD), or vice versa, will not fare well. To obtain a good 

estimate, both components need to be controlled, and the formula suggests that they are 

equally important. Some methods deliberately take on a small amount of bias, in order to 

achieve a larger reduction in noise. This interplay is known in statistics and machine learning as 

the Bias-Variance Tradeoff.10 The formula also reveals that for the MSE, the bias direction does 

not matter - only its magnitude.

Despite the equivalent weighting of bias and variance in the MSE, in many applications and 

often in medicine, the bias is important on its own. Bias is a systematic error. If our method for 

estimating the ED90  actually produces, on average, something closer to the ED80, it is 

important to know that, and will often be less desirable than a noise error component of equal 

magnitude. Therefore, in most clinical dose-finding contexts the bias can serve as a tie-breaker 

when selecting between methods with very similar MSE.

In the figures below we show the RMSE and the absolute bias rather than the MSE and squared

bias, because the former are in the same units as the doses. We compare seven estimation 

methods:

● The original 1948 Dixon-Mood estimate (“Dixon-M”),11 a dose-averaging estimate often 

cited in anesthesiology as “Dixon-Massey” after the 1950s textbook where it also made 

an appearance.12

● Averaging all doses starting from the first reversal [“Avging (all from R1)”], or from the 

third  [“Avging (all from R3)”]. The latter is the one we recommend, if you want to 

calculate a secondary averaging estimate in conjunction with CIR.

● Averaging only the doses at reversals, starting with the first [“Avging (reversals only)”]. 

This is Wetherill’s estimation method; as mentioned above, it is still likely the most 

popular across the entirety of UDD studies in various fields.

● An averaging estimator attempting to detect the “right” truncation point, up to which all 

preceding doses are excluded (‘Avging (“Auto-Detect")’]. All doses following the 
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truncation point are included in the average. It has not been published outside Dr. Oron’s

dissertation.5 

● CIR and IR as described in the main article, both using the empirical adaptive-design 

bias correction. 

Figure S2 compares RMSEs of these estimates on ED50-targeting experiments with M=10 dose

levels and n=30. Dots are color-coded by the approximate distance from the starting dose to the

target. Each dot represents an ensemble of 1000 virtual “experiments”, each with its own 

random F(x) under the Gamma family (top panel) and the Logistic family (bottom panel), 

starting-dose and target-location specifications.

Estimates, on average (horizontal black bars), are slightly less  than a single dose-spacing from 

the target, but not much closer except under very favorable starting choices (the blue dots). In 

terms of average performance, the “R3” and “auto-detect” averaging estimators seem slightly 

better than several others, i.e., their average RMSE is smallest - while standard isotonic 

regression has the largest average RMSE. However, the differences are not overwhelming, with

all seven methods within 15-20% of each other.

As often happens, the average does not tell the full story. All estimates do better when things 

line up nicely together: the target is near the starting dose and there’s no boundary effect (blue 

dots). However, CIR and isotonic regression are far more resilient, or robust, to less desirable 

settings (red dots). Among averaging estimates, “all from R3”, and “auto-detect”, are more 

robust than others, while the two estimates most commonly appearing in literature (Dixon-Mood 

and reversals-only) are the least robust.

Figure S3 shows bias magnitudes from the same simulation and estimates. It sheds light on the 

source of averaging estimates’ vulnerability, which indeed is the bias, most often in the direction

of the starting dose. When the target is far from the starting dose (red dots), the bias component

might contribute to the MSE more than the variance. By contrast, CIR and isotonic regression 

biases are generally small; most of their estimation error is noise.

Since CIR is competitive with the leading dose-averaging estimates on RMSE, its substantially 

lower bias provides a “tie-breaker”, substantiating our case for using it as the standard UDD 

estimate; at least until something better is developed.
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Figure S2: RMSE summaries from a random-curve simulation for ED50-targeting UDDs. Each

dot represents an average across 1000 random curves. The horizontal black lines show the

average of the dots for each estimate. Dots are color-coded by the approximate distance from

the starting dose to the target.
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Figure S3: Summaries of absolute biases from the random-curve simulation for ED50-targeting

UDDs. Each dot represents an average across 1000 random curves. The horizontal black lines

show the average of the dots for each estimate. Dots are color-coded by the approximate

distance from the between starting dose to the target.

Figures S4-S5 show analogous summaries with ED90-targeting KRDs (k=6) and n=50. Two 

estimation methods were clearly tailored for ED50-finding, and fare very poorly when used off-

target here: It is not surprising that one is the Dixon-Mood estimator, but the other is the 

reversals-only average which unfortunately is used very often with KRD in sensory studies, 

despite being rather inadequate for the task.
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While the other averaging estimators exhibit fairly good RMSE and bias performance for the 

settings used in our simulations, at present we cannot offer any reasonable confidence interval 

to accompany them for estimating non-ED50 targets. Some more details are provided further 

below.

By contrast, in these simulations CIR’s 90% CIs had 85-90% coverage for both targets, after 

adding the “adaptiveCurve=TRUE” argument.

Figure S4: RMSE summaries from the random-curve simulation from KRDs with k=6, targeting

the ED90. Each dot represents an average across 1000 random curves. The horizontal black

lines show the average of the dots for each estimate. Dots are color-coded by the approximate

distance from the starting dose to the target.
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Figure S5: Absolute bias summaries from the random-curve simulation from KRDs with k=6,

targeting the ED90. Each dot represents an average across 1000 random curves. The

horizontal black lines show the average of the dots for each estimate. Dots are color-coded by

the approximate distance from the starting dose to the target.
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C. Comparing Design Choices and Decisions

We briefly summarize some simulation insights about additional design aspects, without 

showing additional figures.

If the target is far from the starting dose, a number of initial patients may be “used” to get the 

dose-allocation sequence near to the target.  One possible procedure for getting allocations 

close to a non-ED50 target with fewer patients is to start with the classical UDD and then switch 

to an appropriate KRD. This idea for accelerating initial dose-allocations toward the target is 

mentioned in the main article’s Box 2, and is discussed in more detail below. 

To evaluate this two-stage procedure for targeting the ED90, we compared the performance of 

a standard k=6 KRD, with a procedure that starts with the k=1 KRD (equivalent to the Classical 

UDD) and switches to k=6 after the first negative response. Indeed, when starting from the top 

of the dose range there is a substantial performance improvement. Starting from the top with 

k=6 wastes an enormous number of observations before getting near the target. RMSEs with 

CIR were ~20% smaller when using the k=1 startup stage. In addition, in 10% of runs without a 

startup stage no CIR estimate was possible, because all the dose levels visited had observed 

response rates above 90%. When instituting the k=1 startup rule, only ~1% of runs suffered this 

fate.

However, when the starting dose is not high, there is a price to be paid for starting with a k=1 

rule. We found that when the target is near or somewhat below the starting dose, a k=1 startup 

rule may actually incur a small increase to CIR’s RMSE. 

We also ran a large battery of ED95 targeting experiments. Confidence-interval coverage was 

5-10% lower: 80% or less for the 90% CI. The results indicate that such an extreme target will 

require a larger n (approaching n=100 or more) to obtain acceptable coverage, and to allow for 

some movement between doses.

As to design comparison: we had compared KRD and BCD in 2009 targeting the 30th 

percentile, inspired by Phase I cancer trials.13 The designs for that target would be the mirror-

image of designs targeting ED70. Specifically, we compared KRD with k=2 to the BCD with a 

coin probability of 3/7. In that comparison, KRD clearly had the upper hand, with consistently 

smaller RMSEs. 
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To our surprise, when targeting ED90 in simulations for this Supplement, the two designs 

appear equivalent, with CIR RMSEs within a few percent of each other in either direction, and 

no clear winner. To cross-check our prior work, we ran a refreshed version of the ED30 

simulations using the current setup and code; KRD still showed the advantage we previously 

found, although it was more modest than before (now KRD had ~5-8% smaller RMSEs, versus 

15%-20% smaller in older studies). It may be that the various improvements to CIR since our 

2009 study have helped close the gap. While KRD has the operational advantage of no 

randomization and a fixed, generally shorter maximum wait before decreasing a dose (6 

responses with ED90, versus 9 for BCD on average), we can report no difference between the 

two in terms of ED90 estimation performance.

Please see additional simulation-based insights below, when discussing CIs for averaging 

estimators.

Preferred Methods for Dose-Averaging ED50 Estimates

A. Target estimate, with R functions

Dose-averaging estimates are fairly straightforward, but as a courtesy we provide an annotated 

version of the R functions we have written and used to calculate them for these simulations. As 

the simulation results above suggest, dose-averaging should be discouraged when the target is 

not the ED50. A function for confidence intervals appears further below.

### First, a small utility that identifies points with reversals
# The function returns indices, i.e., the locations of reversals

reversals <- function(y) which(diff(y)!=0)+1

# ------- MAIN FUNCTION ---------
# Reversal-anchored averaging estimators: enables both reversal-only
#        and all doses Starting from a reversal
# Default is our recommendation: all doses, starting from reversal 3

reversmean <- function(x, y, rstart=3 ,all=TRUE, before=0, full=FALSE)

# Arguments:
# x - the sequence of doses given
# y - the sequence of 0/1 responses
# rstart - which reversal to begin with (integer, default 3)
# all - logical, whether to include all doses (TRUE, default), or
#            only reversals
# before - If set to 1, will start 1 data point before the reversal
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#            (default 0)
# full - logical, whether to return a fuller report or 
#            only the estimate (FALSE, default)
{
### Validation checks
n = length(x)
if(!(length(y) %in% c(n-1,n))) stop('X vector must be equal-length or 
1 longer than Y.\n')
if(!(before %in% 0:1)) stop('argument before can only be 0 or 1.\n')

# Locating the reversals using the reversals() utility
revpts = reversals(y)

### Exception handling
if(length(revpts) == 0) { # fully degenerate, no reversals

if(full) return(data.frame(est=mean(x[-1]),cutoff=1))
return(mean(x[-1]))

}
# part-degenerate: fewer reversals than needed to start
if(rstart>length(revpts)) rstart = length(revpts) 

### After all this, the estimate itself is anti-climactic:
est = ifelse(all, mean(x[(revpts[rstart]-before):n]),

    mean(x[revpts[rstart:length(revpts)]]))
if(!full) return(est)
data.frame(est=est, cutoff=revpts[rstart]-before)
}

B. CI estimate, with R function avgHalfCI

Confidence intervals for dose-averaging UDD estimates are obtained via an estimate of the 

standard error of the mean (SEM):

SEM= SD

√neff

,

where SD is (an estimate of) the standard deviation of the dose-allocation distributions, and neff 

estimates the effective sample size. In practice estimating the SEM from UDD data is a very 

challenging task because

● The sequence of assigned doses is positively auto-correlated, which complicates the 

estimation of both numerator and denominator in the formula.

● The doses are assigned from a limited discrete set of dose-levels, and therefore 

estimated quantities such as the observed SD and the auto-correlation are coarse in that

they can only take a discrete set of possible values.
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● UDD samples are usually small, and for dose-averaging early results are excluded to 

remove the starting dose effect.

To our knowledge, the last theoretical attempt to develop a dose-averaging SEM cognizant of 

these challenges was by Choi in 1990, taking account of the autocorrelation as well.14 We 

examined it with our random-curve simulations, and it fails to capture the true SD variations 

between curves. Therefore it produces CIs with very poor coverage.

The method in the R function avgHalfCI below relies upon a simple robust and conservative 

alternative to the SD: half the difference between the 90th and 10th percentile of allocated 

doses. The user can vary this choice of percentiles chosen via trial and error, but the formula 

above was found to produce sufficient Cis for ED50 estimates.

To obtain the SEM, one must still estimate the denominator neff. It will be smaller than the 

nominal sample size, both because of excluding the early observations and even more so, 

because of the autocorrelations. Like Choi, we rely upon standard random-walk theory to meet 

this challenge: if one splits the sequence of assigned doses by visits to the same dose-level, 

each of the sub-sequences between these visits is independent of the other. This suggests that 

the number of visits to the most-visited dose level, less 1, is a reasonable approximation of neff. 

Warning: the avgHalfCI function provided below is to be used only for ED50-finding. In 

the simulation setups presented earlier for ED50-finding, 90% CIs using these functions had 

empirical 85-90% coverage for the “all from R3” estimate. However, for the ED90 the same 

approach’s 90% CIs barely exceeded 50% coverage.

 Here is the avgHalfCI function with some documentation. As default it returns the CI’s half-

width:

avgHalfCI <- function(x, conf=0.9, refq=c(.1,.9), full=FALSE)

# Returns half the dose-averaging confidence-interval.
# Uses visits to most-visited-level as proxy for n_eff
#    and quantiles of assigned doses as proxy for the SD
# The CI will be symmetric, obtained by adding and subtracting from
#    the point estimate.
# We assume the t distribution.
# WARNING: TO BE USED ONLY FOR ED50-FINDING! 
#   DOSE-AVERAGING IS ILL-SUITED FOR OTHER TARGET DOSES.
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# Arguments:
# x: the dose sequence to be included. You should exclude the early 
part that is not participating in the dose-average.
# conf: confidence level as a fraction between 0 and 1.
# refq: the reference quantiles (also between 0 and 1) between which 2
times SD is estimated. It is recommended to have them symmetric around
0.5.
# full: a logical flag alternating between 
#       reporting only the half-CI width (full=FALSE) and 
#       reporting the underlying estimates of n_eff and SD (full=TRUE)
{

neff = max(table(x))-1 # effective n via number of visits

sdeff = diff(quantile(x, probs=refq, type=6))/2 # type=6 is unbiased

if(!full) return( qt(0.5+conf/2, df=neff-1) * sdeff/sqrt(neff) )

return( data.frame(neff=neff, sdeff=sdeff) )
}

The Impact of Boundaries on Dose-Allocation Distributions and Estimates

The main article states that hard dose boundaries near the target break the approximate 

symmetry of the allocated dose distribution. This has a devastating effect on dose-averaging 

estimates which become substantially biased, but also upon CIR estimates because information

is lacking about the dose-response curve beyond the boundary.

Figure S6 illustrates this effect. Its four panels depict the dose distribution after n=40 for a 

hypothetical 8-dose ED50-targeting UDD with hard boundaries. The first 8 patients were 

excluded to mitigate the starting-dose effect. In all panels F(x) remains the same, but the doses 

and their boundaries shift successively one level to the left. When the upper and lower 

boundaries are sufficiently far from target (top), the expected average dose assignment (light-

blue vertical line) falls right on top of target (red line, not visible in top panel). As the upper 

boundary moves closer to target, the gap between target and average increases, reaching 

almost a full dose level when the boundary is right next to the target (bottom panel).

As a result, dose-averaging estimates incur a bias from the magnitude of the distance between 

the red and blue lines, on top of any starting-dose bias (if not mitigated properly). 
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Figure S6: calculated average dose-allocation distributions (blue bars) from patients 9-40 of an

n=40 ED50-targeting design. The same F(x) was used in all panels, but the boundaries (vertical

black curls) shift one dose-level to the left in each panel from top to bottom. The expected

average of allocation from patients 9-40, as shown as a light blue vertical line, is seen to shift

away from target (red).
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Important UDD Variations Not Discussed in the Main Article

A. Cohort or Group UDD

Sometimes researchers would like to treat several patients simultaneously, or in quick 

succession without waiting for the most recent patient’s result at each step. In this context, a 

group UDD (GUDD)27,28 comes in handy:

● Specify the group size g, and lower and upper transition thresholds l and u (l<u)

● At each step, treat and evaluate a group of size g at the same dose;

● Count the number y of effective responses in the current group.

● If y<=l increase the dose;

● If y>=u decrease the dose;

● If u<y<l the next group receives the same dose. 

We denote a specific GUDD as GUDDg,l,u. For example, GUDD1,0,1 is another name for the 

Classical UDD. Like KRD, GUDDs cannot target any arbitrary percent response. Unlike KRD, 

most GUDDs lack a closed-form formula for the target, and require numerical calculation. One 

exception is GUDDg,g-1,g which shares the same targets as KRD with k=g. The formula for p, 

the target response rate of these designs (not provided in the main article) is 

p=1
2

1/k

.

For example, as implied in the main article: with k=6, p = (0.5)^(1/6), or approximately 0.89.

GUDDs with l+u=g are symmetric, all of them targeting the ED50. Gezmu and Flournoy provide 

an extensive table of {g,l,u} sets and their targets, focusing on targets below the median.28

The R function gudtarg below calculates GUDD’s target response rate given {g,l,u}:

gudtarg<-function(g,l,u)
{
# Transition balance equation
tbalance <- function(x, gee, ell, you)  {

pbinom(q=ell, size=gee, prob=x) + (pbinom(q=you-1, size=gee, 
prob=x) – 1)  }

# Target rate: where the balance is zero
uniroot(f=tbalance, interval=0:1, gee=g, you=u, ell=l)$root
}
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B. Parallel UDDs to Test for Differences Between Groups

The practice of splitting the sample into groups (e.g., by patient properties or by different 

treatments), and running separate but similarly-designed UDDs to compare their target doses is 

currently popular in anesthesiology. Pace and Stylianou’s 2007 article revisited two such 

experiments,15 and similar studies continue to appear.

In the case of two groups, the hypothesis-testing method used in many studies is to calculate 

83% confidence intervals; if the intervals don’t overlap, the null hypothesis of no difference is 

rejected at p<0.05, and vice versa. One could extend the concept to a larger number of groups 

with multiple-testing adjustments. Theoretical examinations suggest that with UDD data this 

method’s probability of falsely rejecting the null hypothesis (the Type I error) is robust. However,

its power to detect a difference when one exists is unimpressive.16 

When using UDD with an interval-overlap test, a conservative CI would be prudent. As a case in

point, we revisited the Benhamou et al. study mentioned above in the ‘cir’ package section,4 

which was previously revisited by Pace and Stylianou. The goal was to compare the EC50s of 

levobupivacaine and ropivacaine for analgesia during labor (Figure S7). The original 

researchers used the Dixon-Mood UDD estimate for each agent. The method used for group 

comparisons was not specified, but since the single-group estimators were dose averaging, we 

presume that the Dixon-Mood SEMs were used assuming independence between the two 

groups. The ED50 estimates were 0.092% (95% CI,0.082–0.102%) for ropivacaine and 0.077% 

(0.058–0.096%) for levobupivacaine and, with the difference 0.015% (-0.008 – +0.037%) 

deemed not significant.

Pace and Stylianou revisited this study using isotonic regression, bootstrap CIs, and the 83%-CI

overlap test. Their estimates were 0.093% (0.080–0.100%) and 0.068% (0.058–0.095%) for 

ropivacaine and levobupivacaine, respectively. The 83% CIs were (0.087–0.097%) and (0.059–

0.081%), respectively, indicating a significant difference.
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Figure S7: Benhamou et al.’s data with filled and empty circles denoting effective and

ineffective responses, respectively. Each arm’s last patient was omitted due to unknown

response.

Our own re-analysis using CIR and its analytically-derived CI yields 0.094% and 0.068% for the 

point estimates, very similar to Pace and Stylianou; however, our 83% CIs were 0.083–0.104% 

and 0.056–0.082%, respectively. Both are wider, with our ropivacaine interval more than twice 

as wide as the Pace-Stylianou bootstrap CI. While the ropivacaine and levobupivacaine 

intervals still do not overlap in our version, they are nearly touching indicating very borderline 

evidence for different EC50s at the ɑ=0.05 level. We note that neither re-analysis could use the 

40th and last observation from each arm, because the original study’s figures did not distinguish

positive and negative responses; there was no tabular data summary and access to the original 

data had since been lost (D. Benhamou, personal communication). If the last response on the 

ropivacaine arm was ineffective, while the point estimate wouldn’t change appreciably the 83% 

CI would expand to 0.082–0.106%, placing further doubt on the evidence for a difference 

between EC50s. 

Looking at the estimated dose-response curves (Figure S8), the bootstrap CIs indeed seem too 

narrow. In particular, the 95% bootstrap CI for ropivacaine barely touches on the 0.08% dose, 

despite the observed efficacy rate at that dose being nearly 0.4, nearly identical to the rate at 

dose 0.09% which is the closest one to the target estimate (3 of 8 vs. 5 of 13).
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Figure S8: Benhamou et al.’s data as dose-response summaries, with the Pace-Stylianou

isotonic regression and our CIR estimates curves. The purple marks show the CIR target

estimates with 90% CIs.

C. Quick-Start Stage for Non-ED50 UDDs

Asymmetric UDDs allow for targeting any percentile. In addition, they tend to generate sharper 

dose-allocation peaks around the target, due to the rules that facilitate repeating the same dose.

For example, near the target of an ED90-targeting UDD, after each observation, the same dose 

would be repeated with ~80% probability, while dose increase/decrease occur only with ~10% 

probability each. 

However, with these designs if the experiment begins far away from target, it may take an 

inordinately large number of observations to traverse the distance. Due to the asymmetry, this 

number will depend on which direction the experiment needs to go to reach the target. With the 

high-percentile targets common in anesthesiology, dose decreases are slower. Therefore, we 

recommend beginning such experiments somewhat below the presumed location of the target, 

or somewhat below the middle of the effective range (see the main article regarding effective 

range). 

If that is not possible, one may consider quick-starting the experiment with a Classical-UDD 

stage. That is, for a prespecified initial duration the Classical UDD rules would be applied 
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mandating a dose transition after every observation, before switching to the main design that 

targets, say, the ED90. In the main article we cautioned against adaptive design changes early 

in the experiment. However, we explained that the issue is more of quantity than principle. 

When targeting an extreme percentile and facing a dose-transition rate that is at least 6x slower 

in one direction, the benefit-risk assessment for beginning with a faster albeit “wrong-target” 

stage may be more appealing.

That said, the risks should still be considered. Since the start-up stage targets the ED50, the 

most substantial risk is overshooting the eventual target. Even though recovery towards the true

target region after switching designs should be relatively quick, there may be ethical concerns 

regarding spending too much time in a suboptimal region of the dose range. 

For example, Dosani et al. investigated slower administration of propofol to children undergoing 

endoscopy, in order to reduce apnea frequency to ~5%; in other words, their study targeted the 

ED95 of apnea prevention.17 They began with a relatively slow rate (equivalent to top of the 

range for dose-efficacy studies) and a Classical UDD stage ending after the third observed 

apnea; then they switched to a BCD targeting the 95th percentile of apnea prevention. This is a 

relatively late switching point; most UDD studies employing a quick-start stage switch after the 

first reversal.18 During the experiment, the switch to BCD took place only after 17 patients out of 

a total of 50, by which time the propofol administration rate was 3-4 spacing units faster than the

eventual target estimate. Very likely, the target was overshot and it took additional subjects for 

the sequence to backtrack to the target region. There were 7 apneas observed among the 50 

patients, about 3 times the experiment’s designated 5% target rate. 

Besides the risk of overshooting, dose-finding designs induce an observed-rate bias at doses 

flaring away from the target, as mentioned in the main article. Therefore, the initial ED50-

targeting stage has a different bias pattern from the main non-ED50 targeting stage. This is 

another reason to keep the quick-start stage short, so that it accounts for a small fraction of the 

final sample size.

In summary, the recommended practice for non-ED50 UDDs is to begin them somewhat off-

center towards the side having faster expected transition whenever feasible, obviating the need 

for a separate quick-start stage. For above-median targets this starting point would be a 

somewhat lower dose than otherwise planned. A quick-start stage may be considered, 

particularly when forced to start at a higher dose. But it should be kept very short, e.g., until the 

first undesirable response (negative response for high-target designs and vice versa). 
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More on Long-Memory   Dose-Finding Designs  

As described in brief in the main article’s discussion section, dose-finding designs using 

Bayesian methods, such as the Continual Reassessment Method (CRM),19 Escalation With 

Overdose Control (EWOC),20 the modified probability toxicity interval (mTPI)21 and Bayesian 

Optimal Interval Design (BOIN)22 have become popular in the Phase I cancer trial design 

literature, and are making inroads into anesthesiology as well. We wrote that on balance, for the

straightforward task of dose-finding with small to moderate samples, UDDs still seem 

preferable. Here we expand the discussion and explain our recommendation, in view of the 

interest these other designs have generated and their increasing use in anesthesiology.

Oron and Hoff included these designs in a class they called  “long-memory” designs,23 in 

contrast to the “short memory” of UDDs. Long-memory designs share two main traits:

1. Dose allocations rely upon estimates of F(x) that may use all prior data starting from the 

beginning of  the experiment.

2. The allocations follow a design-specific optimization criterion, intended to provide the 

“best” or at least a highly desirable dose to the next patient.

Because of the second trait, Fedorov and Leonov call this class “best-intention designs”.24 Their 

discussion of the topic also includes designs with more complex optimization criteria lacking the 

second trait; we do not discuss the latter, as they are not in prevalent use.

Of special note is an important subtype of long-memory designs that is often not perceived as 

such in the literature. These are interval designs, which typically repeat the same dose if the 

cumulative response rate there is within a tolerance interval around the target rate. For 

example, an ED50-targeting interval design might repeat the same dose if the cumulative 

proportion of positive response at the current dose is between 40% and 60%, increase the dose

if <40%, and decrease it if >60%. Interval designs’ “optimization criterion” is often so simple as 

to be overlooked, and some of them are completely model-free or were inspired by UDDs, e.g., 

the “Narayana design” and the Cumulative Cohort Design.25–28 The former antedates all other 

long-memory designs by almost 40 years, having been developed by the late T.V. Narayana in 

his 1953 dissertation. At the time only the Classical UDD existed, and the design does not 

25



appear to have been put into use until its rediscovery and modification in the 21st Century.45 

Even though interval designs seem very distinct from designs such as the CRM, they belong to 

the long-memory family due to their use of cumulative response-rate estimates, and the 

principle of repeating the same dose when deemed too good to be replaced by another.

The two main arguments for long-memory designs are (1) that when deciding the next 

allocation it is better to use all data rather than only a few observations, and (2) that long-

memory dose allocations eventually converge to deliver only the best dose (or best two 

doses in some cases) to all subsequent patients. Usually, that would be the dose closest to 

target. Regarding the first argument, as explained in the main article, UDDs’ particular short-

memory rules generate target-centered random walks, with robust and beneficial properties for 

dose-finding. Therefore, the short memory is not necessarily a liability for dose allocation. In 

addition, during target estimation after a UDD experiment, all (or nearly all) observations are 

used so efficiency is not compromised, and indeed UDDs find the target with efficiency similar to

leading long-memory designs.23,29–31

The second argument, regarding long-memory convergence, requires greater scrutiny. 

Focusing on CRM, by far the most commonly used long-memory design: its one-parameter 

model is too unrealistic to capture the broad range of forms F(x) might take. Hence, it is by 

definition a misspecified model. This is acknowledged by CRM developers who call it a “working

model”. Therefore, it is of interest to examine its behavior under model misspecification. The 

original 1990 CRM article provided no convergence proof for the design. The first such proof 

arrived six years later, but with conditions on F(x) so restrictive as to be practically 

irrelevant.9,32,33 Eventually in 2009, Lee and Cheung reported that CRM converges to within an 

interval around the target rate, rather than to the dose closest to target. Interval width is 

determined indirectly by design parameters, and Lee and Cheung provide software to help 

control it.34 Interval convergence makes CRM’s asymptotic behavior nearly identical to interval 

designs, which are usually far simpler to run. Interval-design convergence was first proven by 

Oron et al. in 2011.9 To our knowledge, EWOC still lacks a convergence proof when its two-

parameter model is misspecified.

Bringing dose allocations exclusively to within an interval around the target is decent asymptotic

behavior. But how long does it take to observe such behavior with long-memory designs? UDD 

random walks converge to their long-term behavior at a geometric rate, and therefore in a 

typical experiment one can observe the characteristic meandering around (the presumed) target
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within a few dozen observations at the latest.13,35 By contrast, long-memory designs rely upon 

the convergence of observed response rates. This occurs far more slowly, at a root-n pace. Our 

simulations suggest that it takes hundreds of observations for long-memory designs to settle 

reliably at near-asymptotic behavior.

Numerous simulation studies about long-memory designs report measures of performance 

averaged over a large number of simulated experiments. While these averages may look good, 

individual long-memory experimental trajectories famously tend to settle or “stick” relatively early

with a single dose, allocating it repeatedly.23 This is often preceded by volatile dose transitions 

during the first few allocations, and therefore the subsequent settling has been misunderstood 

as genuine convergence behavior, even by CRM design experts.30,36 Simply put, that is 

impossible; due to basic probability calculations with binary outcomes, near-asymptotic behavior

requires hundreds of patients. Rather than convergence, the early sticking behavior is a 

side-effect of repeatedly fitting the same model using almost exactly the same data. 

These early “bets” on a single dose can be right when all stars align; however, they are often 

wrong, leading to unwieldy and seemingly inexplicable experimental behavior. There is little 

relationship between a long-memory experiment settling early on a dose, and that dose being 

the one truly closest to target.23,24 Results are worse for Bayesian designs utilizing a prior 

distribution: they prefer to settle on the dose favored by that prior.23 The Narayana design has 

unique behavior in that respect: its long-memory element is equivalent to an interval design with

zero interval width. Rather than stick to a single dose, a zero-width interval promotes zigzagging

transitions between two adjacent doses, both asymptotically and with small samples.However, 

the original Narayana design also included a (Classical) UDD rule, and mandated that unless 

both rules point in the same direction, the current dose is to be repeated.25 This double 

restriction further exacerbates the early “sticking” to a single dose, thus making the original 

design rather impractical, despite being conceptually decades ahead of its time. Recent 

anesthesiology studies using a modified Narayana design did not include a UDD rule, and 

indeed the expected zigzagging was observed.27,28

Regardless of subtype, long memory designs lend the first few observations and the prior 

distribution (if there is one) a disproportionately large influence upon subsequent behavior, 

because they participate in every subsequent dose allocation estimate. As a result, while the 

average number of patients treated closest to target tends to be higher with CRM than with 

analogous UDDs, the variability between experiments, as well as the variability in response to 

variations in F(x), are far greater with CRM. In simulations, it is common to see long-memory 
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runs with few, and even zero, patients treated at the “best” dose. By contrast, UDDs treat 

roughly the same number of patients at that dose, give or take a few. Thus, UDDs are more 

robust to variations and surprises encountered in typical experimental settings.23 

Furthermore, the more complex long-memory designs, and in particular the CRM, are prone to 

misguided implementation practices that increase the chances of off-target “sticking” and other 

undesirable and unexpected side effects.37–39 There has been some acknowledgment of these 

issues in the long-memory design community. Cheung provides planning tools to prevent the 

worst of erratic CRM behavior,40 and others have attempted to mitigate the early “sticking” via 

randomization.41,42 However, the randomization modifications are associated with increased 

sample sizes and have not gained broad adoption, and quite a few CRM studies, including all 

the studies we’ve encountered in anesthesiology, do not make use of Cheung’s safer design 

aids. 

Many of these problems can be mitigated with larger sample sizes, but long-memory designs 

are usually implemented under the misguided paradigm that they “achieve convergence” with 

smaller samples and aggressive stopping rules. The most common sample size we found in 

anesthesiology CRM studies is 24 patients, with the target usually the ED80 or a more extreme 

percentile. As we suggest in the main article, this is woefully insufficient. Similarly-targeted 

anesthesiology UDD studies rarely use less than 40 patients, and we recommend at least 50-

60. Furthermore, in the anesthesiology CRM studies the stopping rules included stopping when 

the estimated probability of dose transition during the next several observations becomes too 

small.43,44 Hence, the very same problematic “sticking” behavior is still viewed and utilized as an 

asset and as a sign of convergence, and probability calculations from a model known to be 

misspecified are used at face value for the major decision of ending the experiment.

We conclude that for straightforward dose-finding UDDs are, at least at present, the more 

appropriate choice, particularly with recent improvements in estimation methods. Even when 

more complex study goals call for more complex designs than UDD, UDDs may still provide 

useful start-up stages that avoid early “sticking” behavior and other complications that are seen 

with long-memory designs.
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