Appendix 1. Glossary of Machine Learning

Supervised learning:	The machine is trained using labelled data (known outcomes)
Unsupervised learning:	The machine is trained using unlabeled data, to ultimately sort inputs
	based on their shared characteristics
Reinforcement learning:	The machine acts to maximize an outcome within an environment that
	provides feedback (trial and error approach)
Features:	Input variables of machine learning model
Algorithm:	The group of operations, used by the machine to determine
	interactions between the features and the output, thus creating the
	final "model"
Dimensionality reduction:	Machine learning preprocessing step that aims at reducing the size of
	features when they are so numerous that they may impair algorithm
	performance
Feature selection:	A dimensionality reduction process, made by reducing the number of
	tested features by eliminating features that are less important to the
	model
Feature extraction:	A dimensionality reduction process that replaces existing features with
	new ones that contain the most informative data
Train-test split:	Splitting a database into a train set, used to develop the model, and a
	test set, used to validate the model at a certain ratio. The two sets are
	not overlapping

Shazly SA, Trabuco EC, Ngufor CG, Famyuide AO. Introduction to machine learning in obstetrics and gynecology. Obstet Gynecol 2022;139.

The authors provided this information as a supplement to their article. ©2022 American College of Obstetricians and Gynecologists.

K-fold cross validation:	Splitting data into a number	of folds (e.g. 10), eac	h serves as a test set
--------------------------	------------------------------	-------------------------	------------------------

once with subsequent repetition of the process and calculation of

average results

Hyperparameters: Properties of machine learning algorithm that are modifiable by the

user

Cost function: A calculation of algorithm error, which is the difference between

predicted and true outputs of the model

Gradient descent: The stepwise approach, made by the algorithm, to reach the lowest

cost function (global optimum)

Convergence: The algorithm successfully settles to the lowest cost function

Classification: The act of predicting categorical output by machine learning

Clustering: The act of sorting unlabeled data into groups based on their shared

characteristics

Low bias: Ability of machine learning model to predict outputs

High bias: Poor ability of machine learning to predict outputs (indicating

underfitting)

Low variance: Reproducibility of predictions by the model

High variance: Inconsistent predictions of the model on repetition (may indicate

overfitting)

Underfitting: Inability of the model to fit the training data, resulting in poor

prediction accuracy

Shazly SA, Trabuco EC, Ngufor CG, Famyuide AO. Introduction to machine learning in obstetrics and gynecology. Obstet Gynecol 2022;139.

Overfitting:	The model strictly	y follows the train set, including the noise of data, so

that it cannot reproduce its performance when applied to another

dataset

Learning curve: A graph that illustrates model performance over number of samples

Precision: The possibility that a predicted positive output, made by the model, is

truly positive

Recall: The ability of the model to predict truly positive outputs

F1 score: A score that represents a combination of precision and recall

Confusion matrix: A 2 X 2 table of true positive, true negative, and false positive, and false

negative values of the model

Jaccard index: The size of intersection divided by the size of union of sample sets

Appendix 2. Traditional Machine Learning Algorithms

Linear regression:	A statistical model that models the relationship between the predictor
	variables and the outcome as a linear function.
Logistic regression:	A statistical model that assumes a linear relationship between the
	predictors and the log-odds of a binary event taken as Bernoulli random
	variable.
Decision Tree:	Data are dissected in a flow-chart-like format, so that decisions can be
	tested for possible outcomes. It is used for both categorical and
	continuous outputs e.g., triaging emergency room according to symptoms
	and age
Support vector machines:	Data are mapped onto a higher dimensional a space where the machine
	creates the best separating hyperplane that can classify the data.
Naive Bayes:	This classification algorithm assumes independency of features in
	manging classification problems. It is more commonly used when data are
	large, and the output consists of multiple classes
k- Nearest Neighbors:	It classifies new cases to the previous data that are the closest to them.
	The algorithm is used more in classification problems.
K-Means:	It is an unsupervised algorithm that is used for clustering problems e.g.,
	classifying articles into groups based on the proximity of their contents
Random Forest:	A supervised algorithm that creates a forest of decision trees. These
	decision trees are merged to enhance accuracy and precision of the final
	model. The word 'random' comes from the random selection of

Shazly SA, Trabuco EC, Ngufor CG, Famyuide AO. Introduction to machine learning in obstetrics and gynecology. Obstet Gynecol 2022;139.

	observation and features in creating these trees. It is suitable for both
	classification and regression problems
Gradient Boosting	Similar to random forest, the algorithms are designed to enforce model
algorithms (e.g.,	performance by combining multiple weak algorithms (weak learners),
XGboost):	typically decision trees. The process is done sequentially and therefore,
	more weight is added to observations that yielded the worst predictions.
	It can be applied to both classification and regression problems

Appendix 3. Common Deep-Learning Algorithms

Artificial Neural Network:	In this classic neural network, each neuron is connected to all neurons
	from the previous layer. Information from inputs is proceeded in only one
	direction (towards output). Also known as Feedforward Neural Networks
	(FNN)
Convolutional Neural	Convolutional Neural Networks have been designed to improve image
Networks:	recognition using a function called "convolution", which helps to
	recognize the relation and arrangement of pixels
Recurrent Neural	In addition to feedforward flow of data from input to output, RNNs allow
Networks (RNNs):	flow of information from the output back to the input as a method of
	feedback. RNNs retain previous data and thus, they can be used in time
	series forecasting where previous values can be used to predict future
	values e.g., prediction of number of new patients based on current trend
	over time

Appendix 4. Examples of Artificial Intelligence Applications in Obstetrics and Gynecology

Author	Year	Sample size	Study	Type of AI	Model
					performance
Hoffman	2021	20,032	A prediction model	Conventional	AUC was 0.85
et al (1)		deliveries	was created to predict	machine	(derivation
			maternal readmission	learning (XG	cohort) and 0.81
			within 42 days	boost)	(validation
			postpartum due to		cohort)
			complications of		
			hypertensive disorders		
			of pregnancy		
Chill et al	2021	98,463	Using maternal and	Conventional	AUC was 0.76
(2)		deliveries	fetal characteristics at	machine	(95% CI 0.73–
			admission to labor, a	learning	0.78)
			model was designed to	(gradient	
			predict obstetric	boosting	
			sphincter injury	model)	
Shazly et	2021	727	A series of prediction	Conventional	AUC of
al (3)		deliveries	models were used to	machine	antepartum
			predict peripartum	learning	prediction
			massive blood loss,	(logistic	models were
			postpartum maternal	regression	0.84 (massive
			admission to ICU, and	model)	blood loss), 0.81
			prolonged hospital		(prolonged

			admission in women		hospitalization),
			with placenta accreta		and 0.82
			spectrum		(admission to
					the ICU).
					Peripartum
					models
					performed at
					0.86, 0.90, and
					0.86,
					respectively
Guedalia	2021	73,868	Second stage variables	Conventional	Model AUC was
et al (4)		deliveries	were incorporated in a	machine	0.761 (95% CI
			model that predicted	learning	0.748-0.774)
			severe adverse	(gradient	
			neonatal outcomes	boosting	
			(umbilical cord pH	model)	
			levels ≤7.1 or 1-minute		
			or 5-minute Apgar		
			score ≤7)		
Akazawa	2021	75 patients	A model was designed	Conventional	Model accuracy
et al (5)			to predict probability	machine	was 0.82. AUC
			of recurrence in	learning	was 0.53
			women with early-	(support vector	

			stage endometrial	machine)	
			cancer		
Asali et al	2021	336 patients	A model was used to	Conventional	Model AUC was
(6)			predict women with	machine	0.9. maximum
			intrahepatic cholestasis	learning (XG	sensitivity and
			without bile acid	boost)	specificity were
			measurement		86% and 75%,
					respectively
Raja et al	2021	1,300	A prediction model	Conventional	Model accuracy
(7)		deliveries	was established to	machine	was 90.9%
			predict preterm labor	learning	
				(support vector	
				machine)	
Ahn et al	2021	2,949	A model used	Conventional	Linear
(8)		mother-	sonographic measures	machine	regression
		newborn	to predict actual	learning (linear	model was
		pairs	newborn weight and	regression,	associated with
			weight/height	random forest)	the lowest mean
				and deep	squared error
				learning	(0.077) for
				(artificial	estimation of
				neural	newborn weight
				networks)	
I					

Maraci et	2020	3000 images	A model analyzed	Deep learning	Trans-cerebellar
al (9)			ultrasound images to	(convolutional	diameter
			estimate trans-	neural	automated
			cerebellar diameter	networks)	detection was
			and		0.99 accurate.
			fetal gestational age		Mean manual
					gestational age
					assessment was
					$19.7 \pm 0.9 \text{ weeks}$
					vs. 19.5 ± 2.1
					weeks with
					automated
					estimation
Liu et al	2020	66,706	A machine learning	Conventional	AUC of the
(10)		entries	model was structured	machine	model was 0.97
			to predict early	learning	
			pregnancy loss	(random	
			following in vitro	forests model)	
			fertilization-embryo		
			transfer		
Signorini	2020	120 fetuses	A model was based on	Conventional	Mean
et al (11)			heart rate features of	machine	classification
			antepartum fetal	learning	accuracy of the

			monitoring to predict	(random	model was 0.91
			actual fetal growth	forests model)	(95% CI, 0.86 -
			restriction at birth		0.96)
Venkatesh	2020	152,279	A prediction model	Conventional	Model
et al (12)		deliveries	was created to predict	machine	discriminative
		(7,279 had	postpartum	learning	ability to predict
		postpartum	hemorrhage (> 1000	(Extreme	postpartum
		hemorrhage)	ml) using Consortium	gradient	hemorrhage was
			for Safe Labor Study	boosting	0.93 (95% CI:
			(2002–2008) database	algorithm)	0.92 to 0.93)
Lipschuetz	2020	9,888	A machine learning	Conventional	AUC for the
et al (13)		deliveries	model was created to	machine	model was 0.79
			predict success of trial	learning	(95% CI, 0.78–
			of labor after cesarean	(gradient	0.81)
			delivery	boosting	
				algorithm)	
Guedalia	2020	94,480	A personalized	Conventional	Predictive
et al (14)		deliveries	machine learning	machine	performance
			model was created	learning	increases from
			based on dynamic data	(gradient	0.82 (95% CI,
			acquired during the	boosting	0.81–0.82) on
			first stage of labor to	algorithm)	admission to
			predict successful		0.92 (95% CI,

			vaginal deliveries		0.91–0.92) by
					end of the first
					stage
Marić et al	2020	16,370	Clinical and laboratory	Conventional	AUC of the
(15)		deliveries	data from routine care	machine	model was 0.79
			in early pregnancy	learning	(95% CI, 0.75–
			were used to establish	(elastic net	0.83), sensitivity
			a prediction model for	algorithm)	was 45.2%, and
			development of		false-positive
			preeclampsia		rate was 8.1%.
					AUC for early-
					onset
					preeclampsia
					was 0.89 (95%
					CI, 0.84–0.95)
Naimi et al	2019	18,517	Using data available at	Conventional	Median absolute
(16)		pregnancies	delivery, population-	machine	deviation from
		(31,948	specific fetal weight	learning	the actual
		ultrasound	curves were generated,	(generalized	weight was 88.3
		visits)	and a model was	boosted	(95% CI, 86.0 -
			created to predict fetal	models)	90.6)
			weight over the course		
			of pregnancy		

Betts et al	2019	422,509	Maternal data	Conventional	The model
(17)		deliveries	throughout pregnancy	machine	predicted
			and delivery and	learning	postpartum
			neonatal data	(gradient	hypertensive
			were used to create	boosting	disorders
			models to predict	algorithm)	(AUC 0.88,
			postpartum		95% CI, 0.85–
			complications, that		0.91), and
			require inpatient care		surgical wound
					infection
					(AUC 0.86, 95%
					CI 0.84–0.87).
					The model
					performed
					poorly for
					prediction of
					postpartum
					sepsis
					and
					haemorrhage
David et al	2019	559 patients	A model was created	Conventional	Model accuracy
(18)			to predict likelihood of	machine	was 80.3% (95%
			women with	learning	CI 79.1–81.3),

			overactive bladder to	(random forest	AUC was 0.77
			respond to	model)	(95% CI 0.74–
			anticholinergic		0.79). AUC in
			medications during the		women younger
			3-month treatment		than 40 was 0.84
			period		(95% CI 0.81–
					0.84)
Bahado-	2019	32 patients	A model used amniotic	Deep learning	AUC of the
Singh et al			fluid metabolomics	neural	model was 0.89
(19)			and proteomics	networks	(95% CI, 0.81–
			clinical, sonographic,		0.97), and 0.89
			and demographic		(0.79–0.99) for
			variables to predict		delivery before
			perinatal outcomes in		34 weeks'
			asymptomatic women		gestation and <
			with short cervices		28 weeks,
					respectively
Tsur et al	2019	686	A machine learning	Conventional	AUC of the
(20)		deliveries	model was built to	machine	model was 0.79
		(derivation	predict shoulder	learning	±0.04
		cohort),	dystocia using	(Lasso	
		2,584	maternal	regression)	
		deliveries	characteristics,		

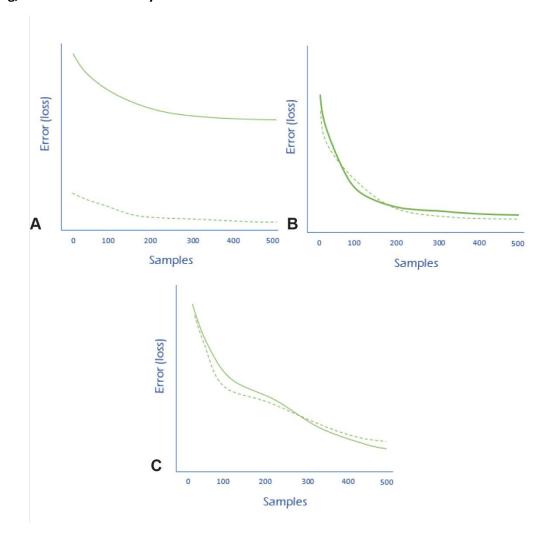
		(validation	obstetric data, and fetal		
		cohort)	biometry by ultrasound		
Idowu et	2015	262 records	A model predicted	Conventional	Model AUC was
al (21)			preterm contractions	machine	0.94. Model
			using	learning	sensitivity and
			electrohysterogram	(Random	specificity were
			signals	Forest)	85% and 97%,
					respectively
Tseng et al	2014	168 patients	A model was made to	Conventional	Correct
(22)			determine women who	machine	classification
			were prone to cervical	learning (C 5.0	rate was 96%
			cancer recurrence	classifier)	
Bonet-	2014	900 fetal	A model used analysis	Regression	Sensitivity,
Carne et al		lung images,	of fetal lung on	models,	specificity,
(23)		144	ultrasound to predict	classification	positive
		neonates	probability of neonatal	trees and	predictive and
		(validation	respiratory distress	neural	negative
		cohort)	syndrome after birth	networks	predictive values
					were 86%, 87%,
					63% and 96%,
					respectively
	2013	300	Electrohysterogram	Conventional	The model
Fergus et		deliveries	features were used to	machine	performed at
al (24)					

(38 preterm	predict preterm	learning	a sensitivity of
and 262	delivery	(polynomial	96%, a
term)		classifier)	specificity of
			90% (AUC
			0.95) with 8%
			global error

- 1. Hoffman MK, Ma N, Roberts A, MFM AJoOaG. A machine learning algorithm for predicting maternal readmission for hypertensive disorders of pregnancy. 2021;3(1):100250.
- 2. Chill HH, Guedalia J, Lipschuetz M, Shimonovitz T, Unger R, Shveiky D, et al. Prediction model for obstetric anal sphincter injury using machine learning. 2021:1-7.
- 3. Shazly SA, Hortu I, Shih J-C, Melekoglu R, Fan S, Ahmed FuA, et al. Prediction of clinical outcomes in women with placenta accreta spectrum using machine learning models: an international multicenter study. 2021:1-10.
- 4. Guedalia J, Sompolinsky Y, Novoselsky Persky M, Cohen SM, Kabiri D, Yagel S, et al. Prediction of severe adverse neonatal outcomes at the second stage of labour using machine learning: a retrospective cohort study. 2021.
- 5. Akazawa M, Hashimoto K, Noda K, Yoshida KJO, Science G. The application of machine learning for predicting recurrence in patients with early-stage endometrial cancer: a pilot study. 2020;64(3):266-73.
- 6. Asali A, Ravid D, Shalev H, David L, Yogev E, Yogev SS, et al. Intrahepatic cholestasis of pregnancy: machine-learning algorithm to predict elevated bile acid based on clinical and laboratory data. 2021:1-7.
- 7. Raja R, Mukherjee I, Sarkar BKJJoHE. A Machine Learning-Based Prediction Model for Preterm Birth in Rural India. 2021;2021.
- 8. Ahn KH, Lee K-S, Lee SJ, Kwon SO, Na S, Kim K, et al. Predictors of Newborn's Weight for Height: A Machine Learning Study Using Nationwide Multicenter Ultrasound Data. 2021;11(7):1280.
- 9. Maraci MA, Yaqub M, Craik R, Beriwal S, Self A, Von Dadelszen P, et al. Toward point-of-care ultrasound estimation of fetal gestational age from the trans-cerebellar diameter using CNN-based ultrasound image analysis. 2020;7(1):014501.
- 10. Liu L, Jiao Y, Li X, Ouyang Y, Shi DJCM, Biomedicine Pi. Machine learning algorithms to predict early pregnancy loss after in vitro fertilization-embryo transfer with fetal heart rate as a strong predictor. 2020;196:105624.
- 11. Signorini MG, Pini N, Malovini A, Bellazzi R, Magenes GJCm, biomedicine pi. Integrating machine learning techniques and physiology based heart rate features for antepartum fetal monitoring. 2020;185:105015.
- 12. Venkatesh KK, Strauss RA, Grotegut C, Heine RP, Chescheir NC, Stringer JS, et al. Machine learning and statistical models to predict postpartum hemorrhage. Obstetrics gynecology. 2020;135(4):935.
- 13. Lipschuetz M, Guedalia J, Rottenstreich A, Persky MN, Cohen SM, Kabiri D, et al. Prediction of vaginal birth after cesarean deliveries using machine learning. 2020;222(6):613. e1-. e12.

- 14. Guedalia J, Lipschuetz M, Novoselsky-Persky M, Cohen SM, Rottenstreich A, Levin G, et al. Real-time data analysis using a machine learning model significantly improves prediction of successful vaginal deliveries. 2020;223(3):437. e1-. e15.
- 15. Marić I, Tsur A, Aghaeepour N, Montanari A, Stevenson DK, Shaw GM, et al. Early prediction of preeclampsia via machine learning. 2020;2(2):100100.
- 16. Naimi AI, Platt RW, Larkin JCJE. Machine learning for fetal growth prediction. 2018;29(2):290.
- 17. Betts KS, Kisely S, Alati RJBAIJoO, Gynaecology. Predicting common maternal postpartum complications: Leveraging health administrative data and machine learning. 2019;126(6):702-9.
- 18. Sheyn D, Ju M, Zhang S, Anyaeche C, Hijaz A, Mangel J, et al. Development and validation of a machine learning algorithm for predicting response to anticholinergic medications for overactive bladder syndrome. 2019;134(5):946-57.
- 19. Bahado-Singh RO, Sonek J, McKenna D, Cool D, Aydas B, Turkoglu O, et al. Artificial intelligence and amniotic fluid multiomics: prediction of perinatal outcome in asymptomatic women with short cervix. 2019;54(1):110-8.
- 20. Tsur A, Batsry L, Toussia-Cohen S, Rosenstein MG, Barak O, Brezinov Y, et al. Development and validation of a machine-learning model for prediction of shoulder dystocia. 2020;56(4):588-96.
- 21. Idowu IO, Fergus P, Hussain A, Dobbins C, Khalaf M, Eslava RVC, et al., editors. Artificial intelligence for detecting preterm uterine activity in gynecology and obstetric care. 2015 IEEE international conference on computer and information technology; ubiquitous computing and communications; dependable, autonomic and secure computing; pervasive intelligence and computing; 2015: IEEE.
- 22. Tseng C-J, Lu C-J, Chang C-C, Chen G-DJNC, Applications. Application of machine learning to predict the recurrence-proneness for cervical cancer. 2014;24(6):1311-6.
- 23. Bonet-Carne E, Palacio M, Cobo T, Perez-Moreno A, Lopez M, Piraquive J, et al. Quantitative ultrasound texture analysis of fetal lungs to predict neonatal respiratory morbidity. 2015;45(4):427-33.
- 24. Fergus P, Cheung P, Hussain A, Al-Jumeily D, Dobbins C, Iram SJPo. Prediction of preterm deliveries from EHG signals using machine learning. 2013;8(10):e77154.

Appendix 5. Machine learning curve illustrating log loss over samples. *Dashed line* indicates training *train set*; *solid line* indicates validation *test set*. A. Log loss progressively decreases over training samples and it plateaus at a low loss among the train set. However, log loss is not as good among the test set. This is indicative of overfitting. B. Log loss is comparable among the train and test sets. In both curves, log loss decreases progressively to an appropriately low level and then plateau. This is indicative of good model fitting. C. Although log loss progressively decreases to a satisfactory low level in both curves, they do not plateau at the end of the curve. This indicate that training process is ongoing, and the data size may be insufficient to reach the best model.



Shazly SA, Trabuco EC, Ngufor CG, Famyuide AO. Introduction to machine learning in obstetrics and gynecology. Obstet Gynecol 2022;139.