
eAppendix 1. Details of the candidate predictors of antidepressant prescriptions for 
indications other than depression 
 

Variable Description 
Prescription-related factors 
Molecule name Generic name of the antidepressant prescribed; categorical 

variable with 19 levels 
Prescribed dose (mg/day) Continuous variable 
Drug prescribed on a take-as-needed 
basis 

Binary variable (yes vs. no) 

No. other drugs concurrently 
prescribed  

Continuous variable 

Patient-related factors 
Sex Binary variable (female vs. male) 
Age (years) Continuous variable 
Household income (CAD) Area-level measure of the median household income in the 

patient’s census tract area; continuous variable 
Less than university education (%) Area-level measure representing the percentage of adults in 

the patient’s census tract area with less than university 
education; continuous variable 

Unemployment rate (%) Area-level measure representing the percentage of 
unemployed adults in the patient’s census tract area; 
continuous variable 

Type of drug insurance Binary variable (public vs. private drug insurance) 
Diagnostic codes in the past year 
Plausible antidepressant treatment 
indications 

26 binary variables used to indicate whether diagnostic 
codes in physician billings data or hospital discharge 
abstracts were recorded for each of 13 plausible treatment 
indications for antidepressants* within 2 separate time 
windows: a) ±3 days around the index prescription date, and 
b) -4 to -365 days before the index prescription date 
 
*Depression, anxiety/stress disorders, sleeping disorders, 
pain, migraine, fibromyalgia, obsessive-compulsive disorder, 
vasomotor symptoms of menopause, nicotine dependence, 
attention deficit/hyperactivity disorder, sexual dysfunction, 
pre-menstrual dysphoric disorder, and eating disorders 

Chronic conditions in the Charlson 
comorbidity index 

17 binary variables used to indicate whether diagnostic 
codes were recorded for each of the chronic conditions in 
the Charlson comorbidity index* in the past year 
 
*Myocardial infarction, congestive heart failure, peripheral 
vascular disease, cerebrovascular disease, dementia, chronic 
pulmonary disease, rheumatic disease, peptic ulcer disease, 
mild liver disease, diabetes without chronic complication, 
diabetes with chronic complication, hemiplegia or 



paraplegia, renal disease, any malignancy, moderate or 
severe liver disease, metastatic solid tumor, and AIDS/HIV. 

Other morbidities 86 binary variables used to represent each four-digit ICD-9 
code that was recorded in physician billings data or hospital 
discharge abstracts for at least 1% of all antidepressant 
prescriptions in the past year (after excluding diagnostic 
codes for antidepressant treatment indications and Charlson 
conditions) 

Health services use in the past year 
Number of outpatient visits Continuous variable 
Number of outpatient physicians 
seen 

Continuous variable 

Continuity of care with the 
prescribing physicians (%) 

The percentage of all outpatient visits in the past year that 
were made to the prescribing physician; continuous variable 

Previous hospitalization Binary variable (yes vs. no) 
Previous ER visit Binary variable (yes vs. no) 
Medical services Based on billing codes recorded for the patient in physician 

billings data over the past year. Individual billing codes were 
grouped into broader ‘billing code categories’ using mapping 
tables obtained from the RAMQ. Binary variables were used 
to represent the presence of billing codes from any category 
that was recorded for at least 1% of antidepressant 
prescriptions in the past year (a total of 52 categories). 

Drugs prescribed in the past year Binary variables used to represent the presence of a 
prescription in the past year for any drug (by generic name) 
that had been prescribed in the past year for at least 1% of 
all antidepressant prescriptions (a total of 99 drugs). 

Physician-related factors  
Sex Binary variable (female vs. male) 
Place of medical training Binary variable (Canada/US vs. other) 
Experience (years in practice) Categorical variable with 3 levels: 24+ years, 15-23 years, 

and <15 years 
Workload (average no. patients per 
working day) 

Continuous variable 

Factors affecting physician response 
to new information on evidence-
based clinical practice 

Measured using physician scores in three domains 
(evidence, nonconformity, and practicality) from a 
psychometric instrumenta for determining how physicians 
would likely respond to new information about good clinical 
practice; 3 continuous variables 

Abbreviations: ER = emergency room; RAMQ = Régie de l’assurance maladie du Québec 
aGreen LA, Gorenflo DW, Wyszewianski L, Michigan Consortium for Family Practice Research. Validating an 
instrument for selecting interventions to change physician practice patterns: a Michigan Consortium for Family 
Practice Research study. J Fam Pract. 2002 Nov;51(11):938–42. 
 
  



eAppendix 2. Description of the five machine learning algorithms included in the super 
learner and their corresponding hyperparameters 
 
LASSO  
LASSO (Least Absolute Shrinkage and Selection Operator) is a type of penalized regression 
model that simultaneously (i) shrinks the coefficients of a conventional regression model, and 
(ii) performs variable selection by shrinking some of the coefficients right to zero (1). 
Coefficients with higher variance are shrunk more. The amount of shrinkage applied to the 
coefficients increases as the value of regularization parameter lambda increases, and a lambda 
of zero yields the conventional (unpenalized) logistic regression model.  
 
Decision tree 
Decision trees are non-parametric learning algorithms that apply a set of rules to partition the 
multi-dimensional space of covariates into hypercubes within which the outcome is more 
homogeneous (2). Decision trees are well-suited to handle high-dimensional and sparse data, 
but they can produce trees that are unstable (ie, slight changes in the data can produce notably 
different trees) and prone to overfitting as the depth of the tree increases (2). To reduce 
overfitting, a stopping rule is often applied (1). In the rpart package (3), this stopping rule is 
controlled by the hyperparameter cp (which stands for “complexity parameter”) that retains 
only those splits that improve the overall performance of the tree by a factor of cp. Thus, larger 
values of cp imply smaller, simpler trees with fewer nodes.  
 
Random forest 
Random forests are ensemble learners that extend the decision tree framework in an attempt 
to address the issues of overfitting and high variability (4). Rather than a single tree, random 
forests contain many trees (typically hundreds) – each grown on a separate bootstrap re-
sample of the training data where at each split, the tree chooses among a randomly selected 
subset of candidate predictors to help de-correlate the trees in the forest (1). The key tuning 
parameters for random forests are the number of trees grown (ntree) and the number of 
predictors randomly selected for consideration at each node (mtry) (2).  
 
Neural network 
Neural networks are non-linear statistical models that attempt to emulate the complex 
structure of the human brain (5). Neural networks consist of an input layer (ie, the variables 
offered to the network), one or more “hidden” layers, and an output layer that yields the final 
predicted probabilities from the network. Each layer in the network can contain any number of 
units or “nodes” that are connected to nodes in the subsequent layer by “connection weights” 
that act similarly to the beta coefficients in a regression model (6). Each node takes a weighted 
linear combination of its inputs (ie, the sum of its inputs multiplied by their connection weights) 
and passes this result through an “activation function” (usually the logistic or sigmoid function), 
which then becomes input to the node(s) in the next layer to which it is connected via another 
connection weight. These hidden nodes and their connection weights are what allow neural 
networks to automatically model more complex, non-linear relationships compared to 
traditional regression models (6). Fitting a network with two or more hidden layers is often 



referred to as “deep learning”. In this study, we could only fit a neural network with one hidden 
layer because the nnet package only allowed for one hidden layer.  
 
Supper vector machine 
Support vector machines (SVMs) are algorithms that classify observations by finding the 
optimal separating hyperplane between training observations from different outcomes classes 
in the multi-dimensional covariate space. The optimal hyperplane is defined as the hyperplane 
that separates observations from different outcome classes with the maximum margin (ie, the 
largest Euclidean distance between the separating hyperplane and the nearest data points from 
different outcomes classes on either side of it, called the “support vectors”) (1). In practice, it 
may be challenging to find a hyperplane that perfectly separates observations from different 
classes. Thus, SVMs allow for a “soft margin” whereby a fraction of the data points can be 
misclassified (ie, on the wrong side of the hyperplane). The regularization parameter C 
determines the penalty for misclassifying observations and thus controls the trade-off between 
minimizing the number of misclassified examples versus maximizing the margin (7). A smaller C 
corresponds to a smaller penalty for misclassifying data points and thus usually favors a larger 
margin (ie, smoother decision surface). SVMs also use kernel functions to increase the 
dimensionality of the input space, which often allows a hyperplane to better separate data 
points from different outcome classes and generally translates into more complex decision 
boundaries in the original covariate space (1). In the study, we used a radial basis function (RBF) 
kernel – one of the most commonly used kernels for SVMs (8,9), and optimized the gamma 
parameter of the RBF kernel. The gamma parameter controls the influence of a single 
observation on determining the decision boundary, with higher values generally resulting in 
more complex decision boundaries.  
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eAppendix 4. Details of how the machine learning algorithms were fit using their tuned and 
default hyperparameter values in the SuperLearner package 
 
To fit the machine learning algorithms using their default hyperparameter values, we used their 
original wrapper functions in the SuperLearner package (eg, SL.randomForest for the random 
forest). To fit the machine learning algorithms using their tuned hyperparameter values, we 
used the create.Learner function in the SuperLearner package. This user-friendly function 
generates a custom wrapper for any given algorithm, which fits the algorithm using the user-
specified values for the corresponding hyperparameters. However, the create.Learner function 
can only customize the value of hyperparameters that are included as modifiable parameters in 
the corresponding algorithm’s original wrapper function in the SuperLearner package. For the 
support vector machine, because the gamma parameter was not a modifiable parameter in 
SL.svm, we could not use the create.Learner function to change the value of gamma. Thus, we 
had to create our own custom wrapper by copying the code of SL.svm, modifying the value of 
the gamma directly in the wrapper code, and then creating a new name for the wrapper 
function (eg, SL.myTunedSVM).    
 
For the LASSO model and the decision tree, we did not have to customize their wrapper 
functions because the tuned hyperparameter values coincided with the default values. This 
result occurred by chance for the decision tree, but for the LASSO model, the glmnet package 
automatically identified the lambda value with the lowest cross-validated error in the training 
data and used this lambda value to predict on new data. 
 
In the eAppendix 3, we have included example R code showing how we implemented the grid 
search procedure for the random forest to tune its hyperparameters and then fit a super 
learner using these tuned values. 
 


