We give results for both conditional natural direct and indirect effects, given covariates C, and for marginal natural direct and indirect effects.

Approach 1. If (i) $Y_{alm} \perp A|C$, (ii) $Y_{alm} \perp (L, M)|\{A, C\}$, (iii) $(L_a, M_a) \perp A|C$, (iv) $Y_{alm} \perp (L_{a*}, M_{a*})|C$, then we have the following:

$$E[Y_{aL_{a*}M_{a*}}|c] = \sum_{l,m} E[Y_{alm}|c, L_{a*} = l, M_{a*} = m] P(L_{a*} = l, M_{a*} = m|c)$$

$$= \sum_{l,m} E[Y_{alm}|c] P(L_{a*} = l, M_{a*} = m|c) \text{ by (iv)}$$

$$= \sum_{l,m} E[Y_{alm}|c, a] P(L_{a*} = l, M_{a*} = m|c, a^*) \text{ by (i) and (iii)}$$

$$= \sum_{l,m} E[Y_{alm}|c, a, l, m] P(L_{a*} = l, M_{a*} = m|c, a^*) \text{ by (i)}$$

$$= \sum_{l,m} E[Y|c, a, l, m] P(l, m|c, a^*)$$

and thus

$$E[Y_{aL_{a*}M_{a*}}] = \sum_{c,l,m} E[Y|c, a, l, m] P(l, m|c, a^*) P(c).$$

Upon subtracting these expressions corresponding to specific choices of a and a^*, one finds expressions for $E[Y_{aL_{a*}M_{a*}} - Y_{a^*L_{a*}M_{a*}}|c]$ and $E[Y_{aL_{a}M_{a}} - Y_{aL_{a*}M_{a*}}|c]$, and for $E[Y_{aL_{a*}M_{a*}} - Y_{a^*L_{a*}M_{a*}}]$ and $E[Y_{aL_{a}M_{a}} - Y_{aL_{a*}M_{a*}}]$.

A weighting-based estimator for the conditional natural direct and indirect effect can be obtained upon duplicating the dataset and adding an exposure variable A^* which is 0 for the first replication and 1 for the second. For each individual, a weight is obtained by taking the product of the predicted probabilities (of the observed confounder and mediator values) from the two logistic regressions had the exposure been A^*, divided by the product of the corresponding predicted probabilities from the two logistic regressions had the exposure been as observed:

$$\frac{P(l|a^*, c) P(m|l, a^*, c)}{P(l|a, c) P(m|l, a, c)}.$$

If a model for the outcome is fitted conditional on the two exposures A and A^* and covariates
on the duplicated data set using weighted regression, the direct and indirect effects of interest are obtained as the coefficients of A and A^*, respectively.

The validity of this proposed weighting estimator can be understood upon noting that it is obtained under a marginal structural model for the composite counterfactual Y_{aL_a,M_a^*}, e.g.:

$$E[Y_{aL_a,M_a^*}|c] = \beta_0 + \beta_1 a + \beta_2 a^* + \beta_3 c,$$

where $\beta_1(a-a^*) = E[Y_{aL_a,M_a^*} - Y_{a^*L_a,M_a^*}|c]$ and $\beta_2(a-a^*) = E[Y_{aL_a,M_a} - Y_{aL_a^*M_a}|c]$. Upon letting a^* take all possible values over the support of A and noting that the expression for $E[Y_{aL_a,M_a^*}|c]$ can be equivalently rewritten as

$$\sum_{y,l,m} yP(y,l,m|c,a)P(l,m|c,a) = E\left(Y \frac{P(L,M|c,a^*)}{P(L,M|c,a)} | c, a\right),$$

the proposed weighting estimator is obtained. For marginal natural direct and indirect effects, we use that $E[Y_{aL_a,M_a^*}|c]$ can be equivalently rewritten as

$$\sum_{y,c,l,m} yP(y,l,m|c,a)P(c)P(l,m|c,a) = E\left(Y I(A = a) \frac{P(L,M|c,a^*)}{P(a|c)P(L,M|c,a)} \right),$$

following which the proposed estimators are obtained.

Approach 2. Let M_{al} denote the value of M that would be observed if A were set to a and L to l. Formally, the conditional effects $E_{A\rightarrow Y}(c)$, $E_{A\rightarrow M\rightarrow Y}(c)$, $E_{A\rightarrow LY}(c)$ are defined as follows: $E_{A\rightarrow Y}(c) = E[Y_{aL_a,M_a^*} - Y_{a^*L_a,M_a^*}|c]$, $E_{A\rightarrow M\rightarrow Y}(c) = E[Y_{aL_a,M_{al}} - Y_{aL_a^*M_a}|c]$ and $E_{A\rightarrow LY}(c) = E[Y_{aL_a,M_a} - Y_{aL_a,M_{al}}|c]$. We then have the following effect decomposition:

$$Y_a - Y_{a^*} = Y_{aL_a,M_a} - Y_{a^*L_a,M_a},$$

$$= (Y_{aL_a,M_a} - Y_{aL_a,M_{al}}) + (Y_{aL_a,M_{al}} - Y_{aL_a^*M_a}) + (Y_{aL_a^*M_a} - Y_{a^*L_a^*M_a})$$

and thus $E[Y_a - Y_{a^*}|c] = E_{A\rightarrow LY}(c) + E_{A\rightarrow M\rightarrow Y}(c) + E_{A\rightarrow Y}(c)$.

22
Suppose that the assumptions (i†)-(iv†) in approach 1 hold that (i†) $Y_{atm} \perp A|C$; (ii†) $Y_{atm} \perp (L, M)|\{A, C\}$, (iii†) $(L_a, M_a) \perp A|C$, (iv†) $Y_{atm} \perp (L_{a*}, M_{a*})|C$, along with three further assumptions that (v†) $Y_{atm} \perp (L_{a*}, M_{al})|C$ (vi†) $M_{al} \perp L_{a*}|C$, (vii†) $M_{al} \perp \perp (A, L)|C$. Note all seven of these assumptions would hold if Figure 2 is a causal diagram.3,6

We have already shown that under (i†)-(iv†) we have $E[Y_{aL_{a*}M_{a*}}|c] = \sum_{l,m} E[Y|c, a, l, m]P(l, m|c, a^*)$. Under (i†)-(vii†), we have

$$E[Y_{aL_{a*}M_{a*}}|c] = \sum_{l,m} E[Y_{alM_{al}}|c, L_{a*} = l]P(L_{a*} = l|c)$$
$$= \sum_{l,m} E[Y_{al}|c, L_{a*} = l, M_{al} = m]P(M_{al} = m|c, L_{a*} = l)P(L_{a*} = l|c)$$
$$= \sum_{l,m} E[Y_{al}|c]P(M_{al} = m|c)P(L_{a*} = l|c) \text{ by (v†) and (vi†)}$$
$$= \sum_{l,m} E[Y_{al}|c, a]P(M_{al} = m|c, a, l)P(L_{a*} = l|c, a^*) \text{ by (i†) and (iii†) and (vii†)}$$
$$= \sum_{l,m} E[Y_{al}|c, a, l, m]P(M_{al} = m|c, a, l)P(L_{a*} = l|c, a^*) \text{ by (ii†)}$$
$$= \sum_{l,m} E[Y|c, a, l, m]P(m|c, a, l)P(l|c, a^*).$$

Since $E[Y_{aL_{a}M_{a}}|c] = \sum_{l,m} E[Y|c, a, l, m]P(l, m|c, a)$ and $E[Y_{a*L_{a*}M_{a*}}|c] = \sum_{l,m} E[Y|c, a^*, l, m]P(l, m|c, a^*)$, we thus have that

$$E_{A \rightarrow Y}(c) = \sum_{l,m} \{E[Y|a, l, m, c] - E[Y|a^*, l, m, c]\}P(l, m|a^*, c)$$
$$E_{A \rightarrow M \rightarrow Y}(c) = \sum_{l,m} E[Y|c, a, l, m]\{P(m|c, a, l) - P(m|c, a^*, l)\}P(l|c, a^*)$$
$$E_{A \rightarrow L \rightarrow Y}(c) = \sum_{l,m} E[Y|c, a, l, m]\{P(l|c, a) - P(l|c, a^*)\}.$$

Marginal effects are similarly obtained, but require additional averaging over the distribution $P(c)$ of C.

Under approach 2, a weighting-based estimator for the conditional effects $E_{A \rightarrow L \rightarrow Y}(c)$, $E_{A \rightarrow M \rightarrow Y}(c)$ and $E_{A \rightarrow Y}(c)$ can be obtained upon merging three copies of the dataset and adding exposure variables A^* and A^{**}, where A^* equals the observed exposure for the first replication and $1 - A$ for the next two replications, and where A^{**} equals the observed exposure for the first
two replications and 1 – A for the third replication. For each individual, a weight is now obtained by taking the product of the predicted probability (of the observed confounder value) from the first logistic regression had the exposure been A* and the predicted probability (of the observed mediator value) from the second logistic regression had the exposure been A**, divided by the product of the corresponding predicted probabilities from the two logistic regressions had the exposure been as observed:

\[\frac{P(l|a^*, c)P(m|l, a^{**}, c)}{P(l|a, c)P(m|l, a, c)}. \]

If a model for the outcome is now fitted conditional on the three exposures A, A* and A** and covariates on the obtained data set using weighted regression, the effects E_{A \rightarrow Y}, E_{A \rightarrow LY} and E_{A \rightarrow M \rightarrow Y} of interest are obtained as the coefficients of A, A* and A**, respectively. The validity of this strategy can be understood by making reference to a marginal structural model for the composite counterfactual Y_{aL_0^*M_{a^{**}}L_{a^*}}, e.g.:

\[E[Y_{aL_0^*M_{a^{**}}L_{a^*}}|c] = \beta_0 + \beta_1 a + \beta_2 a^* + \beta_3 a^{**} + \beta_4 c, \]

from which it is easily verified that \(\beta_1(a - a^*) = E_{A \rightarrow Y}(c), \beta_2(a - a^*) = E_{A \rightarrow LY}(c) \) and \(\beta_3(a - a^*) = E_{A \rightarrow M \rightarrow Y}(c). \) Upon letting \(a^* \) and \(a^{**} \) take all possible values over the support of \(A \) and noting that by a similar reasoning as before:

\[E[Y_{aL_0^*M_{a^{**}}L_{a^*}}|c] = \sum_{y,l,m} yP(y|c, a, l, m)P(m|c, a^{**}, l)P(l|c, a^*) \]

\[= E \left(Y \frac{P(M|c, a^{**}, l)P(L|c, a^*)}{P(M|c, a, l)P(L|c, a)} | a, c \right), \]

the proposed weighting estimator is obtained. Marginal effects are similarly obtained, but require additional weighting by the reciprocal of \(P(a|c) \), as in Approach 1.

Approach 3. If (i) \(Y_{am} \perp A|C \), (ii*) \(Y_{am} \perp M|\{A, C, L\} \), and (iii) \(M_a \perp A|C \) then we have
the following:

\[E(Y_{aG_{a^*}|c}) = \sum_m E[Y_{am}|c, G_{a^*|c} = m]P(G_{a^*|c} = m|c) \]

\[= \sum_m E[Y_{am}|c]P(M_{a^*} = m|c) \]

\[= \sum_m E[Y_{am}|a, c]P(M_{a^*} = m|a^*, c) \text{ by (i) and (iii)} \]

\[= \sum_{l,m} E[Y_{am}|a, l, c]P(l|a, c)P(M_{a^*} = m|a^*, c) \text{ by (ii*)} \]

\[= \sum_{l,m} E[Y|a, l, m, c]P(l|a, c)P(m|a^*, c). \]

Similarly, \(E(Y_{aG_{a|c}^*}|c) = \sum_{l,m} E[Y|a, l, m, c]P(l|a, c)P(m|a, c) \) and \(E(Y_{a^*G_{a^*|c}}|c) = \sum_{l,m} E[Y|a^*, l, m, c]P(l|a^*, c)P(m|a, c). \) Subtracting gives the expressions for \(E(Y_{aG_{a^*|c}}|c) - E(Y_{a^*G_{a^*|c}}|c) \) and \(E(Y_{aG_{a|c}}|c) - E(Y_{aG_{a|c}^*}|c) \). Marginal effects are similarly obtained, but require additional averaging over the distribution \(P(c) \) of \(C \). As further motivation for this third approach, note that Approaches 1 and 2 become essentially untenable when \(L \) is a high-dimensional confounder as they assume its association with the outcome to be unconfounded after adjustment for \(A \) and \(C \). This third approach, however, works even when the association between \(L \) and \(Y \) is confounded by unmeasured factors.

For conditional effects, Approach 3 works like Approach 1, but using the weights

\[\sum_{l} \frac{P(m|l, a^*, c)P(l|a^*, c)}{P(m|l, a, c)} \]

instead. The resulting weighting estimator is obtained under a marginal structural model for the composite counterfactual \(Y_{aG_{a^*|c}} \), e.g.:

\[E[Y_{aG_{a^*|c}}|c] = \beta_0 + \beta_1 a + \beta_2 a^* + \beta_3 c, \]

from which it is easily verified that \(\beta_1(a - a^*) = E(Y_{aG_{a^*|c}}|c) - E(Y_{a^*G_{a^*|c}}|c) \) and \(\beta_2(a - a^*) = \)
$E(Y_{aG_{a^*c}}|c) - E(Y_{aG_{a^*c}}|c)$. Upon letting a^* take all possible values over the support of A and noting that the expression for $E(Y_{aG_{a^*c}}|c)$ can be equivalently rewritten as

$$\sum_{y,l,m} y P(y,l,m|c,a) \frac{P(l|a,c)P(m|a^*,c)}{P(l,m|c,a)} = E \left(Y \left. \frac{P(M|c,a^*)}{P(M|l,c,a)} \right| c, a \right),$$

the proposed weighting estimator is obtained. Marginal effects are similarly obtained, but require additional averaging over the distribution $P(c)$ of C. Note moreover that unlike approaches 1 and 2, the assumptions of approach 3 do not require that Figure 2 is a non-parametric structural equation model6; the assumptions can hold under weaker interpretations of Figure 2 as a causal diagram8.

SAS implementation. We describe how the proposed weighting approaches to marginal direct and indirect effects given above can be implemented in SAS statistical software (SAS Institute, Inc., Cary, North Carolina). Below we let c, a, l, m and y correspond to the observed confounders C, exposure A, exposure-induced confounder L, mediator M and outcome Y. First, we consider approaches 1 and 3.

```sas
data mydata0;
set mydata;
a = 0; output;
run;
data mydata1;
set mydata;
a = 1; output;
run;
proc logistic data = mydata;
model a = c;
score data = mydata out = preda;
run;
```
data preda;
set preda;
pa1 = P_1;
run;

proc logistic data = mydata;
model l = a c;
score data = mydata1 out = predl1;
score data = mydata0 out = predl0;
run;

data predl1;
set predl1;
pl1 = P_1;
run;

data predl0;
set predl0;
pl10 = P_1;
run;

data mydata00;
set mydata;
a = 0; l = 0; output;
run;

data mydata10;
set mydata;
a = 1; l = 0; output;
run;

data mydata01;
set mydata;
a = 0; l = 1; output;
run;
data mydata11;
set mydata;
a = 1; l = 1; output;
run;
proc logistic data = mydata;
model m = a l c;
score data = mydata1 out = predm1;
score data = mydata0 out = predm0;
score data = mydata00 out = predm00;
score data = mydata01 out = predm01;
score data = mydata10 out = predm10;
score data = mydata11 out = predm11;
run;
data predm1;
set predm1;
pm1 = P_1;
run;
data predm0;
set predm0;
pm0 = P_1;
run;
data predm00;
set predm00;
pm00 = P_1;
run;
data predm10;
set predm10;
 pm110 = P_1;
run;
data predm01;
set predm01;
 pm101 = P_1;
run;
data predm11;
set predm11;
 pm111 = P_1;
run;
data mydataw;
merge preda predl1 predl0 predm1 predm0 predm00 predm10 predm11 mydata;
run;
data mydatanew;
set mydataw;
astar = a; w1 = a/pa1+(1-a)/(1-pa1); output;
astar = 1-a;
if a = 0 then w1 = (1/(1-pa1))*((1*pl1/pl10+(1-l)*(1-pl1)/(1-pl10))
 ((1-m)(1-pm1)/(1-pm10) + m*pm1/pm10);
if a = 1 then w1 = (1/pa1)*((1*pl10/pl1+(1-l)*(1-pl10)/(1-pl1))
 ((1-m)(1-pm10)/(1-pm1) + m*pm10/pm1)); output;
run;
data mydatanew;
set mydatanew;
if (a = 0) & (astar = 0) & (m = 1) then
\[w_3 = \frac{1}{1-p_{a1}} \times \frac{(1-p_{m100})(1-pl_1)+p_{m101}pl_1}{pm_{10}}; \]

if (a = 0) & (astar = 0) & (m = 0) then
\[w_3 = \frac{1}{1-p_{a1}} \times \frac{(1-p_{m100})(1-pl_1)+(1-p_{m101})pl_1}{(1-pm_{10})}; \]

if (a = 0) & (astar = 1) & (m = 1) then
\[w_3 = \frac{1}{1-p_{a1}} \times \frac{p_{m110}(1-pl_1)+p_{m111}pl_1}{pm_{10}}; \]

if (a = 0) & (astar = 1) & (m = 0) then
\[w_3 = \frac{1}{1-p_{a1}} \times \frac{(1-p_{m110})(1-pl_1)+(1-p_{m111})pl_1}{(1-pm_{10})}; \]

if (a = 1) & (astar = 0) & (m = 1) then
\[w_3 = \frac{1}{pa_{1}} \times \frac{p_{m100}(1-pl_1)+p_{m101}pl_1}{pm_{1}}; \]

if (a = 1) & (astar = 0) & (m = 0) then
\[w_3 = \frac{1}{pa_{1}} \times \frac{(1-p_{m100})(1-pl_1)+(1-p_{m101})pl_1}{(1-pm_{1})}; \]

if (a = 1) & (astar = 1) & (m = 1) then
\[w_3 = \frac{1}{pa_{1}} \times \frac{p_{m110}(1-pl_1)+p_{m111}pl_1}{pm_{1}}; \]

if (a = 1) & (astar = 1) & (m = 0) then
\[w_3 = \frac{1}{pa_{1}} \times \frac{(1-p_{m110})(1-pl_1)+(1-p_{m111})pl_1}{(1-pm_{1})}; \]

run;

The results from approach 1 (except for standard errors) can now be obtained from:

```plaintext
proc logistic data = mydatanew;
where astar = 0;
model y = a;
weight w1;
run;
```

for the natural direct effect, and

```plaintext
proc logistic data = mydatanew;
where a = 1;
model y = astar;
```
weight w1;
run;

for the natural indirect effect, where \(a_{star}\) corresponds to \(A^*\). The results from approach 3 (except for standard errors) can be obtained using the same commands, upon substituting \(w1\) by \(w3\). Finally, the results from approach 2 (except for standard errors) can be obtained from:

data mydatanew2;
set mydataw;
astar = a; astarstar = a; w2 = a/pa1+(1-a)/(1-pa1); output;
astar = 1-a; astarstar = a;
w2 = (a/pa1)*(l*pl10/pl1+(1-l)*(1-pl10)/(1-pl1)) +
((1-a)/(1-pa1))*(l*pl1/pl10+(1-l)*(1-pl1)/(1-pl10)); output;
astar = 1-a; astarstar = 1-a;
w2 = (a/pa1)*(l*(pl10/pl1)*(m*(pm101/pm111)+(1-m)*(1-pm101)/(1-pm111))
+(1-l)*((1-pl10)/(1-pl1))*(m*(pm100/pm110)+(1-m)*(1-pm100)/(1-pm110)))
+((1-a)/(1-pa1))*(l*pl1/pl10)*m*(pm111/pm101)+(1-m)*(1-pm111)/(1-pm101))
+(1-l)*((1-pl1)/(1-pl10))*m*(pm110/pm100)+(1-m)*(1-pm110)/(1-pm100)); output;
run;
proc logistic data = mydatanew;
where (astar = 0) & (astarstar = 0);
model y = a;
weight w2;
run;

for \(E_{A \rightarrow Y}\),

proc logistic data = mydatanew;
where (a = 1) & (astarstar = 0);
model y = astar;
weight w2;
run;

for $E_{A\rightarrow M \rightarrow Y}$ and

proc logistic data = mydatanew;
where (a = 1) & (astar = 1);
model y = astarstar;
weight w2;
run;

for $E_{A \rightarrow L \rightarrow Y}$.

When the mediator is not binary, then the above weight calculations change. For instance, when the mediator is continuous, then one may calculate the term $P(m|l, a, c)$, which appears in the inverse probability weights, via:

proc genmod data = mydata;
model m = l a c / error = n;
output out = mydatam p = predm;
run;
data mydatam;
set mydatam;
pm = pdf('normal', m, predm, sigma);
run;

where sigma must be replaced by the estimated residual standard deviation, as obtained from the SAS output. After running this, the data set mydatam will contain a column pm, which contains the estimates of $P(m|l, a, c)$.

Additional References