
Supporting Information - Longitudinal Analysis of the Risk of Smoking-
Induced Lung Cancer: A Compartmental Hidden Markov Model

The C++ code developed for this study (QOMiC) and its documentation are freely available at the following
address

http://imperial.ac.uk/people/m.chadeau/

1 Exposure Assessment
In this section we describe how exposure is derived from both questionnaire data and the single cotinine
concentration measurement available for each participant at time of enrollment. We define one cumulative
(over lifetime) exposure function expressed in terms of yearly averaged smoking intensity (in number of
cigarettes smoked per day). These estimates are subsequently plugged into the model and considered as
fixed.

1.1 Reconstructing individual yearly smoking history
Data from the lung cancer case-control study nested within EPIC consists in 757 cases and 1524 controls
matched on age and gender who were enrolled before clinical onset. Specifics of the studied population
are summarized in Table S1. For each participant, questionnaire-based data describing individual smoking
history is available. Specifically:

• the smoking status (never, former, or current smoker)

• the age at starting smoking, for ever smokers

• the age at quitting smoking, for former smokers

• the detailed description of active smoking episodes (for non-continuous smokers), including the age at
starting and stopping smoking for each smoking period.

• the smoking intensity (average daily smoking intensity) at enrollment

• the smoking intensity per decade of age (for ever smokers).

Assuming that individual smoking habits have remained unchanged since the last available follow-up, we
derived from these data the detailed yearly smoking history: we first identified the calendar years of active
smoking (if any), as well as the corresponding average smoking intensity. To account for both misreporting
and yearly variation in smoking habits within a given decade of age, we arbitrarily introduced a year-by-year
variability in the smoking intensity. Denoting ri(t) the reported smoking intensity for individual i at calendar
year t, we sampled the actual smoking intensity si(t) from a Gaussian distribution centered on ri(t), and
with a variance defined such that the width of the (Gaussian) 95th confidence interval is 2 cigarettes/day if
ri(t) ≤ 10, 5 cigarettes/day if 10 < ri(t) ≤ 35, and 10 cigarettes/day if ri(t) > 35.
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1.2 Estimating the smoking intensity vs. cotinine concentration relationship
One snapshot measurement of cotinine concentration in blood is also available for each participant. The
blood sample from which the cotinine titre has been measured was prospectively collected. In Fig. S1-a, we
plot the cotinine concentration as a function of the reported smoking intensity in those who smoked at time
of blood collection (N=736). This plot clearly shows a levelling-off of the intensity-to-cotinine relationship,
that could be due to a saturation of blood cotinine and/or to under-reporting in heavy smokers. To model
these data, we fitted the following linear model linking the mean cotinine levels per class of number of
cigarettes smoked and the logarithm of the reported smoking intensity r:

α+ β log(r) if r ≥ 1 cig/day (1)

The model was fitted on observations from current smokers only. Resulting estimates α̂=72.71 and
β̂=431.97 provided a good fit to the data, with R2 > 85%.

1.3 Deriving the individual exposure function
The exposure function is obtained from the set of values si(t), which represent, for each individual at each
calendar year, the yearly averaged smoking intensity. We accounted for a ‘background exposure’ reflecting,
for instance, passive smoking and sampled, for every individuals at every calendar year, the background
cotinine exposure (bicot(t)) from the empirical distribution of the cotinine level in non-smokers at time of
blood collection (Fig. S1-b). This background cotinine exposure was then translated into a fractional
number of cigarettes smoked per day, assuming a linear relationship between cotinine and smoking intensity
in non-smokers (r < 1 cig/day).

The cumulative cigarette exposure for individual i at time t is then defined as:

Ei(t) =

t∑
u=ti0

(
si(u) + bicot(u)/α̂

)
, (2)

where tio is the year of birth of individual i.
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Figure S1: Fig. S1-a: Blood cotinine concentration (nmol/L) vs. reported smoking intensity
(#cigarettes/day) for smokers at time of inclusion (N=736). The fitted curve is based on the mean co-
tinine concentration per smoking intensity classes. Fig. S1-b: Density estimation of the blood cotinine
concentration in non-smokers at the time of blood collection (i.e. never or former smokers; N=1545).
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2 Model Description – Likelihood Calculation
2.1 Transition Probabilities
In our model we consider four states:

• S: healthy individuals;

• I: ‘incubating’ individual (with a growing and undiagnosed tumor);

• R: clinical individuals (whose tumor has been diagnosed);

• M : deceased individuals (from a cause other than lung cancer).

In this analysis we focus on the time to first diagnosis, and hence consider R as an absorbing state. We do
not include death from lung cancer in the state space, which would require the inclusion of a remission state
and to allow for backward transitions from remission to S. This would also necessitate the modeling of both
treatment effect and survival, which is theoretically feasible, but would require information on the type of
treatment and on the efficiency of different treatments.

In our simpler setting, no backward transitions are considered, and the only non-zero transition proba-
bilities are listed and defined below.

The transition from S to M represents death from another cause for an individual with no lung tumor.
This probability is fixed in the model and has been derived from publicly available actuarial data giving
the instant mortality in the general insured population by age, gender and smoking status (VBT tables).
Assuming that the US insured population is comparable to the European population included in EPIC, we
computed for each individual i at each year t, the mortality rate mi(t) conditional on survival until t − 1.
We make the assumption that having entered carcinogenesis without being diagnosed does not impact the
other-cause mortality and set the I to M transition probability to mi(t) for individual i at time t. This
simplifying assumption can be justified by the fact that one undiagnosed lung cancer case (in I) would
typically contribute to the estimation of the mortality rate in the original table.

The S-I transition happens with the last irreversible event causing the metabolism of one cell to be
modified, leading to a malignant cell and ultimately to a tumor. For individual i at time t, this probability
is defined as:

piS−I(t) =
exp

(
µ+ λ1a

i(t) + Si(t)λ2a
i
0 + λ3t

i
q(t)
)
Ei(t)

1 + exp
(
µ+ λ1ai(t) + Si(t)λ2ai0 + λ3tiq(t)

)
Ei(t)

(1−mi(t)), (3)

where µ is a parameter measuring the intercept of the model on the logistic scale, ai(t) is the age of individual
i at time t, ai0 is the age at which individual i started smoking, Si(t) indicates the (binary) smoking status
of individual i at time t, tiq(t) is the time since smoking cessation for individual i at time t, and mi(t) is the
other cause mortality for individual i at time t. We opted for this simple model because (i) it yields a null
probability for non-exposed individuals; (ii) it is an increasing function of exposure; and (iii) it tends to 1
for an infinite exposure. This function is flexible enough to fit linear or curved dose-response relationships.
The probability to enter lung carcinogenesis is upper bounded by (1−mi(t)), in order to ensure stochasticity
of the transition matrix.

The time spent in state I defines the time to diagnosis. To relax the model from the Markovian property
according to which the time spent in a given state is exponentially distributed, and enable a flexible modelling
of the time to diagnosis, we decompose state I into K sub-stages. Individuals must pass through each
Ik, k = 1, . . . ,K to reach R. The number of sub-states (K) is fixed and these sub-states have no biological
interpretation. We allow any Ia− Ib, transition (b ≥ a) within a one year interval by considering continuous
time in the sub-chain and define the transition rate γ, which is constant over time and the same for any
single jump transitions. Integrating over a one-year period, the yearly transition probability for individual i
at time t is:

piIa−Ib(t) = P(b− a, γ)(1−mi(t)),K ≥ b > a (4)
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where

P(b− a, γ) =

∫ 1

u=0

1

Γ(b− a)γ(b−a)
u(b−a−1)e−u/γdu

is the cumulative (between 0 and 1) density function for the Gamma distribution with parameters b− a and
γ. Similarly, the probability to reach R is:

piIa−R = P(K + 1− a, γ)(1−mi(t)), a ≤ K. (5)

The non-transition probabilities Ia-Ia, and S-S are defined as:

piIa−Ia(t) = 1−
∑
b 6=a

piIa−Ib(t)(1−mi(t)), (6)

and
piS−S(t) = 1− (piS−I(t) +mi(t)), (7)

respectively.

2.2 Likelihood of the Hidden Markov Model
In our setting, states S and I are hidden, and only their union SI = S∪I can be observed. The contribution
to the likelihood of individual i at time t can therefore be expressed as:

Li(t) ∝
{[

1− piSI−R(t)−mi(t)
]ni

SI−SI(t) piSI−R(t)n
i
SI−R(t)

}
, (8)

where niSI−SI(t) and niSI−R(t) are two binary indicators such that niSI−SI(t)=1 if individual i remains
symptom-free at time t, and niSI−R(t)=1 if individual i is diagnosed with lung cancer at time t. The only
probability left in the kernel of the likelihood is piSI−R(t), which is to be expressed as a function of the
modelled probabilities piS−I(t) and piI−R(t).

Denoting Hi
k(t) the probability that individual i is in state Ik at time t, it comes:

piSI−R(t) =

K∑
k=1

Hi
k(t− 1)piIk−R(t), (9)

where piIk−R(t) is the probability that individual i makes the transition from Ik to R within the one-year
interval t (Eq. [5]), and the function Hk is defined as follows.

2.3 Overview of the recursive calculation of the likelihood
Generalising the above notation and setting Hi

S(t) as the probability that individual i is in state S at time
t, Hi

k(t+ 1) can be written as a weighted sum of transition probabilities from S to Ik, and from Iu to Ik:

Hi
k(t+ 1) = Hi

S(t)piS−Ik(t) +

k∑
u=1

Hi
u(t)piIu−Ik(t). (10)

The calculation of Hi
S(t) is straightforward; an immediate recursion gives:

Hi
S(t) =

t−1∏
u=ti0

pis−s(u), t > ti0, (11)

where ti0 is the year at which individual i has been recruited. As a simplifying assumption, we consider that
individuals are in S at their year of enrollment: Hi

S(ti0) = 1. Furthermore, we assume that once they move
to I they enter the sub-chain in I1: piS−Ik(t) = 0, and piS−I1(t) = piS−I(t). Based on Eq. [10], we calculate

Hi
k(t) using a recursive procedure (over t and k) which is detailed below for a generic individual i:
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1. Set Hi
S(ti0) = 1, Hi

k(ti0)=0, and t=ti0 + 1

2. Calculate Hi
S(t+ j), j > 1 from Eq. [11]

3. Set k = 1, and apply Hi
1(t+ 1) = piS−I(t

i)

4. Increment t and apply Eq. [10];

Hi
1(t+ 1) = Hi

1(t) +Hi
S(t)piS−I(t).

Loop over t until t=tif , the last year of follow-up for individual i.

5. Set k = 2, t = ti0 + 1, and Hi
k(ti0 + 1) = 0

6. Increment t and apply Eq. [10]:
k∑
u=1

Hi
u(t)piIu−Ik(t)

Loop over t until t=tif , the last year of follow-up for individual i.

7. Increment k and repeat steps 5-6 until k = K

8. Derive piSI−R(t) from the result of step 7 using Eq. [9].

9. Calculate the set of contributions to the likelihood for each individual i, Li(t) using Eq. [8]

10. Repeat steps 1-9 for each included individual

11. Calculate the full likelihood:
L =

∏
i,t

Li(t)

3 Parametrisation of the MCMC Algorithm
We developed an MCMC algorithm based on the likelihood for the Hidden Markov model. A Metropolis-
Hastings algorithm is used because it does not require the specification of the full conditional distribution
of parameters. At each iteration, parameters are updated in the same order: µ, λ1, λ2, λ3, and finally γ.

Candidate points for θ = (µ, λ1, λ2, λ3), denoted Θ, are sampled from a random walk proposal. At
iteration i

Θ(i) ↪→ N (θ(i−1), σ2
θ)

where σθ is fixed and θ(i−1) is the previous draw from the chain.
To ensure that candidates for γ denoted Γ, are positive, we use a random walk for log(γ):

log
(

Γ(i)
)
↪→ N (log(γ(i−1)), σ2

γ),

where σγ is fixed, and γ(i−1) is the retained value at iteration i− 1.
We assume uniform prior distributions for θ and γ. Combined with the symmetry of the normal proposal

distributions, candidate points Θ(i) are accepted with probability defined as the ratio of likelihood computed
using the new candidate over the likelihood at the previous step of the algorithm. Candidates for Γ(i) are
accepted with probability

rγ = min

(
1,

L(Θ(i),Γ(i))

L(Θ(i), γ(i−1))

Γ(i)

γ(i−1)

)
.

To ensure that candidates are also sampled from the tail of the posterior distribution, σθ and σγ are set
such that the acceptance rates of all parameters lie around 30%.
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4 Sensitivity analyses
4.1 A more flexible model for pS−I
We considered a more flexible model for the probability to enter carcinogenesis:

piS−I(t) =
exp

(
µ+ λ0 log(Ei(t)) + λ1a

i(t) + Si(t)λ2a
i
0 + λ3t

i
q(t)
)

1 + exp
(
µ+ λ0 log(Ei(t)) + λ1ai(t) + Si(t)λ2ai0 + λ3tiq(t)

) (1−mi(t)), (12)

where λ0 is an additional parameter modelling the effect of exposure. This model shares the same parametriza-
tion as the one described in Eq[3]. More specifically, constraining λ0=1 in Eq. (12) corresponds exactly to
the model described in Eq. (3). Estimation of the additional parameter λ0 is done via the MCMC procedure
already described. The proposal distribution is a random walk and the prior distribution is set to an Uniform
distribution with support [-100;100].

4.2 Modelling age-dependent sojourn time in I

For simplicity, γ, the transition rate driving any of the Ii-Ij and IK-R transitions was considered independent
of age. In order to assess how sensitive our results are to this assumption, we generalised our model such
that the actual transition rate depends on age, assuming a linear relationship on the log scale. This enables
to consider an age-dependent sojourn time in the hidden state I, in turn corresponding to the tumor growth
process being different at different ages, and/or an age-dependent efficiency in screening and detection.
Specifically we defined

log(γ(ai(t))) = log(γ0) + θai(t),

where ai(t) is the age of individual i at time t, γi(ai(t)) is the actual transition rate used to calculate transition
probabilities piIi−Ij (t), piIi−R, piIi−Ij (t), (i, j ∈ [1,K]; j ≤ i) (see Eqs (4), (5), (6)). The background rate
γ0 corresponds to γ in the original model, and θ is an additional parameter to be estimated which defines
the strength of the relationship. Estimation of θ is done by adding one step to the Metropolis-Hastings
procedure, and as for the other real parameters, its sampling scheme involves a random walk in which the
variance of the proposal is tuned to ensure an acceptance rate lying between 20 and 30%. If θ is set to
0, γ(ai(t)) = γ0, which corresponds to the age-independent time to diagnosis assumption embedded in the
reference model.

Results (Table S3 and Fig S6) suggest that, irrespective of the exposure model considered, incorporating
an age-dependent time to diagnosis only slightly improves the quality of fit. Consistently, simulations
based on the joint posterior distribution of the parameters did not show any improvement in the predictive
performances of the model. While this generalisation yields additional modelling flexibility, it requires
constant updating of the transition matrix between sub-states of I introducing a substantial computational
burden: in practice the algorithm was slowed one order of magnitude down.

Altogether this suggest that incorporating this refinement in our model will only results in a slight
improvement of the quality of fit at the cost of considerable computational effort.

4.3 Assessing the impact of age matching on the estimates of λ1
Case-control data retained in our analyses comprise (N=738) lung cancer cases and (N=1524) controls which
where matched on age at recruitment. This matching mainly results in controls having an age at recruitment
distribution different than the one from the full EPIC population (SI Fig S7). To measure the effect of that
right-shifted age distribution in controls, we re-sampled (N=738) controls from our study population under
two scenarios: (i)- imposing the same age matching as in the original data set, and (ii)- ensuring that the
age distribution of controls was similar to that of the entire EPIC population. Twenty re-samples were
independently drawn for both scenarios, and in each sampled population, we ran the model, setting K=2,
for 50,000 iterations (and 20,000 iterations burn-in). The contribution of λ1 (measuring the effect of age) to
the model fit was assessed by comparing the BIC scores of (i)- the full model, and (ii)- the model in which
λ1 is set to 0.
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Results are summarized in Table S4, and show, as expected, that estimates of the effect of age based on
unmatched cases and controls are systematically stronger than those based on matched samples. However,
in both scenarios, including λ1 in the model only marginally improved the fit of the model (with differences
in BIC scores lower than 10).

This suggests that while estimates of the effect of attained age based on the full population is likely to
be underestimated due to age matching, our data do not support an effect of age on the probability to enter
lung carcinogenesis, irrespective of age matching.

8



5 Additional results

Figure S2: Marginal posterior distributions of all parameters (µ∗, λ1
‡, λ2

§,λ3
∗∗, and γ††). Results are

presented for K=2.
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∗µ: Intercept; ‡λ1: Effect of age ai(t); §λ2: Effect of age at starting smoking ai0;
∗∗λ3: Effect of time since smoking cessation tiq(t); ††γ: Continuous time Ia-Ib transition rate.
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Figure S3: Density estimation of the probability to simulate an S to I transition (pcase) in actual cases and
controls by smoking status. Estimates are based on 10,000 simulated individual trajectories and results are
presented for K=2.
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Figure S4: Density estimation of the time to diagnosis. Results for K=2, 5, 10, and 15 are based on 10,000
simulations of individual trajectories derived from the joint posterior distribution of µ, λ1, λ2, λ3, and γ.
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Figure S5: Density estimation of the probability of simulating an S to I transition (pcase) in actual cases
and controls. Estimates are based on 10,000 simulated individual trajectories and results are presented for
K=2, 5, 10 and 15.
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Figure S6: Sensitivity analyses: density estimation of the probability of simulating an S to I transition
(pcase) in actual cases and controls for the generalised model including an effect of exposure (through λ0)
and an age-dependent sojourn time in I (through θ). Results are based on 50,000 iterations (with 20,000
iterations burn-in), setting K=2.
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(1) Full model accounting for age-dependent Ia-Ib transition rates (through θ) and models the effect of exposure (through λ0)
(2) θ=0 corresponds to a model including the effect of exposure (Eq. (12)) and assuming age-independent Ia-Ib transitions
(3) λ0=1 corresponds to a model including age-dependent Ia-Ib transitions and assuming a fixed effect of exposure (Eq. (3))
(4) λ0=1 and θ=0 correspond to the baseline model: age-independent Ia-Ib and fixed effect of exposure (Eq. (3))
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Figure S7: Density estimation of the age at inclusion. Results are presented for the cases and controls
included in the study and for the full EPIC cohort (N=521,330).
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Table S1: Summary features of the study population: case-control data nested in the European Prospective
Investigation into Cancer and Nutrition (EPIC) study .

Smoking Status Sample Size Blood cotinine level (nmol/L)
at enrollment Mean Minimum Maximum

Controls Never smoker 688 3.7 0.0 73.6
Former smoker 547 4.2 0.0 85.5

Current smoker 289 1073.7 5.2 2774.8
Total 1524 - - -

Cases Never smoker 92 2.2 0.0 17.2
Former smoker 218 4.4 0.0 69.9

Current smoker 447 1474.3 212.3 3072.5
Total 757 - - -

Table S2: Sensitivity of parameter estimates to the prior specification. Results are presented for K=2 and
based on 50,000 iterations (with 20,000 iterations burn-in).

Prior Parameter Estimates: posterior mean (95% Credible Intervals)

Distribution µ(1) λ1
(2) λ2

(3) λ3
(4) γ(5)

U[−100;100]
(6) 1.52 (0.44;2.86) 0.03 (0.01;0.05) -0.08(-0.10;-0.06) -0.06 (-0.08;-0.05) 2.45 (2.13;2.81)

N (0, 1000)(7) 1.51 (0.33; 2.73) 0.03 (0.01; 0.05) -0.08 (-0.10; -0.06) -0.06 (-0.08; -0.05) 2.45 (2.12; 2.81)

N (0, 100)(7) 1.60 (0.45; 2.74) 0.03 (0.01; 0.05) -0.08 (-0.10; -0.06) -0.06 (-0.08; -0.05) 2.46 (2.11; 2.82)

N (0, 10)(7) 1.51 (0.33; 2.73) 0.03 (0.01; 0.05) -0.08 (-0.10; -0.06) -0.06 (-0.08; -0.05) 2.45 (2.12; 2.81)
(1)µ : Intercept
(2)λ1 : Effect of age ai(t)
(3)λ2 : Effect of age at starting smoking ai0
(4)λ3 : Effect of time since smoking cessation tiq(t)
(5)γ : continuous time Ii-Ij transition rate
(6)U[−100;100] : uniform distribution with support [-100;100]
(7)N (0, σ2): zero-centered Gaussian distribution with variance σ2
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Table S4: Posterior mean (05% credible interval) of λ1, measuring the effect of age for 2 sub-samples each
containing all cases diagnosed more than one year after enrolement (N=738) and (N=738) controls. Controls
were resampled with and without age matching. Results are presented forK=2 and based on 50,000 iterations
(with 20,000 iterations burn-in).

With age matching Without age matching

Sample λ
(1)
1 ∆(BIC)(2) λ

(1)
1 ∆(BIC)(2)

1 0.009 (-0.03;0.04) 7.54 0.030 (-0.01;0.07) 5.26
2 0.009 (-0.03;0.05) 7.04 0.027 (-0.01;0.06) 5.68
3 0.003 (-0.04;0.04) 7.72 0.024 (-0.01;0.05) 4.50
4 0.004 (-0.03;0.04) 7.72 0.010 (-0.02;0.05) 7.46
5 0.016 (-0.02;0.05) 7.34 0.027 (0.00;0.06) 5.60
6 0.003 (-0.03;0.04) 7.74 0.033 (0.00;0.07) 3.26
7 0.002 (-0.03;0.04) 7.62 0.035 (0.01;0.06) 3.54
8 0.003 (-0.03;0.03) 7.66 0.024 (-0.01;0.06) 5.36
9 -0.001 (-0.04;0.04) 7.74 0.032 (0.00;0.06) 3.34

10 0.004 (-0.03;0.04) 7.58 0.030 (-0.01;0.06) 4.70
11 0.005 (-0.03;0.04) 7.50 0.035 (0.01;0.07) 3.14
12 0.007 (-0.03;0.04) 7.40 0.024 (-0.01;0.06) 5.38
13 0.008 (-0.03;0.04) 6.72 0.048 (0.02;0.08) 0.24
14 -0.001 (-0.04;0.04) 7.76 0.034 (0.00;0.06) 3.28
15 0.002 (-0.04;0.04) 7.70 0.033 (0.00;0.07) 4.42
16 0.008 (-0.03;0.04) 7.58 0.040 (0.01;0.07) 1.56
17 0.003 (-0.03;0.04) 7.68 0.031 (0.00;0.06) 5.00
18 0.014 (-0.02;0.04) 7.12 0.043 (0.01;0.08) 0.62
19 -0.002 (-0.03;0.03) 7.76 0.026 (-0.01;0.06) 5.32
20 0.004 (-0.03;0.04) 7.76 0.021 (-0.02;0.06) 6.82

(1)λ1: Effect of age ai(t)
(2)∆(BIC): Difference in the Bayesian Information Criterion (BIC) scores for

the model in which λ1 is estimated and the one where λ1=0
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