
Shazly SA, Trabuco EC, Ngufor CG, Famyuide AO. Introduction to machine learning in obstetrics and gynecology. 
Obstet Gynecol 2022;139. 
The authors provided this information as a supplement to their article. 
©2022 American College of Obstetricians and Gynecologists.  Page 1 of 17 
 
 

Appendix 1. Glossary of Machine Learning 

Supervised learning: The machine is trained using labelled data (known outcomes) 

Unsupervised learning: The machine is trained using unlabeled data, to ultimately sort inputs 

based on their shared characteristics 

Reinforcement learning: The machine acts to maximize an outcome within an environment that 

provides feedback (trial and error approach)  

Features: Input variables of machine learning model 

Algorithm: The group of operations, used by the machine to determine 

interactions between the features and the output, thus creating the 

final “model” 

Dimensionality reduction: Machine learning preprocessing step that aims at reducing the size of 

features when they are so numerous that they may impair algorithm 

performance 

Feature selection: A dimensionality reduction process, made by reducing the number of 

tested features by eliminating features that are less important to the 

model 

Feature extraction: A dimensionality reduction process that replaces existing features with 

new ones that contain the most informative data 

Train-test split: Splitting a database into a train set, used to develop the model, and a 

test set, used to validate the model at a certain ratio. The two sets are 

not overlapping 
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K-fold cross validation: Splitting data into a number of folds (e.g. 10), each serves as a test set 

once with subsequent repetition of the process and calculation of 

average results 

Hyperparameters: Properties of machine learning algorithm that are modifiable by the 

user  

Cost function: A calculation of algorithm error, which is the difference between 

predicted and true outputs of the model  

Gradient descent: The stepwise approach, made by the algorithm, to reach the lowest 

cost function (global optimum) 

Convergence: The algorithm successfully settles to the lowest cost function 

Classification: The act of predicting categorical output by machine learning 

Clustering:  The act of sorting unlabeled data into groups based on their shared 

characteristics  

Low bias: Ability of machine learning model to predict outputs 

High bias: Poor ability of machine learning to predict outputs (indicating 

underfitting) 

Low variance: Reproducibility of predictions by the model 

High variance: Inconsistent predictions of the model on repetition (may indicate 

overfitting) 

Underfitting: Inability of the model to fit the training data, resulting in poor 

prediction accuracy 



Shazly SA, Trabuco EC, Ngufor CG, Famyuide AO. Introduction to machine learning in obstetrics and gynecology. 
Obstet Gynecol 2022;139. 
The authors provided this information as a supplement to their article. 
©2022 American College of Obstetricians and Gynecologists.  Page 3 of 17 
 
 

Overfitting: The model strictly follows the train set, including the noise of data, so 

that it cannot reproduce its performance when applied to another 

dataset   

Learning curve: A graph that illustrates model performance over number of samples 

Precision: The possibility that a predicted positive output, made by the model, is 

truly positive 

Recall: The ability of the model to predict truly positive outputs 

F1 score: A score that represents a combination of precision and recall 

Confusion matrix: A 2 X 2 table of true positive, true negative, and false positive, and false 

negative values of the model 

Jaccard index: The size of intersection divided by the size of union of sample sets 
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Appendix 2. Traditional Machine Learning Algorithms 

Linear regression: A statistical model that models the relationship between the predictor 

variables and the outcome as a linear function.  

Logistic regression: A statistical model that assumes a linear relationship between the 

predictors and the log-odds of a binary event taken as Bernoulli random 

variable.  

Decision Tree: Data are dissected in a flow-chart-like format, so that decisions can be 

tested for possible outcomes. It is used for both categorical and 

continuous outputs e.g., triaging emergency room according to symptoms 

and age  

Support vector machines: Data are mapped onto a higher dimensional a space where the machine 

creates the best separating hyperplane that can classify the data.  

Naive Bayes: This classification algorithm assumes independency of features in 

manging classification problems. It is more commonly used when data are 

large, and the output consists of multiple classes 

k- Nearest Neighbors: It classifies new cases to the previous data that are the closest to them. 

The algorithm is used more in classification problems.  

K-Means: It is an unsupervised algorithm that is used for clustering problems e.g., 

classifying articles into groups based on the proximity of their contents   

Random Forest: A supervised algorithm that creates a forest of decision trees. These 

decision trees are merged to enhance accuracy and precision of the final 

model. The word ‘random’ comes from the random selection of 
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observation and features in creating these trees. It is suitable for both 

classification and regression problems 

Gradient Boosting 

algorithms (e.g., 

XGboost): 

Similar to random forest, the algorithms are designed to enforce model 

performance by combining multiple weak algorithms (weak learners), 

typically decision trees. The process is done sequentially and therefore, 

more weight is added to observations that yielded the worst predictions. 

It can be applied to both classification and regression problems 
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Appendix 3. Common Deep-Learning Algorithms 

Artificial Neural Network: In this classic neural network, each neuron is connected to all neurons 

from the previous layer. Information from inputs is proceeded in only one 

direction (towards output). Also known as Feedforward Neural Networks 

(FNN) 

Convolutional Neural 

Networks: 

Convolutional Neural Networks have been designed to improve image 

recognition using a function called “convolution”, which helps to 

recognize the relation and arrangement of pixels 

Recurrent Neural 

Networks (RNNs): 

In addition to feedforward flow of data from input to output, RNNs allow 

flow of information from the output back to the input as a method of 

feedback. RNNs retain previous data and thus, they can be used in time 

series forecasting where previous values can be used to predict future 

values e.g., prediction of number of new patients based on current trend 

over time 

 

  



Appendix 4. Examples of Artificial Intelligence Applications in Obstetrics and Gynecology

Author Year Sample size Study Type of AI Model

performance

Hoffman

et al (1)

2021 20,032

deliveries

A prediction model

was created to predict

maternal readmission

within 42 days

postpartum due to

complications of

hypertensive disorders

of pregnancy

Conventional

machine

learning (XG

boost)

AUC was 0.85

(derivation

cohort) and 0.81

(validation

cohort)

Chill et al

(2)

2021 98,463

deliveries

Using maternal and

fetal characteristics at

admission to labor, a

model was designed to

predict obstetric

sphincter injury

Conventional

machine

learning

(gradient

boosting

model)

AUC was 0.76

(95% CI 0.73–

0.78)

Shazly et

al (3)

2021 727

deliveries

A series of prediction

models were used to

predict peripartum

massive blood loss,

postpartum maternal

admission to ICU, and

prolonged hospital

Conventional

machine

learning

(logistic

regression

model)

AUC of

antepartum

prediction

models were

0.84 (massive

blood loss), 0.81

(prolonged



admission in women

with placenta accreta

spectrum

hospitalization),

and 0.82

(admission to

the ICU).

Peripartum

models

performed at

0.86, 0.90, and

0.86,

respectively

Guedalia

et al (4)

2021 73,868

deliveries

Second stage variables

were incorporated in a

model that predicted

severe adverse

neonatal outcomes

(umbilical cord pH

levels ≤7.1 or 1-minute

or 5-minute Apgar

score ≤7)

Conventional

machine

learning

(gradient

boosting

model)

Model AUC was

0.761 (95% CI

0.748–0.774)

Akazawa

et al (5)

2021 75 patients A model was designed

to predict probability

of recurrence in

women with early-

Conventional

machine

learning

(support vector

Model accuracy

was 0.82. AUC

was 0.53



stage endometrial

cancer

machine)

Asali et al

(6)

2021 336 patients A model was used to

predict women with

intrahepatic cholestasis

without bile acid

measurement

Conventional

machine

learning (XG

boost)

Model AUC was

0.9. maximum

sensitivity and

specificity were

86% and 75%,

respectively

Raja et al

(7)

2021 1,300

deliveries

A prediction model

was established to

predict preterm labor

Conventional

machine

learning

(support vector

machine)

Model accuracy

was 90.9%

Ahn et al

(8)

2021 2,949

mother–

newborn

pairs

A model used

sonographic measures

to predict actual

newborn weight and

weight/height

Conventional

machine

learning (linear

regression,

random forest)

and deep

learning

(artificial

neural

networks)

Linear

regression

model was

associated with

the lowest mean

squared error

(0.077) for

estimation of

newborn weight



Maraci et

al (9)

2020 3000 images A model analyzed

ultrasound images to

estimate trans-

cerebellar diameter

and

 fetal gestational age

Deep learning

(convolutional

neural

networks)

Trans-cerebellar

diameter

automated

detection was

0.99 accurate.

Mean manual

gestational age

assessment was

19.7 ± 0.9 weeks

vs. 19.5 ± 2.1

weeks with

automated

estimation

Liu et al

(10)

2020 66,706

entries

A machine learning

model was structured

to predict early

pregnancy loss

following in vitro

fertilization-embryo

transfer

Conventional

machine

learning

(random

forests model)

AUC of the

model was 0.97

Signorini

et al (11)

2020 120 fetuses A model was based on

heart rate features of

antepartum fetal

Conventional

machine

learning

Mean

classification

accuracy of the



monitoring to predict

actual fetal growth

restriction at birth

(random

forests model)

model was 0.91

(95% CI, 0.86 -

0.96)

Venkatesh

et al (12)

2020 152,279

deliveries

(7,279 had

postpartum

hemorrhage)

A prediction model

was created to predict

postpartum

hemorrhage (> 1000

ml) using Consortium

for Safe Labor Study

(2002–2008) database

Conventional

machine

learning

(Extreme

gradient

boosting

algorithm)

Model

discriminative

ability to predict

postpartum

hemorrhage was

0.93 (95% CI:

0.92 to 0.93)

Lipschuetz

et al (13)

2020 9,888

deliveries

A machine learning

model was created to

predict success of trial

of labor after cesarean

delivery

Conventional

machine

learning

(gradient

boosting

algorithm)

AUC for the

model was 0.79

(95% CI, 0.78–

0.81)

Guedalia

et al (14)

2020 94,480

deliveries

A personalized

machine learning

model was created

based on dynamic data

acquired during the

first stage of labor to

predict successful

Conventional

machine

learning

(gradient

boosting

algorithm)

Predictive

performance

increases from

0.82 (95% CI,

0.81–0.82) on

admission to

0.92 (95% CI,



vaginal deliveries 0.91–0.92) by

end of the first

stage

Marić et al

(15)

2020 16,370

deliveries

Clinical and laboratory

data from routine care

in early pregnancy

were used to establish

a prediction model for

development of

preeclampsia

Conventional

machine

learning

(elastic net

algorithm)

AUC of the

model was 0.79

(95% CI, 0.75–

0.83), sensitivity

was 45.2%, and

false-positive

rate was 8.1%.

AUC for early-

onset

preeclampsia

was 0.89 (95%

CI, 0.84–0.95)

Naimi et al

(16)

2019 18,517

pregnancies

(31,948

ultrasound

visits)

Using data available at

delivery, population-

specific fetal weight

curves were generated,

and a model was

created to predict fetal

weight over the course

of pregnancy

Conventional

machine

learning

(generalized

boosted

models)

Median absolute

deviation from

the actual

weight was 88.3

(95% CI, 86.0 -

90.6)



Betts et al

(17)

2019 422,509

deliveries

Maternal data

throughout pregnancy

and delivery and

neonatal data

were used to create

models to predict

postpartum

complications, that

require inpatient care

Conventional

machine

learning

(gradient

boosting

algorithm)

The model

predicted

postpartum

hypertensive

disorders

(AUC 0.88,

95% CI, 0.85–

0.91), and

surgical wound

infection

(AUC 0.86, 95%

CI 0.84–0.87).

The model

performed

poorly for

prediction of

postpartum

sepsis

and

haemorrhage

David et al

(18)

2019 559 patients A model was created

to predict likelihood of

women with

Conventional

machine

learning

Model accuracy

was 80.3% (95%

CI 79.1–81.3),



overactive bladder to

respond to

anticholinergic

medications during the

3-month treatment

period

(random forest

model)

AUC was 0.77

(95% CI 0.74–

0.79). AUC in

women younger

than 40 was 0.84

(95% CI 0.81–

0.84)

Bahado-

Singh et al

(19)

2019 32 patients A model used amniotic

fluid metabolomics

and proteomics

clinical, sonographic,

and demographic

variables to predict

perinatal outcomes in

asymptomatic women

with short cervices

Deep learning

neural

networks

AUC of the

model was 0.89

(95% CI, 0.81–

0.97), and 0.89

(0.79–0.99) for

delivery before 

34 weeks'

gestation and < 

28 weeks,

respectively

Tsur et al

(20)

2019 686

deliveries

(derivation

cohort),

2,584

deliveries

A machine learning

model was built to

predict shoulder

dystocia using

maternal

characteristics,

Conventional

machine

learning

(Lasso

regression)

AUC of the

model was 0.79 

± 0.04



(validation

cohort)

obstetric data, and fetal

biometry by ultrasound

Idowu et

al (21)

2015 262 records A model predicted

preterm contractions

using

electrohysterogram

signals

Conventional

machine

learning

(Random

Forest)

Model AUC was

0.94. Model

sensitivity and

specificity were

85% and 97%,

respectively

Tseng et al

(22)

2014 168 patients A model was made to

determine women who

were prone to cervical

cancer recurrence

Conventional

machine

learning (C 5.0

classifier)

Correct

classification

rate was 96%

Bonet-

Carne et al

(23)

2014 900 fetal

lung images,

144

neonates

(validation

cohort)

A model used analysis

of fetal lung on

ultrasound to predict

probability of neonatal

respiratory distress

syndrome after birth

Regression

models,

classification

trees and

neural

networks

Sensitivity,

specificity,

positive

predictive and

negative

predictive values

were 86%, 87%,

63% and 96%,

respectively

Fergus et

al (24)

2013 300

deliveries

Electrohysterogram

features were used to

Conventional

machine

The model

performed at



(38 preterm

and 262

term)

predict preterm

delivery

learning

(polynomial

classifier)

a sensitivity of

96%, a

specificity of

90% (AUC

0.95) with 8%

global error
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Appendix 5. Machine learning curve illustrating log loss over samples. Dashed line indicates training 
train set; solid line indicates validation test set. A. Log loss progressively decreases over training 
samples and it plateaus at a low loss among the train set. However, log loss is not as good among the 
test set. This is indicative of overfitting. B. Log loss is comparable among the train and test sets. In 
both curves, log loss decreases progressively to an appropriately low level and then plateau. This is 
indicative of good model fitting. C. Although log loss progressively decreases to a satisfactory low 
level in both curves, they do not plateau at the end of the curve. This indicate that training process is 
ongoing, and the data size may be insufficient to reach the best model. 

 

 

 

 




