Dead-Space Ventilation and Mortality in Acute Respiratory Distress

Syndrome – Appendix

Dilip Jayasimhan MBChB^{1,2}, Jennifer Chieng MBChB², John Kolbe MBBS FRACP^{2,3}, David A Sidebotham MBChB FANZCA^{1,3}

Institutional affiliations

- 1. Cardiothoracic and Vascular Intensive Care Unit, Te Whatu Ora Te Toka Tumai Auckland, Auckland, New Zealand.
- 2. Respiratory Services, Te Whatu Ora Te Toka Tumai Auckland, Auckland, New Zealand
- 3. Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand.

Table of Contents

Appendix A1: Search Strategy4
Appendix A2: Eligibility Criteria6
Appendix A3: Data Items for Extraction on Coding Protocol7
Appendix A4: Summary of Identified Studies8
Appendix A5: Risk of Bias Assessment (QUIPS Tool)14
Appendix A6: Funnel Plot High vs Low V_D/V_T and Mortality16
Appendix A7: Funnel Plot V _D /V _T and Adjusted Mortality17
Appendix A8: Funnel Plot High vs Low VR and Mortality18
Appendix A9: Funnel Plot VR and Adjusted Mortality19
Appendix A10: Eggers Test19
Appendix A11: GRADE Assessment of Dead-space Ventilation Indices
Appendix A12: Meta-regression of PaO ₂ /FIO2 vs Effect Estimate (High vs Low V _D /V _T and
Mortality)21
Appendix A13: Meta-regression of Cohort Mortality Rate vs Effect Estimate (High vs Low V_D/V_T
and Mortality)22
Appendix A14: Meta-regression PaO ₂ /FIO2 vs Effect Estimate (V_D/V_T and Adjusted
Mortality)23
Appendix A15: Meta-regression of Cohort Mortality Rate vs Effect Estimate (V _D /V _T and
Adjusted Mortality)24
Appendix A16: Trim and Fill Funnel Plot High vs Low V _D /V _T 25
Appendix A17: Trim and Fill Funnel Plot V_D/V_T and Adjusted Mortality26
Appendix A18: Meta-regression PaO ₂ /FIO2 vs Effect Estimate (High vs Low VR and
Mortality)27
Appendix A19: Meta-regression of Cohort Mortality Rate vs Effect Estimate (High vs Low VR
and Mortality)28
Appendix A20: Meta-regression PaO ₂ /FIO2 vs Effect Estimate (VR and Adjusted
Mortality)29
Appendix A21: Meta-regression of Cohort Mortality Rate vs Effect Estimate (VR and Adjusted
Mortality ₎

Appendix A22: Trim and Fill Funnel Plot High vs Low VR	31
Appendix A23. Trim and Fill Funnel Plot VR and Adjusted Mortality	32
References	33

Appendix A1: Search Strategy

MEDLINE (via National Library of Medicine) inception to 1 Nov 2022

#1 ("A-a gradient") OR ("Alveolar-arterial gradient") OR ("PAO2-PaO2") OR (Deadspace*) OR (Deadspace*) OR (Ventilatory Ratio) OR (VE/VCO2) OR (Vd/Vt) OR (Ventilatory efficiency) OR (PF Ratio))
OR (P:F Ratio)) OR (PaO2:FiO2) OR (PaO2/FiO2) OR (Oxygenation Index) OR (Volumetric Capnography)
#2 (ARDS) OR ("Acute Respiratory Distress Syndrome") OR ("Acute Lung Injury") OR (ALI)

- #3 (Mortality)
- #4 (("case reports"[Publication Type]) OR ("all child"[Filter]))
- #1 AND #2 AND #3 NOT #4

CENTRAL inception to 1 Nov 2022

#1 ("A-a gradient") OR ("Alveolar-arterial gradient") OR ("PAO2-PaO2") OR (Deadspace*) OR (Dead-space*) OR (Ventilatory Ratio) OR (VE/VCO2) OR (Vd/Vt) OR (Ventilatory efficiency) OR (PF Ratio)) OR (P:F Ratio)) OR (PaO2:FiO2) OR (PaO2/FiO2) OR (Oxygenation Index) OR (Volumetric Capnography)
#2 (ARDS) OR ("Acute Respiratory Distress Syndrome") OR ("Acute Lung Injury") OR (ALI)
#3 (Mortality)
#4 (("case reports"[Publication Type]) OR ("all child"[Filter]))
#1 AND #2 AND #3 NOT #4

Google Scholar inception to 1 Nov 2022

((Deadspace*) OR (Dead-space*) OR (Ventilatory Ratio) OR (VE/VCO2) OR (Vd/Vt) OR (Ventilatory efficiency) OR (PF Ratio) OR (P:F Ratio) OR (PaO2:FiO2) OR (PaO2/FiO2) OR (Oxygenation Index) OR (Volumetric Capnography)) AND (((((ARDS)) OR ("Acute Respiratory Distress Syndrome")) OR ("Acute Lung Injury")) OR (ALI))) AND (Mortality))

Filters and reference screening

Search strategies were modified for each database to include database-specific descriptors and field names. Where available, we used search filters to exclude studies on children or animals and case reports. References of included articles were hand searched for further eligible studies.

Appendix A2: Eligibility Criteria

Population

Patients aged 16 years or older with acute respiratory distress syndrome as defined by the Berlin criteria (1) or American European Consensus Conference Criteria (2).

- 1) Arterial partial pressure of Oxygen to fraction of inspired oxygen (PaO2/FiO2) <300 with Positive end expiratory pressure (PEEP) \geq 5
- 2) Bilateral opacities on radiographs not fully explained by effusion, nodules or collapse,
- 3) Respiratory failure not fully explained by cardiac failure or fluid overload,
- 4) within one week of a known clinical insult

ARDS diagnosed at time of admission to ICU, or during ICU stay. Measurements taken within 72 hours of diagnosis of ARDS.

Index prognostic factors

Index measurements of one of the following:

- 1) Deadspace fraction (V_D/V_T) Either estimated or measured.
- 2) End-tidal carbon dioxide to arterial partial pressure of carbon dioxide (PaCO2) ratio
- 3) End-tidal carbon dioxide to PaCO2 gradient
- 4) Minute ventilation (V_E) to carbon dioxide production (V_{CO2}) ratio (V_E/V_{CO2}),
- 5) Corrected Minute Ventilation (PaCO2 x VE/ 40 mmHg)
- 6) Ventilatory ratio (V_E x P_aCO2/100 ml⁻¹ kg⁻¹ predicted body weight x37.5 mmHg)

Measurements taken closest to time of enrollment will be prioritised if more than one measurement is reported (e.g. measurement performed on day 1 of study will be used as opposed to day 2).

Comparator

None

Outcome

Primary: Pooled unadjusted odds ratios or relative risk, or standardised mean differences (depending on how outcome is reported) for mortality up to 90 days following diagnosis of ARDS, inclusive of ICU and in-hospital mortality.

Secondary: Ventilator free days, ICU free days, duration of mechanical ventilation, ICU length of stay.

Setting

Intensive care unit

Appendix A3: Data Items for Extraction

We will extract information on first author, country, year of publication, year of study start, number of patients at baseline that were included in the analysis, their mean/median age, gender distribution, the baseline mean/median illness severity score defined as Acute Physiology and Chronic Health Evaluation (APACHE) Score, Sequential Organ Failure Assessment (SOFA) score/, or Simplified Applied Physiology Score (SAPS) II score (if any are applicable), details of treatment received, average levels of measured marker of dead-space ventilation at baseline (either mean with standard deviations or median with interquartile (IQR) range) in the whole sample and separately among those who did and did not subsequently survive, cut-off value used for analysis, type of dead-space ventilation measurement assessed, follow-up duration, and the number of deaths from which the crude risk or odds will be calculated, relative risk of death, odds of death, odds ratios, relative risk ratios, hazard ratios, ICU length of stay and hospital length of stay in the groups with impaired gas exchange measurement in comparison with the subgroup with normal measurements.

Appendix A4: Summary of Identified Studies

Cohort	Chudu dooian o			Timing of	Famala	Maan	Comple	Included	Data	Cut off	Adjusted veriables	Mortality	Mortolity
Cohort	Study design & V⊳/V⊤ method	ARDS definition	ARDS aetiology	Timing of measurement	Female (%)	Mean PaO₂/FIO₂	Sample size	Included in meta- analysis	Data obtained directly from authors	Cut-off	Adjusted variables	Mortality rate (%)	Mortality outcome
Nuckton 2002 (3)	Prospective observational (Measured-MM)	AECC	Sepsis, pneumonia, aspiration, trauma.	Within 24 hours	NR	147	179	Yes	No	0.61	PaO2/FiO2, pH, Compliance, LIS, OI, SAPS II, Vasopressor use, Medical reason for admission, Low volume ventilation, Cirrhosis, Non- pulmonary organ dysfunction.	72	In-Hospital
Kallet 2004 (4)	Prospective observational (Measured-VC)	AECC	Sepsis, pneumonia, aspiration, trauma.	Within 24 hours	22	139	59	Yes	Yes	0.6	NA	51	In-Hospital
Cepkova 2007 (5)	Prospective observational (Measured-VC)	AECC	Sepsis, pneumonia, aspiration.	Within 24 hours	55	177	42	No	NA	NA	NA	36	28-day
Lucangelo 2008 (6)	Prospective observational (Measured-VC)	AECC	Not reported	Within 24 hours	33	NR	36	No	NA	NA	NA	38.9	ICU
Siddiki (Mayo) 2010 (7)	Secondary analysis of prospective cohort (Estimated-SM)	AECC	Predominantly pneumonia and sepsis.	Within 24 hours	51	118	109	Yes	No	0.6	APACHE III, Shock, PaO2/FiO2, PEEP,	34	In-Hospital
Siddiki (ARDSNet) 2010 (7)	Secondary analysis of RCT (Estimated- SM)	AECC	Predominantly pneumonia and sepsis.	Within 24 hours	45	150	1896	Yes	No	0.6	APACHE III, Shock, PaO2/FiO2, PEEP,	29	In-Hospital

Raurich 2010 (8)	Prospective observational (Measured-DB)	AECC	Predominantly pneumonia and sepsis.	Within 72 hours	32	153	80	Yes	Yes	0.6	Age, SAPS II, SOFA, pH	43.75	In-Hospital
Kallet 2014 (9)	Secondary analysis of RCT (Measured-VC)	AECC	Predominantly pneumonia and sepsis.	Within 4 hours	47	166	115	No	NA	NA	PaO2/FiO2, OI, Vasopressor use	19.1	60-day
Beitler (ALTA, EPVENT, APC) 2015 (10)	Secondary analysis of RCT (Measured-VC)	AECC	Predominantly pneumonia and sepsis.	Within 24 hours	45	167	210	Yes	No	NA	APACHE II, ARDS Severity, PEEP, Clinical trial.	16	28-day
Beitler (ARDSNet) 2015 (10)	Secondary analysis of RCT (Estimated-HB)	AECC	Predominantly pneumonia and sepsis.	Within 24 hours	46	172	3135	Yes	No	NA	APACHE II, ARDS Severity, PEEP, Clinical trial.	22	28-day
Zhang 2016 (11)	Prospective observational (Measured-VC)	Berlin	Predominantly pneumonia and sepsis.	Within 24 hours	39	161	46	No	No	NA	NA	52.1	In-Hospital
Kallet 2017 (12)	Secondary analysis of prospective cohort (Measured-VC)	Berlin	Predominantly pneumonia and sepsis.	Within 12 hours	28	133	685	Yes	Yes	0.6	Driving pressure, OI, Age, SAPS II	38	In-Hospital

Morales- Quinteros 2019 (13)	Secondary analysis of prospective cohort (Estimated-HB)	Berlin	Predominantly pneumonia and sepsis.	24-48 hours	38	203	940	Yes	No	NA	APACHEI IV, PaO2/FiO2, PEEP, Driving Pressure, Compliance	31.3	30-day
Lecompte- Osorio (Chicago) 2021 (14)	Secondary analysis of prospective cohort (Estimated-SE)	AECC & Berlin	Not reported	Within 24 hours	47	120	302	Yes	No	NA	Age, APACHE II, Vasopressor use, Ventilator mode.	57.3	In-Hospital
Lecompte- Osorio (ARDSNet) 2021 (14)	Secondary analysis of RCT (Estimated-SE)	Berlin	Not reported	Within 24 hours	45	176	124	Yes	No	NA	Age, APACHE II, Vasopressor use, Ventilator mode.	21	In-Hospital
Morales- Quinteros 2021 (15)	Secondary analysis of prospective cohort (Estimated-HB)	Berlin	COVID-19 ARDS	Within 24 hours	27	131	927	Yes	No	0.58	Age, Sex, BMI, PaO2/FiO2, Creatinine, Hypertension, Diabetes, ACE inhibitor use, Vasopressor/inotrope use, Fluid balance, pH, Mean arterial pressure, Heart rate, Compliance, and PEEP.	28.7	28-day
Fusina 2021 (16)	Secondary analysis of prospective cohort (Estimated-HB)	Berlin	COVID-19 ARDS	Within 24 hours	22	137	187	No	NA	NA	Age, Sex, BMI, No. of comorbidities, Non-respiratory SOFA, PaO2:FiO2, Compliance.	51.3	In-Hospital
Putra 2021 (17)	Retrospective observational (Estimated-HB)	Berlin	COVID-19 ARDS	24-48 hours	30	NR	77	No	NA	NA	NA	74	In-Hospital

Graf 2022 (18)	Secondary analysis of prospective cohort (Measured-VC)	Berlin	COVID-19 ARDS	Within 24 hours	17	175	60	No	NA	0.57	NA	45	28-day
Maj 2022 (19)	Retrospective observational (Estimated-HB)	Berlin	Predominantly COVID-19 ARDS	Within 24 hours	31	129	641	No	NA	NA	Ventilatory ratio, Carbon dioxide production, PaO2/FiO2.	35	ICU
Ventilatory rat	tio (VR)												
Cohort	Study design	ARDS definition	ARDS aetiology	Timing of measurement	% Female	Mean PaO₂/FIO₂	Sample size	Included in meta- analysis	Data obtained from authors	Cut-off	Adjusted variables	Mortality rate (%)	Mortality outcome
Sinha 2013 (20)	Secondary analysis of RCT	AECC	Predominantly pneumonia and sepsis.	Within 24 hours	NR	NR	1307	Yes	No	2	Shock, PaO2/FiO2, APACHE III, PEEP	31.6	In-hospital
Sinha 2014 (21)	Secondary analysis of prospective cohort	AECC	Predominantly pneumonia and sepsis.	Within 24 hours	NR	170	121	Yes	No	2	APACHE II, PEEP.	29.7	In-hospital
Morales- Quinteros 2019 (13)	Secondary analysis of prospective cohort	Berlin	Predominantly pneumonia and sepsis.	24-48 hours	38	203	940	Yes	No	NA	APACHE IV, PaO2/FiO2, PEEP, Driving Pressure, Compliance	31.3	30-day
Sinha (San Francisco) 2019 (22)	Prospective observational	Berlin	Predominantly pneumonia and sepsis.	Within 24 hours	26	NR	946	Yes	No	2	PaO2/FiO2, Driving pressure.	39	In-hospital
Sinha (FACTT) 2019 (22)	Secondary analysis of RCT.	AECC	Predominantly pneumonia and sepsis.	Within 24 hours	50	155	520	Yes	No	2	PaO2/FiO2, Driving pressure.	26.1	60-day

Grasselli 2020 (6)	Prospective observational	Berlin	COVID-19 ARDS	Within 24 hours	23	NR	301	Yes	Yes	2	NA	28.4	28-day
Morales- Quinteros 2021 (15)	Secondary analysis of prospective cohort	Berlin	COVID-19 ARDS	Within 24 hours	27	131	927	Yes	No	1.72	Age, Sex, BMI, PaO2/FiO2, Creatinine, Hypertension, Diabetes, ACE inhibitor use, Vasopressor/inotrope use, Fluid balance, pH, Mean arterial pressure, Heart rate, Compliance, PEEP.	28.7	28-day
Beloncle (COVID-19) 2021 (23)	Prospective observational	Berlin	COVID-19 ARDS	Within 24 hours	30	146	135	Yes	No	2	NA	19.3	28-day
Beloncle (EXPRESS) 2021 (23)	Secondary analysis of RCT.	AECC	Predominantly pneumonia and sepsis.	Within 24 hours	33	138	767	Yes	No	2	NA	23.5	28-day
Fusina 2021 (16)	Secondary analysis of prospective cohort	Berlin	COVID-19 ARDS	Within 24 hours	22	137	187	Yes	No	NA	Age, Sex, BMI, No. of comorbidities, Non-respiratory SOFA, PaO2/FiO2, Compliance.	51.3	In-Hospital
Ruan 2021 (24)	Retrospective observational	Berlin	Predominantly pneumonia and sepsis.	Within 24 hours	32	148	258	Yes	Yes	2	NA	43.4	30-day
Torres 2021 (25)	Prospective and retrospective observational cohort	Berlin	COVID-19 ARDS	Within 24 hours	29	123	1118	Yes	Yes	2	Age, Sex, Hypertension, Chronic respiratory disease, Cardiovascular SOFA, PaO2/FiO2, Creatinine, Lymphocyte count, Platelet count, D-dimer,	38.7	In-hospital
Kallet 2021 (26)	Secondary analysis of prospective cohort	Berlin	Predominantly pneumonia and sepsis.	Within 12 hours	28	133	685	Yes	No	NA	End tidal to arterial carbon dioxide ratio, Eligibility for randomised trial, OI, Age, APACHE II, Platelet, Bilirubin.	38	In-Hospital
Putra 2021 (17)	Retrospective observational	Berlin	COVID-19 ARDS	24-48 hours	77	109	77	No	NA	NA	NA	74	In-Hospital

Sedhai 2021 (27)	Secondary analysis of prospective cohort	Berlin	Predominantly pneumonia and sepsis.	Within 24 hours	39	155	340	No	NA	NA	NA	37	In-Hospital
Monteiro 2022 (28)	Secondary analysis of RCT.	Berlin	Predominantly pneumonia and sepsis.	Within 24 hours	44	99	1006	Yes	No	2	APACHE III, Vasopressor use, PaO2/FiO2, Sex	36.8	28-day
Maj 2022 (19)	Retrospective observational	Berlin	Predominantly COVID-19 ARDS	Within 24 hours	31	129	641	No	No	NA	Pulmonary dead-space fraction, Carbon dioxide production, PaO2:FiO2	35	ICU
Siegel 2022 (29)	Secondary analysis of prospective cohort	Berlin	Predominantly pneumonia and sepsis.	Within 24 hours	46	159	50	No	NA	NA	OI, APACHE III, RALE	56	28-day

ARDS, Acute respiratory distress syndrome; AECC, American European Consensus Conference Definition; Berlin, Berlin definition of acute respiratory distress syndrome; PaO₂/FIO₂, Arterial partial pressure of oxygen to fraction of inspired oxygen ratio; MM, Metabolic monitor; VC, Volumetric capnography; ICU, Intensive care unit; SM, Siddiki Method; DB, Douglas bag; HB, Harris-Benedict; LIS, Lung injury score; OI, Oxygenation index; SAPS, Simplified acute physiology score; APACHE, Acute physiology and chronic health evaluation; PEEP, Positive end expiratory pressure; SOFA, Sequential organ failure assessment; BMI, body mass index; ACE, angiotensin converting enzyme; RALE, Radiologic assessment of lung edema.

Appendix A5. Risk of Bias Assessment (QUIPS Tool)

StudyParticipationAttritionmeasurementmeasurementConfoundinganalysis reportingPulmonary dead-spacefraction (Va/Vr)Nuckton 2002LowLowLowLowLowLowLowKallet 2004LowLowLowLowMod1LowCepkova 2007LowLowLowMod2LowMod1LowLucangelo 2008LowLowLowLowMod1LowSiddiki 2010 (Mayo)LowLowLowMod3LowLowLowSiddiki 2010 (ARDSNet)LowLowMod3LowLowLowLowRaurich 2010LowLowLowLowLowLowLowLowKallet 2014LowLowLowLowLowLowLowLowBeitler (ALTA, EPVENT, APC) 2015LowLowLowLowLowLowLowVortes CaptoresLowLowLowLowLowLowLowLowMorales-QuinterosLowLowLowLowLowLowLowLowLecompte-OsorioLowLowLowLowLowLowLowLow2021 (ARDSNet)LowLowLowMod3LowLowLowLowMorales-QuinterosLowLowLowLowLowLowLowLow2021 (Chicago)LowLowLowLowLowLow				Prognostic factor	Outcome		Statistical
Pulmonary dead-space fraction (Vo/V7)Nuckton 2002LowLowLowLowLowLowKallet 2004LowLowLowMod1LowCepkova 2007LowLowMod2LowMod1LowLucangelo 2008LowLowLowLowMod1LowSiddiki 2010 (Mayo)LowLowLowMod3LowLowLowSiddiki 2010 (Mayo)LowLowLowMod3LowLowLowRaurich 2010LowLowLowLowLowLowLowRaurich 2010LowLowLowLowLowLowLowKallet 2014LowLowLowLowLowLowLowBeitler (ALTA, EPVENT, APC) 2015LowLowLowLowLowLowVallet 2017LowLowLowLowLowLowLowMorales-Quinteros 2021 (Chicago)LowLowLowLowLowLowLecompte-Osorio 2021 (Chicago)LowLowMod3LowLowLowVorales-Quinteros 2021 (ARDSNet)LowLowMod3LowLowLowMorales-Quinteros 2021 (ARDSNet)LowLowMod3LowLowLowVorales-Quinteros 2021 (ARDSNet)LowLowMod3LowLowLowFusia 2021LowLowLowLowLowLowLowFusia	Study	Participation	Attrition	measurement	measurement	Confounding	analysis reporting
Nuckton 2002LowLowLowLowLowLowKallet 2004LowLowLowLowMod1LowCepkova 2007LowLowMod2LowMod1LowLucangelo 2008LowLowLowLowMod1LowSiddiki 2010 (Mayo)LowLowLowMod3LowLowLowSiddiki 2010 (Mayo)LowLowMod3LowLowLowLowRaurich 2010LowLowLowLowLowLowLowLowRaurich 2010LowLowLowLowLowLowLowLowRaurich 2014LowLowLowLowLowLowLowLowBeitler (ALTA, EPVENT, APC) 2015LowLowLowLowLowLowLowWallet 2017LowLowLowLowLowLowLowLowKallet 2017LowLowLowLowLowLowLowLowMorales-Quinteros 2021 (Chicago)LowLowLowLowLowLowLowMorales-Quinteros 2021 (ARDSNet)LowLowMod3LowLowLowMorales-Quinteros 2021 (ARDSNet)LowLowMod3LowLowLowFusina 2021LowLowLowLowLowLowLowLowFusina 2021LowLowLowLowLowLow <t< td=""><td>Pulmonary dead-spa</td><td>ce fraction (V</td><td>/σ/Vτ)</td><td></td><td></td><td></td><td></td></t<>	Pulmonary dead-spa	ce fraction (V	/ σ/V τ)				
Kallet 2004LowLowLowMod1LowCepkova 2007LowLowMod2LowMod1LowLucangelo 2008LowLowLowLowMod1LowSiddiki 2010Mayo)LowLowMod3LowLowLowSiddiki 2010LowLowMod3LowLowLowLowRaurich 2010LowLowLowLowLowLowLowRaurich 2010LowLowLowLowLowLowLowRaurich 2010LowLowLowLowLowLowLowBeitter (ALTA, EPVENT, APC) 2015LowLowLowLowLowLow2015LowLowLowLowLowLowLowLowVallet 2017LowLowLowLowLowLowLowLowKallet 2017LowLowLowLowLowLowLowLowVallet 2017LowLowLowLowLowLowLowLowVorales-Quinteros 2021 (Chicago)LowLowMod3LowLowLowLowVorales-Quinteros 2021 (ARDSNet)LowLowMod3LowLowLowLowFusina 2021LowLowLowLowLowLowLowLowLowPutro 2021LowLowLowLowLowLowLowLow <td< td=""><td>Nuckton 2002</td><td>Low</td><td>Low</td><td>Low</td><td>Low</td><td>Low</td><td>Low</td></td<>	Nuckton 2002	Low	Low	Low	Low	Low	Low
Cepkova 2007LowLowMod2LowMod1LowLucangelo 2008LowLowLowLowMod3LowMod1LowSiddiki 2010LowLowMod3LowLowLowLowLowSiddiki 2010LowLowLowMod3LowLowLowLowRaurich 2010LowLowLowLowLowLowLowLowKallet 2014LowLowLowLowLowLowLowLowBeitler (ALTA, EPVENT, APC) 2015LowLowLowLowLowLowLow2015LowLowLowLowLowLowLowLowKallet 2017LowLowLowLowLowLowLowMorales-Quinteros 2021 (Chicago)LowLowLowLowLowLowLecompte-Osorio 2021 (ARDSNet)LowLowMod3LowLowLowLowLowLowMod3LowLowLowLowVariales-Quinteros 2021 (ARDSNet)LowLowMod3LowLowLowLecompte-Osorio 2021 (ARDSNet)LowLowMod3LowLowLowLowLowLowMod3LowLowLowLowFusina 2021LowLowLowLowLowLowLowDistrice 2021LowLowLowLowLowLow <td< td=""><td>Kallet 2004</td><td>Low</td><td>Low</td><td>Low</td><td>Low</td><td>Mod¹</td><td>Low</td></td<>	Kallet 2004	Low	Low	Low	Low	Mod ¹	Low
Lucangelo 2008LowLowLowMod1LowSiddiki 2010 (Mayo)LowLowMod3LowLowLowSiddiki 2010LowLowLowMod3LowLowLow(ARDSNet)LowLowLowMod3LowLowLowRaurich 2010LowLowLowLowLowLowLowKallet 2014LowLowLowLowLowLowLowBeitler (ALTA, EPVENT, APC) 2015LowLowLowLowLowLowBeitler (ARDSNet)LowLowLowLowLowLowLow2015LowLowLowLowLowLowLowLowKallet 2017LowLowLowLowLowLowLowLowVarles-Quinteros 2021 (Chicago)LowLowLowLowLowLowLowLecompte-Osorio 2021 (ARDSNet)LowLowMod3LowLowLowMorales-Quinteros 2021LowLowLowMod4LowLowLowFusina 2021LowLowLowLowLowLowLowLowPutro 2021LowLowLowLowLowLowLowLowPutro 2021LowLowLowLowLowLowLowLow	Cepkova 2007	Low	Low	Mod ²	Low	Mod ¹	Low
Siddiki 2010 (Mayo)LowLowMod3LowLowLowSiddiki 2010 (ARDSNet)LowLowMod3LowLowLowLowRaurich 2010LowLowLowLowLowLowLowLowKallet 2014LowLowLowLowLowLowLowBeitler (ALTA, EPVENT, APC) 2015LowLowLowLowLowLowBeitler (ARDSNet) 2015LowLowLowLowLowLowMorales-Quinteros 2021 (Chicago)LowLowLowLowLowLowLecompte-Osorio 2021 (ARDSNet)LowLowMod3LowLowLowMorales-Quinteros 2021 (ARDSNet)LowLowMod3LowLowLowMorales-Quinteros 2021LowLowMod3LowLowLowMorales-Quinteros 2021LowLowMod3LowLowLowFusina 2021LowLowLowLowLowLowLowPutra 2021LowLowLowLowLowLowLowPutra 2021LowLowLowLowLowLowLowPutra 2021LowLowLowLowLowLowLow	Lucangelo 2008	Low	Low	Low	Low	Mod ¹	Low
Siddiki 2010 (ARDSNet)LowLowMod³LowLowLowRaurich 2010LowLowLowLowLowLowLowKallet 2014LowLowLowLowLowLowLowBeitler (ALTA, EPVENT, APC) 2015LowLowLowLowLowLowBeitler (ARDSNet) 2015LowLowLowLowLowLowLowMorales-Quinteros 2021 (Chicago)LowLowLowLowLowLowLowLecompte-Osorio 2021 (ARDSNet)LowLowMod³LowLowLowMorales-Quinteros 2021 (ARDSNet)LowLowMod³LowLowLowMorales-Quinteros 2021 (ARDSNet)LowLowMod³LowLowLowMorales-Quinteros 2021LowLowMod³LowLowLowMorales-Quinteros 2021LowLowMod⁴LowLowLowFusina 2021LowLowLowLowLowLowLowPutra 2021LowLowLowLowLowLowLow	Siddiki 2010 (Mayo)	Low	Low	Mod ³	Low	Low	Low
Raurich 2010LowLowLowLowLowLowKallet 2014LowLowLowLowLowLowLowBeitler (ALTA, EPVENT, APC) 2015LowLowLowLowLowLowBeitler (ARDSNet) 2015LowLowLowLowLowLowMorales-Quinteros 2019LowLowLowLowLowLowLecompte-Osorio 2021 (Chicago)LowLowMod³LowLowLowLecompte-Osorio 2021 (ARDSNet)LowLowMod³LowLowLowMorales-Quinteros 2021LowLowMod³LowLowLowFusina 2021LowLowLowLowLowLowPutra 2021LowLowLowLowLowLowPutra 2021LowLowLowLowLowLow	Siddiki 2010 (ARDSNet)	Low	Low	Mod ³	Low	Low	Low
Kallet 2014LowLowLowLowLowLowBeitler (ALTA, EPVENT, APC) 2015LowLowLowLowLowLowBeitler (ARDSNet) 2015LowLowLowLowLowLowLowWater (ARDSNet) 2015LowLowLowLowLowLowLowKallet 2017LowLowLowLowLowLowLowMorales-Quinteros 	Raurich 2010	Low	Low	Low	Low	Low	Low
Beitler (ALTA, EPVENT, APC) 2015LowLowLowLowLowLowBeitler (ARDSNet) 2015LowLowLowLowLowLowLowKallet 2017LowLowLowLowLowLowLowMorales-Quinteros 2019LowLowLowLowLowLowLecompte-Osorio 2021 (Chicago)LowLowMod³LowLowLowLecompte-Osorio 2021 (ARDSNet)LowLowMod³LowLowLowMorales-Quinteros 2021LowLowMod³LowLowLowFusina 2021LowLowLowLowLowLowPutro 2021LowLowLowLowLowLowPutro 2021LowLowLowLowLowLowPutro 2021LowLowLowLowLowLow	Kallet 2014	Low	Low	Low	Low	Low	Low
EPVEN1, APC) 2015LowLowLowLowLowLowLowBeitler (ARDSNet) 2015LowLowLowLowLowLowLowKallet 2017LowLowLowLowLowLowLowMorales-Quinteros 2019LowLowLowLowLowLowLecompte-Osorio 2021 (Chicago)LowLowLowLowLowLowLecompte-Osorio 2021 (ARDSNet)LowLowMod³LowLowLowMorales-Quinteros 2021LowLowMod⁴LowLowLowMorales-Quinteros 2021LowLowMod⁴LowLowLowMorales-Quinteros 2021LowLowMod⁴LowLowLowFusina 2021LowLowLowLowLowLowLowPutro 2024LowLowLowLowLowLowLow	Beitler (ALTA,						
2015LowLowLowLowLowLowKallet 2017LowLowLowLowLowLowLowMorales-Quinteros 2019LowLowLowLowLowLowLecompte-Osorio 2021 (Chicago)LowLowMod³LowLowLowLecompte-Osorio 2021 (ARDSNet)LowLowMod³LowLowLowMorales-Quinteros 2021LowLowMod³LowLowLowFusina 2021LowLowLowLowLowLowPutro 2021LowLowLowLowLowLowPutro 2021LowLowLowLowLowLow	EPVENT, APC) 2015 Beitler (ARDSNet)	Low	Low	Low	Low	Low	Low
Kallet 2017LowLowLowLowLowLowLowMorales-Quinteros 2019LowLowLowLowLowLowLowLecompte-Osorio 2021 (Chicago)LowLowMod³LowLowLowLecompte-Osorio 2021 (ARDSNet)LowLowMod³LowLowLowMorales-Quinteros 	2015	Low	Low	Low	Low	Low	Low
Morales-Quinteros 2019LowLowLowLowLowLecompte-Osorio 2021 (Chicago)LowLowMod³LowLowLowLecompte-Osorio 2021 (ARDSNet)LowLowMod³LowLowLowMorales-Quinteros 2021LowLowMod⁴LowLowLowFusina 2021LowLowLowLowLowLowPutro 2021LowLowLowLowLowLow	Kallet 2017	Low	Low	Low	Low	Low	Low
Lecompte-Osorio 2021 (Chicago)LowLowMod³LowLowLowLecompte-Osorio 2021 (ARDSNet)LowLowMod³LowLowLowMorales-Quinteros 2021LowLowMod⁴LowLowLowFusina 2021LowLowLowLowLowLowPutro 2021LowLowLowLowLowLow	Morales-Quinteros	Low	Low	Low	Low	Low	Low
2021 (Chicago) Low Low Mod ^o Low Low Low Low Lecompte-Osorio 2021 (ARDSNet) Low Low Mod ³ Low Low Low Morales-Quinteros 2021 Low Low Mod ⁴ Low Low Low Fusina 2021 Low Low Low Low Low Low Putro 2021 Low Low Mod ³ Low Mod ¹ Low	Lecompte-Osorio	1	1	Ma d ³	Law	1	1
2021 (ÅRDSNet)LowLowMod³LowLowLowMorales-Quinteros 2021LowLowMod⁴LowLowLowFusina 2021LowLowLowLowLowLowPutro 2021LowLowLowLowLow	Lecompte-Osorio	LOW	LOW	MOd ^S	LOW	LOW	LOW
Morales-Quinteros Low Low Mod ⁴ Low Low Low Fusina 2021 Low Low Low Low Low Low Putra 2021 Low Low Low Low Low	2021 (ARDSNet)	Low	Low	Mod ³	Low	Low	Low
Fusina 2021 Low Low Low Low Low Putra 2021 Low Low Mad ³ Low Mad ¹ Low	2021	Low	Low	Mod ⁴	Low	Low	Low
Dutro 2021 Low Mod ³ Low Mod ¹ Low	Fusina 2021	Low	Low	Low	Low	Low	Low
	Putra 2021	Low	Low	Mod ³	Low	Mod ¹	Low
Graf 2022 Low Low Low Mod ¹ Low	Graf 2022	Low	Low	Low	Low	Mod ¹	Low
Maj 2022 Low Low High ⁵ Low Low Low	Maj 2022	Low	Low	High⁵	Low	Low	Low
Ventilatory Ratio (VR)	Ventilatory Ratio (VR	?)					
Sinha 2013 Mod ⁶ Low Low Low Mod ⁶	Sinha 2013	Mod ⁶	Low	Low	Low	Low	Mod ⁶
Sinha 2014 Low Low Low Low Low	Sinha 2014	Low	Low	Low	Low	Low	Low
Morales-Quinteros	Morales-Quinteros	Low	Low	Low	Low	Low	Low
Sinha (San	Sinha (San	2011	Low			2011	2011
Francisco) 2019 Low Low Low Low	Francisco) 2019	Low	Low	Low	Low	Low	Low
Sinha (FACTT) 2019 Low Low Low Low Mod ⁷ Low	Sinha (FACTT) 2019 Morales-Quinteros	Low	Low	Low	Low	Mod ⁷	Low
2021 Low Low Mod Low Low Low	2021	Low	Low	Mod	Low	Low	Low
Beloncle (COVID-19) Low Low Low Mod ¹ Low	Beloncle (COVID-19) 2021	Low	Low	Low	Low	Mod ¹	Low
Beloncle (EXPRESS)	Beloncle (EXPRESS) 2021	Low	Low	Low	Low	Mod ¹	Low
Eusina 2021 Low Low Low Low Low Low	Fusina 2021	Low	Low	Low	Low	Low	Low
Ruan 2021 Mod ¹ Low Low Low Mod ¹ Low	Ruan 2021	Mod ¹	Low	Low	Low	Mod ¹	Low
Torres 2021 Mod Low Low Low Low Low	Torres 2021	Mod	Low	Low	Low	Low	Low
Kallet 2021 Low Low Low Low Low	Kallet 2021	Low	Low	Low	Low	Low	Low
Putra 2021 Low Low Mod ³ Low Mod ¹ Low	Putra 2021	Low	Low	Mod ³	Low	Mod ¹	Low
Sedhai 2021 Low Low Low Mod ¹ Low	Sedhai 2021	Low	Low	Low	Low	Mod ¹	Low

Graselli 2022	Low	Low	Low	Low	Mod ¹	Low
Monteiro 2022	Low	Low	Low	Low	Low	Low
Maj 2022	Low	Low	Low	Low	Low	Low
Seigel 2022	Low	Low	Low	Low	Low	Low

Not controlled for any possible confounding variables.
 3 patients Vd/Vt not measured. Not reported how this was accounted for in analysis.

3. Novel unvalidated method of estimation.

4. Some estimation values do not seem consistent with all other studies (Direct measurements

5.

Not all patients had Vd/Vt measured the same way. 20% were measured, 80% estimated. Multivariable analysis performed with each individual comparator, not together in a model. Conclusions 6. drawn could be misinterpreted.

7. No adjustment for confounding apart from stratification by PF ratio

Hedges' g

Hedges' g

Appendix A10: Egger's Test

Meta-analysis	Egger's Test p-value
High vs low V_D/V_T	0.0341
V _D /V _T and adjusted mortality	0.002
High vs low VR	0.004
VR and adjusted mortality	0.008

V_D/V_T, Pulmonary dead-space fraction; VR, Ventilatory Ratio.

Dead-space ventilation index	No. of patients	No of cohorts	Ur	nivaria	ate	Mu	Multivariate		Phase	Limitations	Inconsistency	Indirectness	Imprecision	Publication bias	Moderate/large effect size	Dose effect	Overall quality
			+	0	-	+	0	-									
Pulmonary dead-space fraction (V _D /V _T)	9,850	20	15	2	0	10	4	0	2	No	Yes	No	No	Yes	Yes	Yes	+++
Ventilatory Ratio	10,362	18	12	3	0	7	4	0	2	No	Yes	No	No	Yes	No	Yes	+++
End-tidal to arterial carbon dioxide ratio	885	2	2	0	0	1	0	0	1	Yes	Yes	No	Yes	Yes	No	No	++
Arterial to end- tidal carbon dioxide gradient	426	1	1	0	0	1	0	0	1	Yes	Yes	No	Yes	Yes	No	No	++
Corrected Minute Ventilation	187	1	1	0	0	1	0	0	1	Yes	Yes	No	Yes	Yes	No	No	+

Appendix A11: GRADE Assessment of Dead-space Ventilation Indices.

Phase, phase of investigation: Phase 1, outcome prediction research or explanatory research aimed to identify associations between potential prognostic factors and the outcome; Phase 2, explanatory research aimed to confirm independent associations between potential prognostic factor and the outcome; Phase 3, explanatory research aimed to understand prognostic pathways. For univariate and multivariate analyses: +, number of significant effects with a positive value; 0, number of non-significant effects; -, number of significant effects with a negative value. For GRADE factors: For overall quality of evidence: +, very low; ++, low; +++, moderate; ++++, high.

Appendix A12: Meta-regression of PaO₂/FIO2 vs Effect Estimate (High vs Low V_D/V_T and Mortality)

 R^2 (amount of heterogeneity accounted for) = 0.00% Estimate = 0.0232, Standard error = 0.0285 (p = 0.4533) Appendix A13: Meta-regression of Cohort Mortality Rate vs Effect Estimate (High vs Low V_D/V_T and Mortality)

 R^2 (amount of heterogeneity accounted for) = 100% Estimate = 0.0495, Standard error = 0.0076 (p = 0.0006)

 R^2 (amount of heterogeneity accounted for) = 6.35% Estimate =-0.0012, Standard error = 0.0016 (p = 0.47)

Appendix A15: Meta-regression of Cohort Mortality Rate vs Effect Estimate (V_D/V_T and Adjusted Mortality)

 R^2 (amount of heterogeneity accounted for) = 84.66% Estimate = 0.0056 Standard error= 0.002 (p = 0.034)

Odds Ratio

Odds Ratio

Appendix A18: Meta-regression of PaO₂/FIO2 vs Effect Estimate (High vs Low VR and Mortality)

 R^2 (amount of heterogeneity accounted for) = 0.00% Estimate = 0.0232 Standard error= 0.0285 (p = 0.453) Appendix A19: Meta-regression Cohort Mortality Rate vs Effect Estimate (High vs Low VR and Mortality)

 R^2 (amount of heterogeneity accounted for) = 0.00% Estimate = 0.0018 Standard error= 0.0145 (p = 0.903)

 R^2 (amount of heterogeneity accounted for) = 0.00% Estimate = 0.0124 Standard error= 0.0102 (p = 0.308) Appendix A21: Meta-regression Cohort Mortality Rate vs Effect Estimate (VR and Adjusted Mortality)

 R^2 (amount of heterogeneity accounted for) = 0.00% Estimate = 0.0260 Standard error= 0.0157 (p = 0.136)

Odds Ratio

Odds Ratio

References

- 1. ARDS Definition Task Force, Ranieri VM, Rubenfeld GD, et al.: Acute respiratory distress syndrome: the Berlin Definition. *JAMA* 2012; 307:2526–2533
- Bernard GR, Artigas A, Brigham KL, et al.: The American-European Consensus Conference on ARDS. Definitions, mechanisms, relevant outcomes, and clinical trial coordination. *Am J Respir Crit Care Med* 1994; 149:818–824
- 3. Nuckton TJ, Alonso JA, Kallet RH, et al.: Pulmonary Dead-Space Fraction as a Risk Factor for Death in the Acute Respiratory Distress Syndrome. *N Engl J Med* 2002; 346:1281–1286
- 4. Kallet RH, Alonso JA, Pittet J-F, et al.: Prognostic value of the pulmonary dead-space fraction during the first 6 days of acute respiratory distress syndrome. *Respir Care* 2004; 49:1008–1014
- 5. Cepkova M, Kapur V, Ren X, et al.: Pulmonary dead space fraction and pulmonary artery systolic pressure as early predictors of clinical outcome in acute lung injury. *Chest* 2007; 132:836–842
- 6. Lucangelo U, Bernabè F, Vatua S, et al.: Prognostic value of different dead space indices in mechanically ventilated patients with acute lung injury and ARDS. *Chest* 2008; 133:62–71
- Siddiki H, Kojicic M, Li G, et al.: Bedside quantification of dead-space fraction using routine clinical data in patients with acute lung injury: secondary analysis of two prospective trials. *Crit Care* 2010; 14:R141
- Raurich JM, Vilar M, Colomar A, et al.: Prognostic value of the pulmonary dead-space fraction during the early and intermediate phases of acute respiratory distress syndrome. *Respir Care* 2010; 55:282–287
- Kallet RH, Zhuo H, Liu KD, et al.: The association between physiologic dead-space fraction and mortality in subjects with ARDS enrolled in a prospective multi-center clinical trial. *Respir Care* 2014; 59:1611–1618
- 10. Beitler JR, Thompson BT, Matthay MA, et al.: Estimating dead-space fraction for secondary analyses of acute respiratory distress syndrome clinical trials. *Crit Care Med* 2015; 43:1026–1035
- 11. Zhang Y-J, Gao X-J, Li Z-B, et al.: Comparison of the pulmonary dead-space fraction derived from ventilator volumetric capnography and a validated equation in the survival prediction of patients with acute respiratory distress syndrome. *Chin J Traumatol* 2016; 19:141–145
- Kallet RH, Zhuo H, Ho K, et al.: Lung Injury Etiology and Other Factors Influencing the Relationship Between Dead-Space Fraction and Mortality in ARDS. *Respir Care* 2017; 62:1241– 1248
- 13. Morales-Quinteros L, Schultz MJ, Bringué J, et al.: Estimated dead space fraction and the ventilatory ratio are associated with mortality in early ARDS. *Ann Intensive Care* 2019; 9:128
- 14. Lecompte-Osorio P, Pearson SD, Pieroni CH, et al.: Bedside estimates of dead space using endtidal CO2 are independently associated with mortality in ARDS. *Crit Care* 2021; 25:333
- 15. Morales-Quinteros L, Neto AS, Artigas A, et al.: Dead space estimates may not be independently associated with 28-day mortality in COVID-19 ARDS. *Crit Care* 2021; 25:171
- 16. Fusina F, Albani F, Bertelli M, et al.: Corrected Minute Ventilation Is Associated With Mortality in ARDS Caused by COVID-19. *Respir Care* 2021; 66:619–625

- 17. Putra MK, Utariani A, Semedi BP, et al.: Penggunaan Ventilatory Ratio dan Alveolar Dead Space Fraction sebagai Prediktor Mortalitas pada Pasien COVID-19 dengan Acute Respiratory Distress Syndrome. *Jurnal Anestesi Perioperatif* 2021; 9:10–17
- 18. Graf J, Pérez R, López R: Increased respiratory dead space could associate with coagulation activation and poor outcomes in COVID-19 ARDS. *J Crit Care* 2022; 71:154095
- 19. Maj R, Palermo P, Gattarello S, et al.: Ventilatory ratio, dead space, and venous admixture in acute respiratory distress syndrome. *Br J Anaesth* 2022; S0007-0912(22)00624–9
- Sinha P, Sanders RD, Soni N, et al.: Acute respiratory distress syndrome: the prognostic value of ventilatory ratio--a simple bedside tool to monitor ventilatory efficiency. *Am J Respir Crit Care Med* 2013; 187:1150–1153
- 21. Sinha P, Singh S, Hardman JG, et al.: Evaluation of the physiological properties of ventilatory ratio in a computational cardiopulmonary model and its clinical application in an acute respiratory distress syndrome population. *Br J Anaesth* 2014; 112:96–101
- Sinha P, Calfee CS, Beitler JR, et al.: Physiologic Analysis and Clinical Performance of the Ventilatory Ratio in Acute Respiratory Distress Syndrome. Am J Respir Crit Care Med 2019; 199:333–341
- 23. Beloncle F, Studer A, Seegers V, et al.: Longitudinal changes in compliance, oxygenation and ventilatory ratio in COVID-19 versus non-COVID-19 pulmonary acute respiratory distress syndrome. *Crit Care* 2021; 25:248
- 24. Ruan S-Y, Huang C-T, Chien Y-C, et al.: Etiology-associated heterogeneity in acute respiratory distress syndrome: a retrospective cohort study. *BMC Pulm Med* 2021; 21:183
- 25. Torres A, Motos A, Riera J, et al.: The evolution of the ventilatory ratio is a prognostic factor in mechanically ventilated COVID-19 ARDS patients. *Crit Care* 2021; 25:331
- Kallet RH, Lipnick MS: End-Tidal-to-Arterial PCO2 Ratio as Signifier for Physiologic Dead-Space Ratio and Oxygenation Dysfunction in Acute Respiratory Distress Syndrome. *Respir Care* 2021; 66:263–268
- 27. Sedhai YR, Yuan M, Ketcham SW, et al.: Validating Measures of Disease Severity in Acute Respiratory Distress Syndrome. *Ann Am Thorac Soc* 2021; 18:1211–1218
- 28. Monteiro ACC, Vangala S, Wick KD, et al.: The prognostic value of early measures of the ventilatory ratio in the ARDS ROSE trial. *Crit Care* 2022; 26:297
- 29. Siegel ER, Zhuo H, Sinha P, et al.: Ventilatory Ratio Is a Valuable Prognostic Indicator in an Observational Cohort of Patients With ARDS. *Respir Care* 2022; 67:1075–1081