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eTable 1: Brief description of each approach for heterogeneity of treatment effect (HTE) discovery, including examples of 
methods used for each approach, as well as a selection of published applications of each method in the medical domain. 
Note: this is not an exhaustive list of available methods or their applications. 

Approaches for 
HTE discovery  

Description Example method (method’s publication) 
representative applications of method in medicine 

Expert-derived 
subgrouping 

1. Consult expert to define subgroups. 
2. Compare treatment effect estimates 

between subsets of individuals with and 
without a particular characteristic. 

Likelihood ratio test (1) e.g., (2), (3) 

Supervised 
data-driven 
subgrouping 

1. Use statistical method to find subgroups 
of individuals that differentially respond 
to a treatment.  

2. Compare treatment effect between 
subgroups. 

Virtual Twins (4) (5), (6), (7), (8) 
Model based recursive partitioning (9) (10), (11), (12), 

(13), (14) 
PRIM (15) (16), (17), (18), (19) 
SIDES (20) (21), (22), (23), (24) 
Berger, 2014 (25) 7/1/24 11:33:00 AM 

Unsupervised 
data-driven 
subgrouping 

1. Use statistical method to find subgroups 
of individuals with different baseline 
characteristics.  

2. Compare treatment effect between 
subgroups.  

K-means (26) (27), (28), (29), (30) 
LCA (31) (27), (32), (33), (34), (35)  

Risk-based 
modeling 

1. Obtain off-the-shelf risk model or train 
risk model in training set of data. 

2. Compare treatment effect in subgroups 
defined by quantiles of predicted risk. 

Off-the-shelf risk model:  
APACHE (37) or SOFA (38) (39)  
 
Internally derived risk model: 
Logistic regression or Bayesian logistic 
regression (40), (41), (42), (43) 

Treatment 
effect modeling 

1. Train model to predict individualized 
treatment effect (ITE) based on baseline 
characteristics, treatment and outcome. 

2. In held-out testing set, predict ITE 
based only on an individual’s baseline 
characteristics. 

Meta-learners: 
S-learner (44) (45) 
T-learner (44) (46), (45) 
X-learner (44) 
R-learner (47) (48) 
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Models that directly estimate individualized 
treatment effect: 
Causal Forest (49) (50), (41), (51), (52), (53), (54) 
BART (55) 
 

Individualized 
Treatment Rule 
modeling 

1. Train model to predict the optimal 
treatment for an individual given their 
baseline characteristics, treatment and 
outcome. 

2. In held-out testing set, predict optimal 
treatment based only on an individual’s 
baseline characteristics. 

Direct methods: 
Qian, 2011 (56) 
Zhang, 2012 (57) (58) 
 
Indirect methods:  
Q-learning (59) (60), (61) 
Dynamical System Models (62)  
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