

FEMORAL ARTERIAL LINE PLACEMENT

Introduction

The following module will take you through the indications, anatomy, procedural steps, and complications for placement of an arterial femoral line.

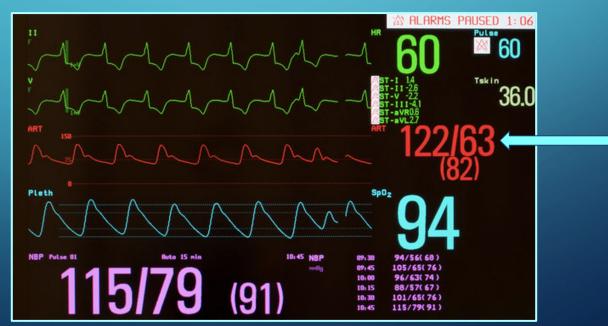
Introduction

The following module will take you through the indications, anatomy, procedural steps, and complications for placement of an arterial femoral line.

In total, it should take you less than 15 minutes to complete the module.

Introduction

The following module will take you through the indications, anatomy, procedural steps, and complications for placement of an arterial femoral line.


In total, it should take you less than 15 minutes to complete the module.

You may return to previous slides, and this module will be available to you for future reference.

Indications for femoral arterial line placement include:

Indications for femoral arterial line placement include:

 Continuous and/or more accurate blood pressure monitoring, as compared to non-invasive measurements, particularly in the unstable or critically ill patient

Indications for femoral arterial line placement include:

- Continuous and/or more accurate blood pressure monitoring, as compared to non-invasive measurements, particularly in the unstable or critically ill patient
- Repeat arterial blood gas measurements

Of note, arterial lines should NOT be used to administer medications.

Injecting medications through an arterial line may lead to serious tissue

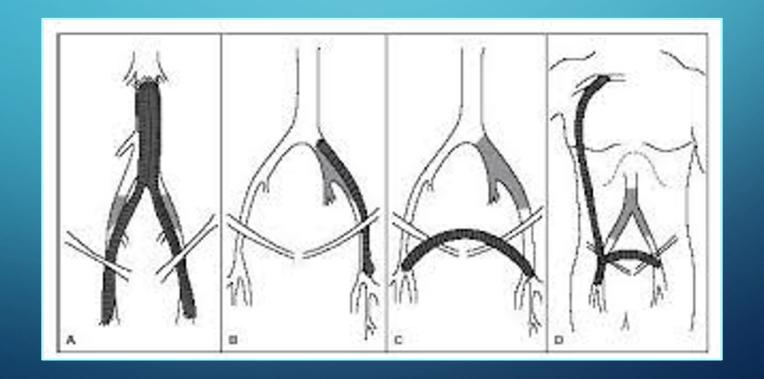
damage.

Potential reasons to choose an alternate site for arterial access include:

Potential reasons to choose an alternate site for arterial access include:

• Local site infection

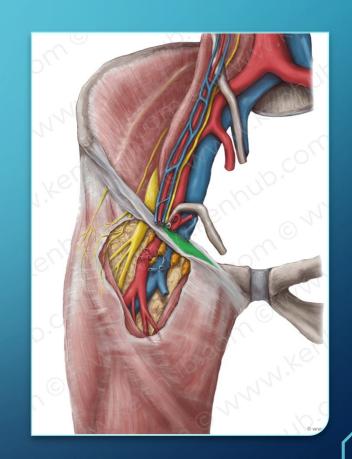
Potential reasons to choose an alternate site for arterial access include:


Local site infection

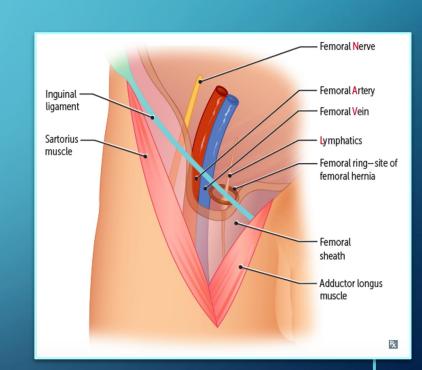
• Significant peripheral arterial disease or poor perfusion (e.g. weak or

absent femoral pulse)

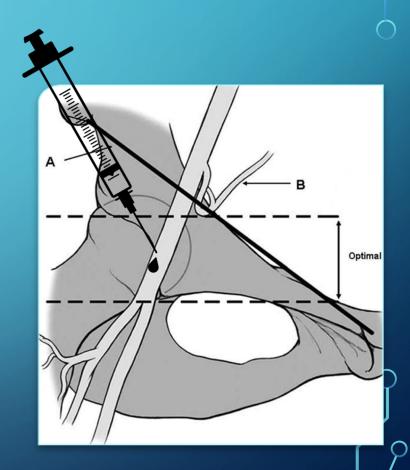
 Presence of arterial grafts at the site (e.g. aortofemoral, iliofemoral, femoropopliteal bypass grafts)


- Presence of arterial grafts at the site (e.g. aortofemoral, iliofemoral, femoropopliteal bypass grafts)
- Previous groin operations, radiation therapy, or burns with resultant scarring

- Presence of arterial grafts at the site (e.g. aortofemoral, iliofemoral, femoropopliteal bypass grafts)
- Previous groin operations, radiation therapy, or burns with resultant scarring
- Previous vascular complications (e.g. pseudoaneurysm, arteriovenous

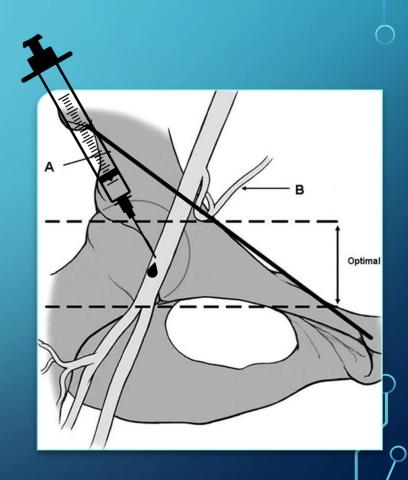

fistula, dissection, thromb

The inguinal ligament runs from the anterior superior iliac spine to the pubic tubercle and serves as the anterior border for structures running between the pelvis and lower extremity.



The inguinal ligament runs from the anterior superior iliac spine to the pubic tubercle and serves as the anterior border for structures running between the pelvis and lower extremity.

- From lateral to medial, these structures are the femoral nerve, femoral artery, femoral vein, and lymphatics (NAVEL).
- The vessels run under the medial 1/3 of the ligament.

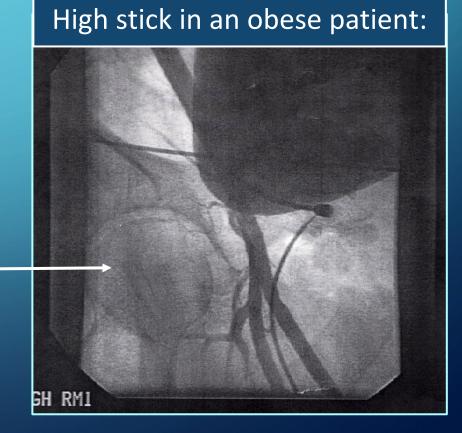


The optimal access site for femoral arterial access is within the common femoral artery distal to the inguinal ligament and proximal to the femoral bifurcation.

The optimal access site for femoral arterial access is within the common femoral artery distal to the inguinal ligament and proximal to the femoral bifurcation.

When the line is removed, this site allows for the femoral artery to be pressed against the femoral head to close the arteriotomy and obtain hemostasis.

Patient obesity can make identification of anatomical landmarks more

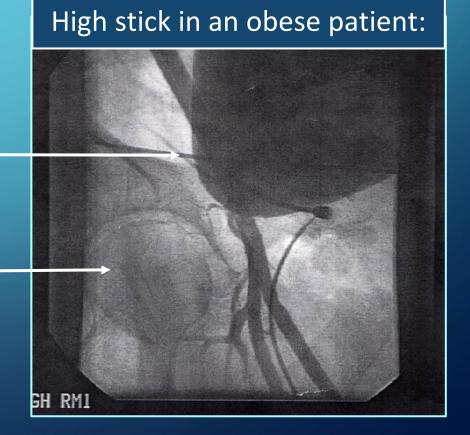

challenging.

High stick in an obese patient:

Patient obesity can make identification of anatomical landmarks more

challenging.

Femoral head



Patient obesity can make identification of anatomical landmarks more

challenging.

Common femoral artery access site

Femoral head

Patient obesity can make identification of anatomical landmarks more

challenging.

Demonstration under fluoroscopy
of the impact of displacement
of the pannus on needle entry
position:

Patient obesity can make identification of anatomical landmarks more

challenging.

Demonstration under fluoroscopy of needle entry position once pannus is elevated:

• Ultrasound-guided arterial access is now the standard of care and should always be used in non-emergent settings.

• Tuna Katırcıbaşı et al. in 2018 demonstrated that use of ultrasound for femoral

artery access resulted in:

• Tuna Katırcıbaşı et al. in 2018 demonstrated that use of ultrasound for femoral

artery access resulted in:

Higher first attempt success rate

• Tuna Katırcıbaşı et al. in 2018 demonstrated that use of ultrasound for femoral

artery access resulted in:

Higher first attempt success rate

• Shorter access time

• Tuna Katırcıbaşı et al. in 2018 demonstrated that use of ultrasound for femoral

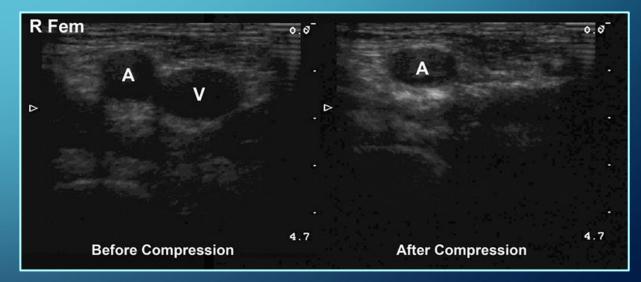
artery access resulted in:

- Higher first attempt success rate
- Shorter access time
- Lower patient-reported pain

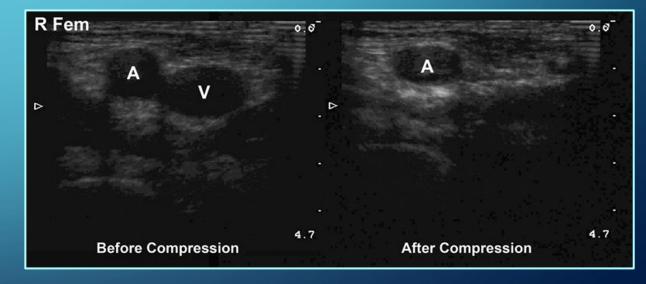
• Tuna Katırcıbaşı et al. in 2018 demonstrated that use of ultrasound for femoral

artery access resulted in:

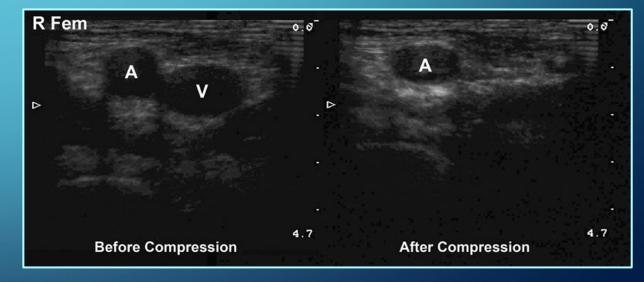
- Higher first attempt success rate
- Shorter access time
- Lower patient-reported pain
- Lower complication rates

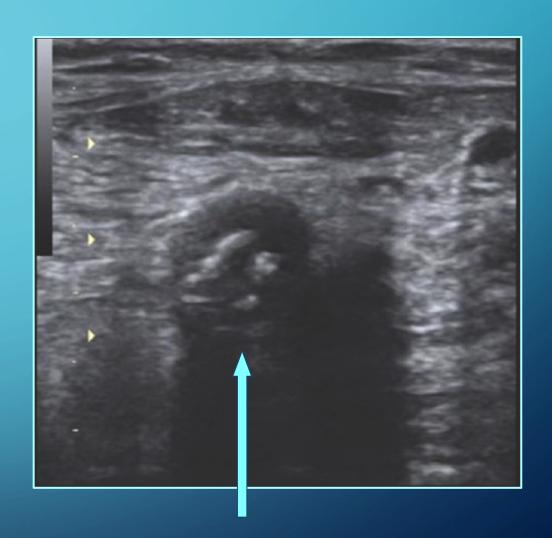

• Tuna Katırcıbaşı et al. in 2018 demonstrated that use of ultrasound for femoral

artery access resulted in:


- Higher first attempt success rate
- Shorter access time
- Lower patient-reported pain
- Lower complication rates

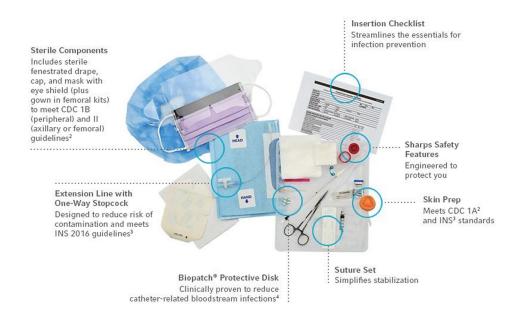
• Other studies, assessing non-femoral arterial a demonstrated the use of ultrasound to have a migner mist attempt success rate, decreased failure rate, and shorter mean time to success


• The femoral artery and vein under ultrasound can look similar and care should be taken to identify the appropriate structure prior to initiation of the procedure. In addition to anatomical location, several factors can be used to differentiate the two:


- The femoral artery and vein under ultrasound can look similar and care should be taken to identify the appropriate structure prior to initiation of the procedure. In addition to anatomical location, several factors can be used to differentiate the two:
 - Arteries will generally have a thicker wall and be more difficult to compress; the pulsation of the artery may also be visible

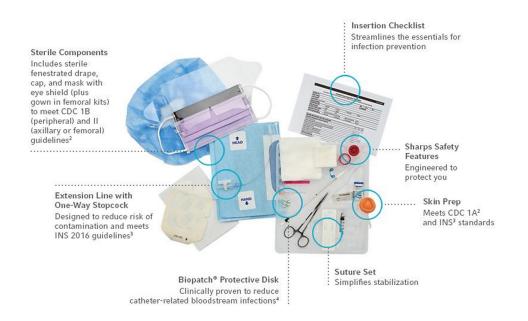
- The femoral artery and vein under ultrasound can look similar and care should be taken to identify the appropriate structure prior to initiation of the procedure. In addition to anatomical location, several factors can be used to differentiate the two:
 - Arteries will generally have a thicker wall and be more difficult to compress; the pulsation of the artery may also be visible
 - Veins are thin-walled and often easily compressible

If significant calcification, thrombus or another pathology is present in the artery (as mentioned in prior slides), consider an alternate access site.

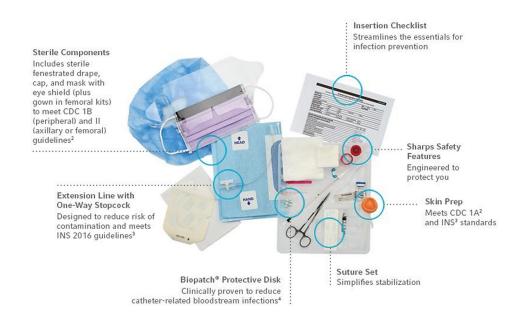


Thrombus within the common femoral artery

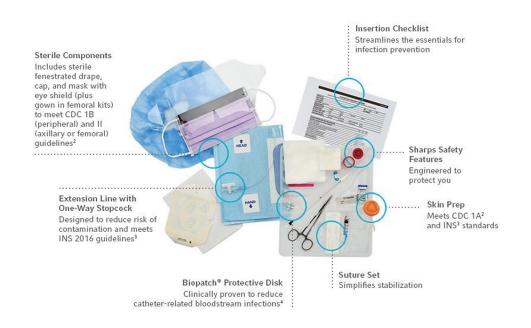
Insertion Checklist Streamlines the essentials for infection prevention Sterile Components Includes sterile fenestrated drape, cap, and mask with eye shield (plus gown in femoral kits) to meet CDC 1B (peripheral) and II (axillary or femoral) guidelines² Sharps Safety Features Engineered to protect you Extension Line with Skin Prep One-Way Stopcock Meets CDC 1A² Designed to reduce risk of and INS3 standards contamination and meets INS 2016 guidelines³ Suture Set Biopatch® Protective Disk : Simplifies stabilization Clinically proven to reduce catheter-related bloodstream infections4

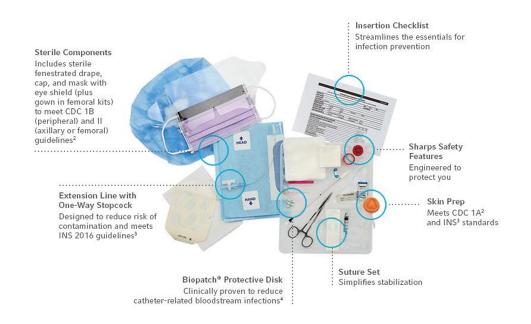

Pre-Procedural Steps

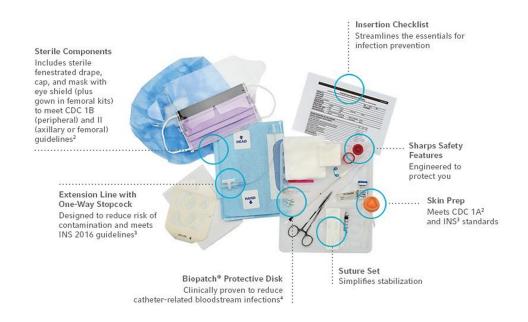
1. Obtain consent

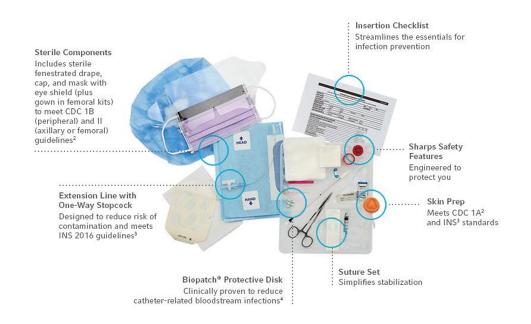


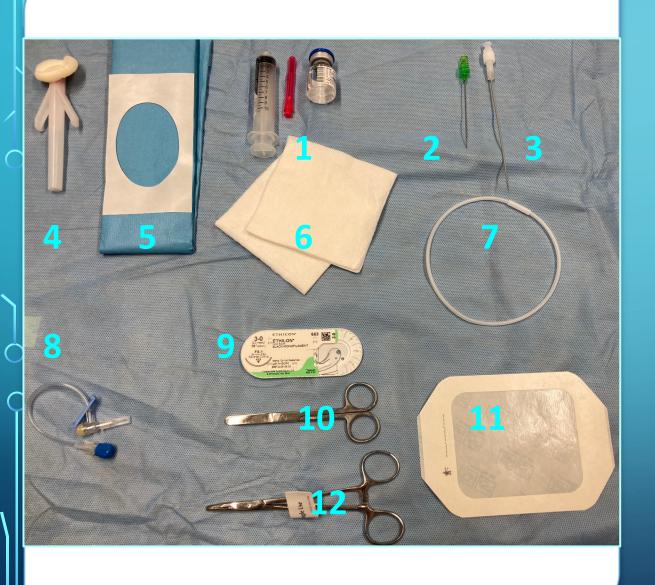
Pre-Procedural Steps


- 1. Obtain consent
- 2. Gather all required materials and equipment


- 1. Obtain consent
- 2. Gather all required materials and equipment
- 3. "Time-out" to confirm the correct patient and correct procedure


- 1. Obtain consent
- 2. Gather all required materials and equipment
- 3. "Time-out" to confirm the correct patient and correct procedure
- 4. Prep the site with chlorhexidine or other antiseptic skin cleanser


- 1. Obtain consent
- 2. Gather all required materials and equipment
- 3. "Time-out" to confirm the correct patient and correct procedure
- 4. Prep the site with chlorhexidine or other antiseptic skin cleanser
- 5. Don sterile gloves


- 1. Obtain consent
- 2. Gather all required materials and equipment
- 3. "Time-out" to confirm the correct patient and correct procedure
- 4. Prep the site with chlorhexidine or other antiseptic skin cleanser
- 5. Don sterile gloves
- 6. Apply sterile drape surrounding the access site and drape the ultrasound probe with sterile cover

- 1. Obtain consent
- 2. Gather all required materials and equipment
- 3. "Time-out" to confirm the correct patient and correct procedure
- 4. Prep the site with chlorhexidine or other antiseptic skin cleanser
- 5. Don sterile gloves
- 6. Apply sterile drape surrounding the access site and drape the ultrasound probe with sterile cover
- 7. Identify the ideal access location

- 1. Obtain consent
- 2. Gather all required materials and equipment
- 3. "Time-out" to confirm the correct patient and correct procedure
- 4. Prep the site with chlorhexidine or other antiseptic skin cleanser
- 5. Don sterile gloves
- 6. Apply sterile drape surrounding the access site and drape the ultrasound probe with sterile cover
- 7. Identify the ideal access location
- 8. Administer local anesthesia at anticipated access location making sure to draw back before injection to ensure no injection into the vasculature warn the patient of pain from injection

MGH Materials

- 1. Lidocaine and needle/syringe
- 2. Micropuncture needle
- 3. Micropuncture catheter
- 4. Sterile prep
- 5. Sterile drape
- 6. Sterile gauze
- 7. Micropuncture wire
- 8. T-piece
- 9. Suture
- 10. Scissors
- 11. Tegaderm
- 12. Needle driver

Procedural Steps

This video demonstrates correct placement of a femoral arterial line on the SimuLab FemoraLineMan System

Procedural Steps Summary:

- 1. Access the artery retrograde with an introducer needle using ultrasound confirm pulsatile blood flow through the needle
- 2. Insert a guidewire through the needle to maintain access to the artery
- 3. Remove introducer needle over the wire
- 4. Insert an arterial catheter into the vessel over the wire and hub the catheter to the skin
- 5. Remove the guidewire
- 6. Confirm pulsatile blood flow from the catheter
- 7. Attach the catheter to a T-piece or pressure tubing
- 8. Secure catheter to skin with suture
- 9. Place a sterile covering over the access point and catheter

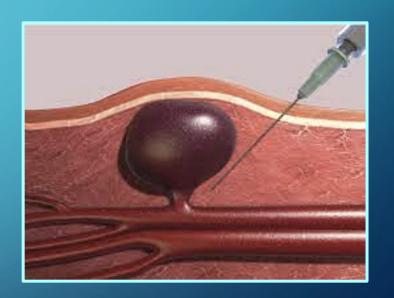
^{*}Here, we describe the Seldinger technique, but a modified Seldinger technique with integrated needle-catheter units may also be used.

Ultrasound-guided access halves the rate of complications for femoral arterial access as compared to traditional palpation techniques.¹

Rates of access site complications for ultrasound-guided femoral artery line placement have been reported at <3-4%.

[1] Sobolev, M., Slovut, D. P., Lee Chang, A., Shiloh, A. L., & Eisen, L. A. (2015). Ultrasound-Guided Catheterization of the Femoral Artery: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. *The Journal of Invasive Cardiology*, 27(7), 318–323.

Ultrasound-guided access halves the rate of complications for femoral arterial access as compared to traditional palpation techniques.¹


Rates of access site complications for ultrasound-guided femoral artery line placement have been reported at <3-4%.

- Hematoma
 - May be seen in as high as 6% of femoral catheterizations.²
 - Ultrasound guidance reduces the risk of hematoma by 49%.³

- [1] Sobolev, M., Slovut, D. P., Lee Chang, A., Shiloh, A. L., & Eisen, L. A. (2015). Ultrasound-Guided Catheterization of the Femoral Artery: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. *The Journal of Invasive Cardiology*, 27(7), 318–323.
- [2] Scheer, B., Perel, A., & Pfeiffer, U. J. (2002). Clinical review: complications and risk factors of peripheral arterial catheters used for haemodynamic monitoring in anaesthesia and intensive care medicine. *Critical Care / the Society of Critical Care Medicine*, 6(3), 199–204.
- [3] Gu, W.-J., Wu, X.-D., Wang, F., Ma, Z.-L., & Gu, X.-P. (2016). Ultrasound Guidance Facilitates Radial Artery Catheterization: A Meta-analysis With Trial Sequential Analysis of Randomized Controlled Trials. *Chest*, 149(1), 166–179.

- Pseudoaneurysm:
 - Though rare, occurs when a walled-off collection of blood forms in communication with the arterial lumen
 - Risk factors include obesity and inadequate manual compression following arterial line removal, such as with a distal stick in the superficial femoral artery

- Pseudoaneurysm:
 - Though rare, occurs when a walled-off collection of blood forms in communication with the arterial lumen
 - Risk factors include obesity and inadequate manual compression following arterial line removal, such as with a distal stick in the superficial femoral artery
- Retroperitoneal hematoma:
 - Occurs typically secondary to a more proximal stick (at or above the inguinal ligament)

- Pseudoaneurysm:
 - Though rare, occurs when a walled-off collection of blood forms in communication with the arterial lumen
 - Risk factors include obesity and inadequate manual compression following arterial line removal, such as with a distal stick in the superficial femoral artery
- Retroperitoneal hematoma:
 - Occurs typically secondary to a more proximal stick (at or above the inguinal ligament)
- Arteriovenous fistula:
 - An abnormal communication between the femoral artery and vein that may occur due to multiple punctures, through and through punctures from vein to artery, or with a distal stick

- Pseudoaneurysm:
 - Though rare, occurs when a walled-off collection of blood forms in communication with the arterial lumen
 - Risk factors include obesity and inadequate manual compression following arterial line removal, such as with a distal stick in the superficial femoral artery
- Retroperitoneal hematoma:
 - Occurs typically secondary to a more proximal stick (at or above the inguinal ligament)
- Arteriovenous fistula:
 - An abnormal communication between the femoral artery and vein that may occur due to multiple punctures, through and through punctures from vein to artery, or with a distal stick

Pseudoaneurysm off of profunda from low stick

Early enhancement on CTA of right common femoral vein as compared to left consistent with arteriovenous fistula

• Pseudoaneurysm:

- Though rare, occurs when a walled-off collection of blood forms in communication with the arterial lumen
- Risk factors include obesity and inadequate manual compression following arterial line removal, such as with a distal stick in the superficial femoral artery
- Retroperitoneal Hematoma:
 - Occurs typically secondary to a more proximal stick (at or above the inguinal ligament)
- Arteriovenous Fistula:
 - An abnormal communication between the femoral artery and vein that may occur due to multiple punctures, through and through punctures from vein to artery, or with a distal stick

• Dissection:

- Occurs due to the needle or guidewire entering a dissection plane between the intima and media
- Frequently asymptomatic, but rarely may propagate resulting in thrombosis or acute limb ischemia

- Infection:
 - Infection risk is higher for femoral arterial lines than for radial arterial lines
 - The incidence of catheter-related **local** infections is 3/1,000 catheter-days for femoral lines as compared to 0.75/1,000 catheter-days for radial lines
 - The incidence of catheter-related **blood stream** infections is 1.92/1,000 catheter-days for femoral lines as compared to 0.25/1,000 catheter days for radial lines¹

[1] Lorente, L., Santacreu, R., Martín, M. M., Jiménez, A., & Mora, M. L. (2006). Arterial catheter-related infection of 2,949 catheters. *Critical Care / the Society of Critical Care Medicine*, 10(3), R83.

- Infection:
 - Infection risk is higher for femoral arterial lines than for radial arterial lines
 - The incidence of catheter-related local infections is 3/1,000 catheter-days for femoral lines as compared to 0.75/1,000 catheter-days for radial lines
 - The incidence of catheter-related **blood stream** infections is 1.92/1,000 catheter-days for femoral lines as compared to 0.25/1,000 catheter days for radial lines¹
- Thrombotic/Embolic Events ± Limb Ischemia:
 - The rate of thrombosis is higher for radial arterial lines (20%) as compared to femoral arterial lines (1.5%)
 - Risk factors include small vessel diameter, female sex, low cardiac output, multiple cannulation attempts, and catheter duration >72 hours²

[1] Lorente, L., Santacreu, R., Martín, M. M., Jiménez, A., & Mora, M. L. (2006). Arterial catheter-related infection of 2,949 catheters. *Critical Care / the Society of Critical Care Medicine*, 10(3), R83.

[2] Scheer, B., Perel, A., & Pfeiffer, U. J. (2002). Clinical review: complications and risk factors of peripheral arterial catheters used for haemodynamic monitoring in anaesthesia and intensive care medicine. *Critical Care / the Society of Critical Care Medicine*, 6(3), 199–204.

Infection:

- Infection risk is higher for femoral arterial lines than for radial arterial lines
- The incidence of catheter-related **local** infections is 3/1,000 catheter-days for femoral lines as compared to 0.75/1,000 catheter-days for radial lines
- The incidence of catheter-related **blood stream** infections is 1.92/1,000 catheter-days for femoral lines as compared to 0.25/1,000 catheter days for radial lines¹
- Thrombotic/Embolic Events ± Limb Ischemia:
 - The rate of thrombosis is higher for radial arterial lines (20%) as compared to femoral arterial lines (1.5%)
 - Risk factors include small vessel diameter, female sex, low cardiac output, multiple cannulation attempts, and catheter duration >72 hours²

• Pain:

- May occur secondary to needle puncture of femoral nerve or compression by pseudoaneurysm/hematoma
- Incidence of peripheral nerve injury is <1% for femoral access as compared to nearly 9% for brachial/axillary access³

[1] Lorente, L., Santacreu, R., Martín, M. M., Jiménez, A., & Mora, M. L. (2006). Arterial catheter-related infection of 2,949 catheters. *Critical Care / the Society of Critical Care Medicine*, 10(3), R83.

[2] Scheer, B., Perel, A., & Pfeiffer, U. J. (2002). Clinical review: complications and risk factors of peripheral arterial catheters used for haemodynamic monitoring in anaesthesia and intensive care medicine. *Critical Care / the Society of Critical Care Medicine*, 6(3), 199–204.

[3] Kuo, F., Park, J., Chow, K., Chen, A., & Walsworth, M. K. (2019). Avoiding peripheral nerve injury in arterial interventions. *Diagnostic and Interventional Radiology*, 25(5), 380–391.

• Prior to removal, ensure that the patient does not have significant coagulopathy or on anticoagulation that may warrant correction prior to removal or need for longer manual pressure.

- Prior to removal, ensure that the patient does not have significant coagulopathy or on anticoagulation that may warrant correction prior to removal or need for longer manual pressure.
- Once ready to remove, optimize patient positioning (e.g. make sure groin is flat and bed is low) to allow for direct pressure over the access site.

- Prior to removal, ensure that the patient does not have significant coagulopathy or on anticoagulation that may warrant correction prior to removal or need for longer manual pressure.
- Once ready to remove, optimize patient positioning (e.g. make sure groin is flat and bed is low) to allow for direct pressure over the access site.
- While applying pressure, remove the arterial catheter, and subsequently, maintain direct pressure over the access site for a minimum of 15 minutes.

- Prior to removal, ensure that the patient does not have significant coagulopathy or on anticoagulation that may warrant correction prior to removal or need for longer manual pressure.
- Once ready to remove, optimize patient positioning (e.g. make sure groin is flat and bed is low) to allow for direct pressure over the access site.
- While applying pressure, remove the arterial catheter, and subsequently, maintain direct pressure over the access site for a minimum of 15 minutes.
- Afterwards, gently release pressure if there is continued bleeding, hold pressure for 5-10 more minutes before checking again.

- Prior to removal, ensure that the patient does not have significant coagulopathy or on anticoagulation that may warrant correction prior to removal or need for longer manual pressure.
- Once ready to remove, optimize patient positioning (e.g. make sure groin is flat and bed is low) to allow for direct pressure over the access site.
- While applying pressure, remove the arterial catheter, and subsequently, maintain direct pressure over the access site for a minimum of 15 minutes.
- Afterwards, gently release pressure if there is continued bleeding, hold pressure for 5-10 more minutes before checking again.
- Once hemostasis has been achieved, apply a small transparent dressing over the access site to allow for visualization of hematoma formation.

Module Conclusion

Thank you for completing this module.

You will be invited to participate in an in-person simulation training within the next few days to apply the skills learned here.

Please contact Alaska Pendleton, MD at aapendleton@partners.org if you have any questions or comments.

References

- Bhattacharjee S, Maitra S, Baidya DK. Comparison between ultrasound guided technique and digital palpation technique for radial artery cannulation in adult patients: An updated meta-analysis of randomized controlled trials. J Clin Anesth. 2018 Jun;47:54-59. doi: 10.1016/j.jclinane.2018.03.019. Epub 2018 Mar 22. PMID: 29574288.
- Burns K, Fox JC. Venous ultrasound. In: Fox JC, ed. Atlas of Emergency Ultrasound. Cambridge: Cambridge University Press; 2011:185-190. doi:10.1017/CB09780511997129.014
- Femoral arterial access and complications. The Cardiology Advisor. (2019, January 20). Retrieved September 23, 2021, from https://www.thecardiologyadvisor.com/home/decision-support-in-medicine/cardiology/femoral-arterial-access-and-complications/.
- Moussa Pacha H, Alahdab F, Al-Khadra Y, Idris A, Rabbat F, Darmoch F, Soud M, Zaitoun A, Kaki A, Rao SV, Kwok CS, Mamas MA, Alraies MC. Ultrasound-guided versus palpation-guided radial artery catheterization in adult population: A systematic review and meta-analysis of randomized controlled trials. Am Heart J. 2018 Oct;204:1-8. doi: 10.1016/j.ahj.2018.06.007. Epub 2018 Jun 19. PMID: 30077047.
- MSc NG. Inguinal ligament. Kenhub. https://www.kenhub.com/en/library/anatomy/inguinal-ligament. Published December 21, 2021. Accessed January 8, 2022.
- Pierre L, Pasrija D, Keenaghan M. Arterial Lines. [Updated 2021 Aug 1]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2021 Jan-. Available from: https://www.ncbi.nlm.nih.gov/books/NBK499989/
- References: Teleflex. https://teleflex.com/usa/en/product-areas/vascular-access/arterial-access/arterial-catheterization-kits/. Accessed January 8, 2022.
- Shiloh AL, Savel RH, Paulin LM, Eisen LA. Ultrasound-guided catheterization of the radial artery: a systematic review and meta-analysis of randomized controlled trials. Chest. 2011 Mar;139(3):524-529. doi: 10.1378/chest.10-0919. Epub 2010 Aug 19. PMID: 20724734.
- Tuna Katırcıbaşı M, Güneş H, Çağrı Aykan A, Aksu E, Özgül S. Comparison of Ultrasound Guidance and Conventional Method for Common Femoral Artery Cannulation: A Prospective Study of 939 Patients. Acta Cardiol Sin. 2018 Sep;34(5):394-398. doi: 10.6515/ACS.201809_34(5).20180524A. PMID: 30271089; PMCID: PMC6160509.
- Ultrasound guided vascular access: A new tool in the cath lab. SCAI. https://scai.org/ultrasound-guided-vascular-access-new-tool-cath-lab. Accessed January 8, 2022.
- Zhao W, Peng H, Li H, Yi Y, Ma Y, He Y, Zhang H, Li T. Effects of ultrasound-guided techniques for radial arterial catheterization: A meta-analysis of randomized controlled trials. Am J Emerg Med. 2021 Aug;46:1-9. doi: 10.1016/j.ajem.2020.04.064. Epub 2020 May 6. PMID: 33684726.
- Close up of EKG or electrocardiogram showing paced rhythm with premature beat (green lines), arterial blood pressure (red line), oxygen saturation (blue line) and noninvasive blood pressure. (n.d.). Adobe Stock. Retrieved February 3, 2022, from https://stock.adobe.com/search?k=%22arterial+line%22&asset_id=131843382
- York, K., & Moddeman, G. (1989). Arterial blood gases. As easy as ABG. AORN Journal, 49(5), 1308–1310, 1312–1314, 1316–1317 passim.

References

- Kahraman, P. (n.d.). Syringe Icon. The Noun Project. Retrieved February 3, 2022, from https://thenounproject.com/icon/syringe-1964763/
- Karaca, Z., Yayli, S., & Çalışkan, O. (2020). A unilateral purpuric rash in a patient with COVID-19 infection. Dermatologic Therapy, 33(4), e13798.
- Intervention. (2016, August 17). Thoracic Key. https://thoracickey.com/intervention-4/
- Feliciano, D. V. (2019). Alternate route. Trauma Surgery & Acute Care Open, 4(1), e000299.
- Guédès, Antoine. (2012). Transradial Approach for Coronary Interventions: The New Gold Standard for Vascular Access?. 10.5772/30083.
- Garyvanlue. (n.d.). GI Femoral Anatomy Hernias flashcards. Retrieved February 3, 2022, from https://www.easynotecards.com/notecard_set/78475
- Kahraman, P. (n.d.). Syringe Icon. The Noun Project. Retrieved February 3, 2022, from https://thenounproject.com/icon/syringe-1964763/
- Lumsden, A. (2018, July 24). Ultrasound Guided Femoral Access. Houston Methodist Debakey Heart and Vascular Center. https://mdvideos.houstonmethodist.org/videos/ultrasound-guided-femoral-access
- Sobolev, M., Slovut, D. P., Lee Chang, A., Shiloh, A. L., & Eisen, L. A. (2015). Ultrasound-Guided Catheterization of the Femoral Artery: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. *The Journal of Invasive Cardiology*, 27(7), 318–323.
- Chakravarthy, M., Prabhakumar, D., Shivalingappa, B., Rao, S., Padgaonkar, S., Hosur, R., Harivelam, C., & Jawali, V. (2020). Routine preoperative doppler ultrasound examination of arterial system in patients undergoing cardiac surgery is beneficial: A retrospective study. *Annals of Cardiac Anaesthesia*, 23(3), 298–301.
- Emergency Imaging: Femoral Pseudoaneurysm. (n.d.). Retrieved February 7, 2022, from https://www.mdedge.com/emergencymedicine/article/165671/imaging/emergency-imaging-femoral-pseudoaneurysm
- Finkelstein, A., Bazan, S., Halkin, A., Herz, I., George, J., Miller, H. I., Keren, G., & Banai, S. (2008). Treatment of post-catheterization femoral artery pseudo-aneurysm with para-aneurysmal saline injection. *The American Journal of Cardiology*, 101(10), 1418–1422.
- Galgano, J. A., Bernshteyn, M., & Kaul, P. (2020). Spontaneous Retroperitoneal Hematoma in the Setting of Myasthenic Crisis. Cureus, 12(10), e11116.
- Nakashima, D., Yamaguchi, S., Tanabe, K., Kim, W., & Iida, H. (2018). A case of femoral arteriovenous fistula caused by central venous catheterization under inadequate ultrasound guidance. *JA Clinical Reports*, 4(1), 31.
- Geertsma, T. (n.d.). Dissection of the intima in the external iliac artery. Retrieved February 5, 2022, from https://www.ultrasoundcases.info/iliac-arteries-5049/