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A bound for outcome misclassification, selection bias,

and unmeasured confounding

Result 1

Let 𝐴 denote a binary exposure of interest, 𝑌 a binary outcome and 𝑌 ∗ the misclassified

version, and 𝐶 measured covariates. Additionally let 𝑆 be a binary indicator of selection into

a study, so that we can collect data only on the subset of the population for which 𝑆 = 1.

Finally, assume that there exist 𝑈𝑠 and 𝑈𝑐 such that 𝑌 q 𝑆 | 𝐴,𝐶,𝑈𝑠 and 𝑌𝑎 q 𝐴 | 𝐶,𝑈𝑐, but

that it is not necessarily true that 𝑌 q 𝑆 | 𝐴,𝐶 or 𝑌𝑎 q 𝐴 | 𝐶.

We can estimate a confounded risk ratio observed in the selected population, subject to

(potentially differential) outcome misclassification, RRobs
𝐴𝑌 , but our inferential goal is a causal

risk ratio for the true outcome in the entire population, RRtrue
𝐴𝑌 :

RRobs
𝐴𝑌 =

Pr (𝑌 ∗ = 1 | 𝐴 = 1, 𝑆 = 1, 𝑐)
Pr (𝑌 ∗ = 1 | 𝐴 = 0, 𝑆 = 1, 𝑐)

RRtrue
𝐴𝑌 =

Pr (𝑌1 = 1 | 𝑐)
Pr (𝑌0 = 1 | 𝑐)

We have from VanderWeele & Li1 that, for RRtrue
𝐴𝑌 ≥ 1,

RRobs
𝐴𝑌 ≤ BF𝑚 × Pr (𝑌 = 1 | 𝐴 = 1, 𝑆 = 1, 𝑐)

Pr (𝑌 = 1 | 𝐴 = 0, 𝑆 = 1, 𝑐) (1)

for

BF𝑚 = RR𝐴𝑌 ∗ |𝑦,𝑆=1 = max
𝑦

Pr (𝑌 ∗ = 1 | 𝑌 = 𝑦, 𝐴 = 1, 𝑆 = 1, 𝑐)
Pr (𝑌 ∗ = 1 | 𝑌 = 𝑦, 𝐴 = 0, 𝑆 = 1, 𝑐) . (2)

Then, since we are assuming that 𝑌 q 𝑆 | 𝐴,𝐶,𝑈𝑠, from Smith & VanderWeele2 we have that

Pr (𝑌 = 1 | 𝐴 = 1, 𝑆 = 1, 𝑐)
Pr (𝑌 = 1 | 𝐴 = 0, 𝑆 = 1, 𝑐) ≤ BF𝑠 ×

Pr (𝑌 = 1 | 𝐴 = 1, 𝑐)
Pr (𝑌 = 1 | 𝐴 = 0, 𝑐) (3)

for

BF𝑠 =
RR𝑈𝑠𝑌 |𝐴=1 × RR𝑆𝑈𝑠 |𝐴=1

RR𝑈𝑠𝑌 |𝐴=1 + RR𝑆𝑈𝑠 |𝐴=1 − 1 ×
RR𝑈𝑠𝑌 |𝐴=0 × RR𝑆𝑈𝑠 |𝐴=0

RR𝑈𝑠𝑌 |𝐴=0 + RR𝑆𝑈𝑠 |𝐴=0 − 1
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where

RR𝑈𝑠𝑌 |𝐴=𝑎 =
max𝑢 Pr (𝑌 = 1 | 𝐴 = 𝑎, 𝑐,𝑈𝑠 = 𝑢)
min𝑢 Pr (𝑌 = 1 | 𝐴 = 𝑎, 𝑐,𝑈𝑠 = 𝑢) for 𝑎 = 0, 1

RR𝑆𝑈𝑠 |𝐴=1 = max
𝑢

Pr (𝑈𝑠 = 𝑢 | 𝐴 = 1, 𝑆 = 1, 𝑐)
Pr (𝑈𝑠 = 𝑢 | 𝐴 = 1, 𝑆 = 0, 𝑐)

RR𝑆𝑈𝑠 |𝐴=0 = max
𝑢

Pr (𝑈𝑠 = 𝑢 | 𝐴 = 0, 𝑆 = 0, 𝑐)
Pr (𝑈𝑠 = 𝑢 | 𝐴 = 0, 𝑆 = 1, 𝑐) . (4)

Finally, since we are assuming that 𝑌𝑎 q 𝐴 | 𝐶,𝑈𝑐 from Ding & VanderWeele3 we have

Pr (𝑌 = 1 | 𝐴 = 1, 𝑐)
Pr (𝑌 = 1 | 𝐴 = 0, 𝑐) ≤ BF𝑐 ×

Pr (𝑌1 = 1 | 𝑐)
Pr (𝑌0 = 1 | 𝑐) (5)

for

BF𝑐 =
RR𝐴𝑈𝑐

× RR𝑈𝑐𝑌

RR𝐴𝑈𝑐
+ RR𝑈𝑐𝑌 − 1 (6)

where

RR𝐴𝑈𝑐
= max

𝑢

Pr (𝑈𝑐 = 𝑢 | 𝐴 = 1, 𝑐)
Pr (𝑈𝑐 = 𝑢 | 𝐴 = 0, 𝑐)

RR𝑈𝑐𝑌 = max
𝑎

max𝑢 Pr (𝑌 = 1 | 𝐴 = 𝑎, 𝑐,𝑈𝑐 = 𝑢)
min𝑢 Pr (𝑌 = 1 | 𝐴 = 𝑎, 𝑐,𝑈𝑐 = 𝑢) .

Putting together expressions (1), (3), and (5), we have Result 1:

RRobs
𝐴𝑌 ≤ BF𝑚 × Pr (𝑌 = 1 | 𝐴 = 1, 𝑆 = 1, 𝑐)

Pr (𝑌 = 1 | 𝐴 = 0, 𝑆 = 1, 𝑐)

≤ BF𝑚 × BF𝑠 ×
Pr (𝑌 = 1 | 𝐴 = 1, 𝑐)
Pr (𝑌 = 1 | 𝐴 = 0, 𝑐)

≤ BF𝑚 × BF𝑠 × BF𝑐 ×
Pr (𝑌1 = 1 | 𝑐)
Pr (𝑌0 = 1 | 𝑐)

= BF𝑚 × BF𝑠 × BF𝑐 × RRtrue
𝐴𝑌 . (7)

An alternative decomposition

Now assume that there exist 𝑈𝑠 and 𝑈𝑐 such that 𝑌 ∗ q 𝑆 | 𝐴,𝐶,𝑈𝑠 and 𝑌𝑎 q 𝐴 | 𝐶,𝑈𝑐. This

may be the case if, for example, selection into the study is based on a factor related to the

(mis)measured outcome, not the true outcome.
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Then we can bound the bias with the same final expression, but some of the parameters

within the bias factors are defined slightly differently.

The possible magnitude of selection bias can be defined in terms of the misclassified

outcome, so that

BF𝑠 =
RR𝑈𝑠𝑌

∗ |𝐴=1 × RR𝑆𝑈𝑠 |𝐴=1

RR𝑈𝑠𝑌
∗ |𝐴=1 + RR𝑆𝑈𝑠 |𝐴=1 − 1 ×

RR𝑈𝑠𝑌
∗ |𝐴=0 × RR𝑆𝑈𝑠 |𝐴=0

RR𝑈𝑠𝑌
∗ |𝐴=0 + RR𝑆𝑈𝑠 |𝐴=0 − 1

where

RR𝑈𝑠𝑌
∗ |𝐴=𝑎 =

max𝑢 Pr (𝑌 ∗ = 1 | 𝐴 = 𝑎, 𝑐,𝑈𝑠 = 𝑢)
min𝑢 Pr (𝑌 ∗ = 1 | 𝐴 = 𝑎, 𝑐,𝑈𝑠 = 𝑢) for 𝑎 = 0, 1

and RR𝑆𝑈𝑠 |𝐴=1 and RR𝑆𝑈𝑠 |𝐴=0 are defined as in (4) above.

Then, the measurement error correction applies to the entire population, so that

BF𝑚 = RR𝐴𝑌 ∗ |𝑦 = max
𝑦

Pr (𝑌 ∗ = 1 | 𝑌 = 𝑦, 𝐴 = 1, 𝑐)
Pr (𝑌 ∗ = 1 | 𝑌 = 𝑦, 𝐴 = 0, 𝑐) .

Expression (7) now holds with the newly defined BF𝑠 and BF𝑚.

A bound for exposure misclassification, selection bias,

and unmeasured confounding

Unlike the bound for outcome misclassification, the bound for exposure misclassification

from VanderWeele & Li1 applies to the odds ratio, not the risk ratio, and the sensitivity

parameters are also not risk ratios. That is,
Pr(𝑌=1|𝐴∗=1,𝑐)
Pr(𝑌=0|𝐴∗=1,𝑐)
Pr(𝑌=1|𝐴∗=0,𝑐)
Pr(𝑌=0|𝐴∗=0,𝑐)

≤ BF′
𝑚 ×

Pr(𝑌=1|𝐴=1,𝑐)
Pr(𝑌=0|𝐴=1,𝑐)
Pr(𝑌=1|𝐴=0,𝑐)
Pr(𝑌=0|𝐴=0,𝑐)

(8)

for

BF′
𝑚 = OR𝑌 𝐴∗ |𝑎 = max ©­«

𝑠′1
1−𝑠′1
𝑠′0

1−𝑠′0

,

𝑓 ′1
1− 𝑓 ′1
𝑓 ′0

1− 𝑓 ′0

,

𝑓 ′1
𝑓 ′0

1−𝑠′1
1−𝑠′0

,

𝑠′1
𝑠′0

1− 𝑓 ′1
1− 𝑓 ′0

ª®¬ (9)

where 𝑠′𝑦 = Pr (𝐴∗ = 1 | 𝑌 = 𝑦, 𝐴 = 1, 𝑐) and 𝑓 ′𝑦 = Pr (𝐴∗ = 1 | 𝑌 = 𝑦, 𝐴 = 0, 𝑐).
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Applying this bound after factoring out selection bias, we would find that we are left with

RRobs
𝐴𝑌 ≤ BF′

𝑚 × BF𝑠 × BF𝑐 × RRtrue
𝐴𝑌 × Pr (𝑌 = 0 | 𝐴 = 0, 𝑐)

Pr (𝑌 = 0 | 𝐴 = 1, 𝑐) ×
Pr (𝑌 = 0 | 𝐴∗ = 1, 𝑐)
Pr (𝑌 = 0 | 𝐴∗ = 0, 𝑐)

for some BF′
𝑚, BF𝑠, and BF𝑐, which is not as useful for sensitivity analysis. However, if

the outcome is sufficiently rare that Pr (𝑌 = 0 | ·) ≈ 1 in all strata, a simpler bound holds

approximately, as we show next.

Again we can define the parameters in the bound in two ways by considering two sets of

assumptions.

Result 2

If there exist 𝑈𝑠 and 𝑈𝑐 such that 𝑌 q 𝑆 | 𝐴,𝐶,𝑈𝑠 and 𝑌𝑎 q 𝐴 | 𝐶,𝑈𝑐, and if Pr (𝑌 = 0 | ·) ≈ 1,

then we have Result 2:

RRobs′
𝐴𝑌 =

Pr (𝑌 = 1 | 𝐴∗ = 1, 𝑆 = 1, 𝑐)
Pr (𝑌 = 1 | 𝐴∗ = 0, 𝑆 = 1, 𝑐)

. BF′
𝑚 × BF𝑠 × BF𝑐 × RRtrue

𝐴𝑌

for BF′
𝑚 = OR𝑌 𝐴∗ |𝑎,𝑆=1 equivalent to the expression (9), but with 𝑠′𝑦 = Pr (𝐴∗ = 1 | 𝑌 = 𝑦, 𝐴 = 1, 𝑆 = 1, 𝑐)

and 𝑓 ′𝑦 = Pr (𝐴∗ = 1 | 𝑌 = 𝑦, 𝐴 = 0, 𝑆 = 1, 𝑐); BF𝑠 as defined in (4); and BF𝑐 as defined in (6).

An alternative decomposition

Alternatively, if 𝑌 q 𝑆 | 𝐴∗, 𝐶,𝑈𝑠 and 𝑌𝑎 q 𝐴 | 𝐶,𝑈𝑐, then the bound holds approximately

with

BF𝑠 =
RR𝑈𝑠𝑌 |𝐴∗=1 × RR𝑆𝑈𝑠 |𝐴∗=1

RR𝑈𝑠𝑌 |𝐴∗=1 + RR𝑆𝑈𝑠 |𝐴∗=1 − 1 ×
RR𝑈𝑠𝑌 |𝐴∗=0 × RR𝑆𝑈𝑠 |𝐴∗=0

RR𝑈𝑠𝑌 |𝐴∗=0 + RR𝑆𝑈𝑠 |𝐴∗=0 − 1

where RR𝑈𝑠𝑌 |𝐴∗=𝑎 and RR𝑆𝑈𝑠 |𝐴∗=0 are defined as above, with all 𝐴 replaced with 𝐴∗ and 𝑌 ∗

replaced with 𝑌 , and with BF′
𝑚 as originally defined in expression (9).
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Interpretation of the exposure misclassification parameters

While all of the sensitivity parameters we have considered thus far are risk ratios, we have

seen that those making up the bound for exposure misclassification are not. If, however, the

misclassified exposure is sufficiently rare that Pr (𝐴∗ = 0 | ·) ≈ 1, then we can interpret the

sensitivity parameters as risk ratios:

BF′
𝑚 = RR𝑌 𝐴∗ |𝑎 = max 𝑎

(
Pr (𝐴∗ = 1 | 𝑌 = 1, 𝐴 = 𝑎, 𝑐)
Pr (𝐴∗ = 1 | 𝑌 = 0, 𝐴 = 𝑎, 𝑐)

)
or

BF′
𝑚 = RR𝑌 𝐴∗ |𝑎,𝑆=1 = max 𝑎

(
Pr (𝐴∗ = 1 | 𝑌 = 1, 𝐴 = 𝑎, 𝑆 = 1, 𝑐)
Pr (𝐴∗ = 1 | 𝑌 = 0, 𝐴 = 𝑎, 𝑆 = 1, 𝑐)

)
.

Alternatively, if the exposure is not particularly rare, we can interpret the sensitivity pa-

rameters as squares of the RR equivalents, using the square-root approximation of the odds

ratio.4

Inference in the selected population

Result 3 (Under outcome misclassification)

It may be that our target of inference is the selected population only, so that

RRtrue
𝐴𝑌 |𝑆=1 =

Pr (𝑌1 = 1 | 𝑆 = 1, 𝑐)
Pr (𝑌0 = 1 | 𝑆 = 1, 𝑐) .

In this case we need that assumption 𝑌𝑎 q 𝐴 | 𝑆 = 1, 𝐶,𝑈𝑐,𝑈𝑠 : we must simultaneously

consider both the factor(s) creating selection bias and the factor(s) creating confounding

(which may be one and the same). Let 𝑈𝑠𝑐 denote the vector (𝑈𝑠,𝑈𝑐). Then after factoring

out the misclassification bias, we have Result 3:

RRobs
𝐴𝑌 ≤ BF𝑚 × Pr (𝑌 = 1 | 𝐴 = 1, 𝑆 = 1, 𝑐)

Pr (𝑌 = 1 | 𝐴 = 0, 𝑆 = 1, 𝑐)

≤ BF𝑚 × BF𝑠𝑐 ×
Pr (𝑌1 = 1 | 𝑆 = 1, 𝑐)
Pr (𝑌0 = 1 | 𝑆 = 1, 𝑐)

= BF𝑚 × BF𝑠𝑐 × RRtrue
𝐴𝑌 |𝑆=1 (10)
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for

BF𝑠𝑐 =
RR𝐴𝑈𝑠𝑐

× RR𝑈𝑠𝑐𝑌

RR𝐴𝑈𝑠𝑐
+ RR𝑈𝑠𝑐𝑌 − 1

where

RR𝐴𝑈𝑠𝑐
= max

𝑢

Pr (𝑈𝑠𝑐 = 𝑢 | 𝐴 = 1, 𝑆 = 1, 𝑐)
Pr (𝑈𝑠𝑐 = 𝑢 | 𝐴 = 0, 𝑆 = 1, 𝑐)

RR𝑈𝑠𝑐𝑌 = max
𝑎

max𝑢 Pr (𝑌 = 1 | 𝐴 = 𝑎, 𝑆 = 1, 𝑐,𝑈𝑠𝑐 = 𝑢)
min𝑢 Pr (𝑌 = 1 | 𝐴 = 𝑎, 𝑆 = 1, 𝑐,𝑈𝑠𝑐 = 𝑢)

and BF𝑚 is defined as in (2).

Under exposure misclassification

Again we consider the bias due to selection and unmeasured confounding jointly. The bound

in expression (10) holds with BF′
𝑚 constructed with 𝑠′𝑦 = Pr (𝐴∗ = 1 | 𝑌 = 𝑦, 𝐴 = 1, 𝑆 = 1, 𝑐)

and 𝑓 ′𝑦 = Pr (𝐴∗ = 1 | 𝑌 = 𝑦, 𝐴 = 0, 𝑆 = 1, 𝑐).

The multi-bias E-value

The bounds in Results 1, 2, and 3 allow researchers and consumers of research to choose values

for bias parameters and investigate their possible effects on an observed risk ratio. Target-

adjusted sensitivity analysis, on the other hand, quantifies the strength of bias necessary to

shift an observation to another value, often the null value, though others can be used.5 The

E-value for unmeasured confounding is an example of this approach.6 We can calculate an

equivalent value for a combination of biases using the bounds in this article. The E-value

for unmeasured confounding refers to a value that can be shown to be sufficient to explain

away an observed estimate and that jointly minimizes the maximum of the two sensitivity

parameters for unmeasured confounding.6 Similarly, the multi-bias E-value describes the

minimum value that all of the sensitivity parameters for each of the biases would have to

take on for a given observed risk ratio to be compatible with a truly null risk ratio. Since the
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overall bias is monotone increasing in the individual bias parameters, it follows that if any one

of the bias parameters is less than the multi-bias E-value, then at least one other parameter

would have to be greater than the multi-bias E-value in order to completely explain a result.

Recall that under non-differential misclassification of the exposure, the BF𝑚 factor in

the bound is not a risk ratio. If the misclassified exposure is rare, then that parameter

can be interpreted as an approximate risk ratio; otherwise, an approximate square root

transformation for the odds ratio can be applied so as to approximate the risk ratio.1 In this

way all the parameters that the multi-bias E-value pertains to are on the (approximate) risk

ratio scale.

Figure 2 shows the size of the multiple-bias E-value for various combinations of biases

and across a range of observed risk ratios. In general, this demonstrates that when there

are multiple forms of bias, very little of each type could be sufficient to produce a risk ratio

that is within the range we generally see in epidemiologic studies. For example, when the

null is true, it is possible to observe a risk ratio of 4 if each of the outcome misclassification

(RR𝐴𝑌 ∗ |𝑦,𝑆=1), selection bias (RR𝑈𝑠𝑌 |𝐴=1,RR𝑈𝑠𝑌 |𝐴=1,RR𝑆𝑈𝑠 |𝐴=1,RR𝑆𝑈𝑠 |𝐴=0), and unmeasured

confounding (RR𝑈𝑐𝑌 ,RR𝐴𝑈𝑐
) parameters is approximately 1.89.

Of course, it is unlikely that each of these sensitivity analysis parameters would be equal

to the others, and equal to 1.89. The bounds in this article can be used to assess the bias with

a more realistic set of parameters. However, comparing multiple-bias E-values for various

combinations of biases may be useful when planning studies to assess where resources should

be invested to avoid certain biases, or to assess where a more in-depth bias analysis would be

most useful.

Unfortunately, we know of no closed-form solution for this value when we are faced with

all three types of bias, but it is easily solved numerically. The expressions to be solved are

given in the final column of Table 1. To calculate the analogous multi-bias E-value needed

to shift the observed RRobs
𝐴𝑌 to some risk ratio, RRtrue

𝐴𝑌 , other than the null, one can simply

8



replace RRobs
𝐴𝑌 in the each formula with RRobs

𝐴𝑌 /RRtrue
𝐴𝑌 . Also, each formula presupposes that

RRobs
𝐴𝑌 >= 1; for apparently protective exposures, the inverse should be taken first.

We will demonstrate interpretation of the multiple bias E-value with respect to our

examples, and then briefly describe an R package that can be used to implement the results.

Examples

Recall from the main text that the study of HIV infection in children found RRobs
𝐴𝑌 = 6.75,7

which we determined was possibly affected by selection bias and unmeasured confounding.

The multi-bias E-value for that study, given the assumptions about bias we have made, is

4.64. This tells us that RR𝑈𝑠𝑌 |𝐴=1 = RR𝑆𝑈𝑠 |𝐴=1 = RR𝐴𝑈𝑐
= RR𝑈𝑐𝑌 =≥ 4.64 could suffice to

completely explain the observed result, but weaker combined bias would not. If, for example,

selection bias were indeed weaker, the strength of the unmeasured confounding parameters

would have to be stronger than 4.64 for the observation to be compatible with a truly null

effect. Repeating the calculation with the lower limit of the confidence interval, we obtain

a multi-bias E-value of 2.73. If all of the parameters were this large, it is possible that the

confidence interval would include the null.

The estimate from the vitamins-leukemia study was RRobs
𝐴∗𝑌 = 0.51.8 After taking the

inverse so thatRRobs
𝐴∗𝑌 = 1/0.51 = 1.96, we find that the multi-bias E-value for exposure

misclassification and unmeasured confounding is 1.35. In order to interpret that number

consistently across biases, the multi-bias E-value we have calculated pertains to RR𝐴𝑈𝑐
,

RR𝑈𝑐𝑌 , and RR𝑌 𝐴∗ |𝑎, the latter being the square-root approximation of the OR𝑌 𝐴∗ |𝑎 term in

the bound for exposure misclassification.1 This allows us to interpret 1.35 as the minimum

strength on the risk ratio scale that an unmeasured confounder, or set of confounders, would

have to have on the outcome, that would have to relate vitamin use to the confounder, and

that the false positive probability or sensitivity for vitamin use would have to be increase

by, in order for these biases to explain the entire observed risk ratio. Again, this is simply a
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heuristic, not something we would expect to be the case; for example, we might expect weaker

misclassification but stronger confounding. For the limit of the confidence interval closest to

the null, 0.89, if we take inverses, we obtain 1/0.89 = 1.12 and the multi-bias E-value for this

is only 1.06, indicating that whether the true risk ratio is smaller than or greater than 1 is

indeed sensitive to relatively small amounts of bias.

Derivation

To form a multiple bias E-value,6 we can set all of the parameters that make up the terms

in the bounds equal to each other, then solve for that value to see what magnitude of bias

would result in an RRobs
𝐴𝑌 of at least the value observed, if RRtrue

𝐴𝑌 = 1.

For example, for the bound for outcome misclassification, general selection bias, and

unmeasured confounding:

RRobs
𝐴𝑌 ≤ max RR𝐴𝑌 ∗ |𝑦,𝑆=1 ×

RR𝑈𝑠𝑌 |𝐴=1 × RR𝑆𝑈𝑠 |𝐴=1

RR𝑈𝑠𝑌 |𝐴=1 + RR𝑆𝑈𝑠 |𝐴=1 − 1×

RR𝑈𝑠𝑌 |𝐴=0 × RR𝑆𝑈𝑠 |𝐴=0

RR𝑈𝑠𝑌 |𝐴=0 + RR𝑆𝑈𝑠 |𝐴=0 − 1 ×
RR𝐴𝑈𝑐

× RR𝑈𝑐𝑌

RR𝐴𝑈𝑐
+ RR𝑈𝑐𝑌 − 1 × 1

= 𝑥 × 𝑥2

2𝑥 − 1 × 𝑥2

2𝑥 − 1 × 𝑥2

2𝑥 − 1

=
𝑥7

(2𝑥 − 1)3 (11)

for 𝑥 = RR𝐴𝑌 ∗ |𝑦,𝑆=1 = RR𝑈𝑠𝑌 |𝐴=1 = RR𝑆𝑈𝑠 |𝐴=1 = RR𝑈𝑠𝑌 |𝐴=0 = RR𝑆𝑈𝑠 |𝐴=0 = RR𝐴𝑈𝑐
= RR𝑈𝑐𝑌 .

To our knowledge, this polynomial has no closed-form solution. However, we can easily

solve it numerically.

For example, if RRobs
𝐴𝑌 = 3, then 𝑥 = 1.71, meaning that if each of the parameters were at

least 1.71, the observed risk ratio could be consistent with a truly null causal risk ratio. If

any of the parameters were smaller than 1.71, others would have to be larger if the causal

risk ratio were truly null.

We can solve the inequality for any combination of parameters that make up a particular
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bound in a given situation (e.g., for outcome misclassification and selection bias only, or

for exposure misclassification with a rare outcome and unmeasured confounding). When

considering exposure misclassification, to calculate a multiple bias E-value, we first must

confirm that the outcome is rare. Then, if the misclassified exposure is rare, we can solve

equation (11) and interpret it with respect to the appropriate parameters; if the exposure is

not rare, we can solve

RRobs
𝐴𝑌 . RR2

𝑌 𝐴∗ |𝑎,𝑆=1 ×
RR𝑈𝑠𝑌 |𝐴=1 × RR𝑆𝑈𝑠 |𝐴=1

RR𝑈𝑠𝑌 |𝐴=1 + RR𝑆𝑈𝑠 |𝐴=1 − 1×

RR𝑈𝑠𝑌 |𝐴=0 × RR𝑆𝑈𝑠 |𝐴=0

RR𝑈𝑠𝑌 |𝐴=0 + RR𝑆𝑈𝑠 |𝐴=0 − 1 ×
RR𝐴𝑈𝑐

× RR𝑈𝑐𝑌

RR𝐴𝑈𝑐
+ RR𝑈𝑐𝑌 − 1 × 1

= 𝑥2 × 𝑥2

2𝑥 − 1 × 𝑥2

2𝑥 − 1 × 𝑥2

2𝑥 − 1

=
𝑥8

(2𝑥 − 1)3

and interpret with respect to the same parameters.

Implementation in R

We can use new functions from the R package EValue9 to either calculate the appropriate

multiple bias E-value or to calculate a bound for the bias, given proposed parameters. The

primary new functions in the package, multi_bound() and multi_evalue(), accept a set of

biases (out of confounding(), selection(), and misclassification(), which take various

arguments describing the bias in more detail). The function multi_bias() is used to declare

those biases. The multi_bound() function requires values for the parameters making up the

bound for the biases in question. The multi_evalue() function requires just a value for the

observed risk ratio, and prints a message to the user about the sensitivity parameters it refers

to.

We will demonstrate the new package functionality by working through the examples in

the main text. We will then show how the new functions can be used to recreate examples
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from earlier literature as well.

library(EValue)

Examples from the main text

The multi_bias() function takes as arguments one or more of the three bias functions,

confounding(), selection(), and misclassification(). They should be listed in the order

in which they occur in the data (i.e., does the measurement happen in the sample, or is the

sample selected based on mismeasured exposure or outcome values?). Each of selection()

and misclassification() take additional arguments depending on the assumptions and

simplifications of a given scenario.

In the HIV example, we were interested in the composite bias due to confounding and

selection. We were willing to make the assumption that the outcome is more likely in the

selected portion of both exposure groups, so we include the argument "increased risk".

(The "general" argument is in contrast to "selected", the latter meaning that we are only

interested in inference in the selected population. Since "general" is the default, we could

leave it out.)

HIV_biases <- multi_bias(confounding(),

selection("general", "increased risk"))

Printing the biases prints out the arguments that are required for the multi_bound()

function for easy copying and pasting into that function.

HIV_biases

multi_bound(biases = HIV_biases,

RRAUc = 2.3, RRUcY = 2.5, RRUsYA1 = 3, RRSUsA1 = 2)

[1] 2.269737

Because the labeling of the arguments is not necessarily intuitive, we might want to

12



confirm which refers to which parameter. We can use the summary() function on a object

created with the multi_bias() function to print more information about the biases.

summary(HIV_biases)

bias output argument

1 confounding RR_AUc RRAUc

2 confounding RR_UcY RRUcY

3 selection RR_UsY|A=1 RRUsYA1

4 selection RR_SUs|A=1 RRSUsA1

For easy copying and pasting of the notation we used in this appendix and in the main

text, the argument latex = TRUE can be used in the summary function to print out an

additional column with the parameters in our notation.

To calculate a multi-bias E-value, we must provide the observed effect estimate along

with the set of biases. There are two options for doing so. The first is to declare the effect

estimate with one of RR(), OR(), or HR(), depending on whether it is a risk, odds, or hazard

ratio.

multi_evalue(biases = HIV_biases,

est = OR(6.75, rare = TRUE),

lo = 2.79, hi = 16.31)

point lower upper

RR 6.750000 2.790000 16.31

Multi-bias E-values 4.635703 2.728474 NA

The lower and upper bound of the confidence interval are assumed to be on the same

scale.

Next we will look at the vitamins-leukemia example from the text. The misclassifi-

cation() bias requires one of either "outcome" or "exposure"; if exposure misclassification

is of interest, the user is also required to specify whether the outcome and/or exposure are

sufficiently rare to use a risk ratio approximation for an odds ratio (irrespective of whether
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the effect estimate is actually on the odds ratio scale).

leuk_biases <- multi_bias(confounding(),

misclassification("exposure",

rare_outcome = TRUE,

rare_exposure = FALSE))

leuk_biases

Again we can calculate the bound and multi-bias E-value as in the text.

multi_bound(biases = leuk_biases, RRAUc = 2, RRUcY = 1.22, ORYAa = 1.59)

[1] 1.747568

multi_evalue(biases = leuk_biases,

est = OR(0.51, rare = TRUE),

lo = 0.3, hi = 0.89)

point lower upper

RR 0.510000 0.3 0.890000

Multi-bias E-values 1.351985 NA 1.058404

We can easily demonstrate that the E-value is the same whether or not the effect estimate

is inverted if the exposure is apparently protective. Also, if we don’t want the message about

the parameters to print, we can use the argument verbose = FALSE.

multi_evalue(biases = leuk_biases,

est = OR(1/0.51, rare = TRUE),

hi = 1/0.3, lo = 1/0.89,

verbose = FALSE)

point lower upper

RR 1.960784 1.123596 3.333333

Multi-bias E-values 1.351985 1.058404 NA

Finally, we presented a multi-bias E-value for all three biases. We can use the summary()

function to just print the single value, instead of the matrix of the estimates and confidence
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limits and E-values for both.

summary(multi_evalue(biases = multi_bias(confounding(),

selection("general"),

misclassification("outcome")),

est = RR(4)))

[1] 1.888478

Extensions not appearing in the main text

We may want to vary the magnitude of the parameters used to calculate the bounds. We’ll

use the biases from the HIV example to demonstrate.

# original bound

multi_bound(biases = HIV_biases, RRAUc = 2, RRUcY = 2.5,

RRUsYA1 = 3, RRSUsA1 = 2)

[1] 2.142857

# vary RRAUc from 1.25 to 3

sapply(seq(1.25, 3, by = .25), function(RRAUc) {

multi_bound(biases = HIV_biases, RRAUc = RRAUc,

RRUcY = 2.5, RRUsYA1 = 3, RRSUsA1 = 2)

})

[1] 1.704545 1.875000 2.019231 2.142857 2.250000 2.343750 2.426471 2.500000

# vary RRAUc and RRUcY

param_vals <- seq(1.25, 3, by = .25)

params <- expand.grid(RRAUc = param_vals,

RRUcY = param_vals)

vals <- mapply(multi_bound,

RRAUc = params$RRAUc,
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RRUcY = params$RRUcY,

MoreArgs = list(biases = HIV_biases,

RRUsYA1 = 3, RRSUsA1 = 2))

matrix(vals,

ncol = length(param_vals),

dimnames = list(param_vals, param_vals)

)

1.25 1.5 1.75 2 2.25 2.5 2.75 3

1.25 1.562500 1.607143 1.640625 1.666667 1.687500 1.704545 1.718750 1.730769

1.5 1.607143 1.687500 1.750000 1.800000 1.840909 1.875000 1.903846 1.928571

1.75 1.640625 1.750000 1.837500 1.909091 1.968750 2.019231 2.062500 2.100000

2 1.666667 1.800000 1.909091 2.000000 2.076923 2.142857 2.200000 2.250000

2.25 1.687500 1.840909 1.968750 2.076923 2.169643 2.250000 2.320312 2.382353

2.5 1.704545 1.875000 2.019231 2.142857 2.250000 2.343750 2.426471 2.500000

2.75 1.718750 1.903846 2.062500 2.200000 2.320312 2.426471 2.520833 2.605263

3 1.730769 1.928571 2.100000 2.250000 2.382353 2.500000 2.605263 2.700000

Of course, all of the parameters in the bound could be varied, but summarizing the

resulting bounds in a simple table or figure becomes more difficult with more than two

dimensions.

When calculating a multi-bias E-value, we may also think that the null is unlikely but

wish to consider how much bias could have shifted a different true value to the observed

value. For example, in the HIV example, we could calculate a multi-bias E-value for a true

risk ratio of 2 rather than the null value of 1:

multi_evalue(biases = HIV_biases,

est = OR(6.75, rare = TRUE),

lo = 2.79, hi = 16.31,

true = 2)

point lower upper

RR 6.750000 2.790000 16.31

Multi-bias E-values 3.077243 1.643623 NA
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The multi-bias E-value for the point estimate, 3.08 is of course smaller than the “null”

E-value of 4.64, as less bias could have resulted in an OR of 6.75 if the true OR were 2 than

would have been necessary to shift it from 1.

The interpretation of the parameters differs depending on the ordering of the selection

bias and misclassification. We can see that the parameters expected in the multi_bound()

function and printed by the multi_evalue() function reflect the ordering in which the biases

are added to multi_bias() (see output column).

# misclassification occurs in the selected group

summary(

multi_bias(selection("general"),

misclassification("exposure", rare_outcome = TRUE))

)

bias output argument

1 selection RR_UsY|A=1 RRUsYA1

2 selection RR_SUs|A=1 RRSUsA1

3 selection RR_UsY|A=0 RRUsYA0

4 selection RR_SUs|A=0 RRSUsA0

5 exposure misclassification OR_YA*|a,S ORYAaS

# selection is of misclassified individuals

summary(

multi_bias(misclassification("exposure", rare_outcome = TRUE),

selection("general"))

)

bias output argument

1 selection RR_UsY|A*=0 RRUsYA0

2 selection RR_SUs|A*=1 RRSUsA1

3 selection RR_UsY|A*=1 RRUsYA1

4 selection RR_SUs|A*=1 RRSUsA1

5 exposure misclassification OR_YA*|a ORYAa

When selection bias and confounding are both of interest, but restricting inference to the
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selected population only is desired, the parameters are shared by the two biases:

summary(

multi_bias(confounding(),

selection("selected"),

misclassification("exposure", rare_outcome = TRUE))

)

bias output argument

1 confounding and selection RR_AUsc|S RRAUscS

2 confounding and selection RR_UscY|S RRUscYS

3 exposure misclassification OR_YA*|a,S ORYAaS

Finally, we can see the expected relationship between the multi-bias bound and the

multi-bias E-value.

biases <- multi_bias(confounding(),

selection("general", "decreased risk"),

misclassification("outcome"))

# calculate bound with those parameters all equal to 2

multi_bound(biases, RRAUc = 2, RRUcY = 2, RRUsYA0 = 2, RRSUsA0 = 2, RRAYyS = 2)

[1] 3.555556

# get multi-bias e-value for that value; should be ~2

summary(multi_evalue(biases, est = RR(3.555556)))

[1] 1.999997

Examples from earlier literature

The multi-bias bound and E-value are generalizations of previously published results. To

demonstrate, we recreate here some examples from three articles introducing the bound and

E-value concept for confounding, selection bias, and differential misclassification.
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From Sensitivity Analysis without Assumptions, Ding & VanderWeele 20163

# example from page 370

biases_ex1 <- confounding()

# specifying parameters in bound

multi_bound(biases = biases_ex1, RRAUc = 2, RRUcY = 2)

[1] 1.333333

# Table 1, page 371

# consider all possible combinations for bound

param_vals <- c(1.3, 1.5, 1.8, 2, 2.5, 3, 3.5, 4, 5, 6, 8, 10)

params <- expand.grid(RRAUc = param_vals,

RRUcY = param_vals)

table1_vals <- mapply(multi_bound, RRAUc = params$RRAUc, RRUcY = params$RRUcY,

MoreArgs = list(biases = biases_ex1))

table1 <- matrix(table1_vals,

ncol = length(param_vals),

dimnames = list(param_vals, param_vals)

)

round(table1, 2)

1.3 1.5 1.8 2 2.5 3 3.5 4 5 6 8 10

1.3 1.06 1.08 1.11 1.13 1.16 1.18 1.20 1.21 1.23 1.24 1.25 1.26

1.5 1.08 1.12 1.17 1.20 1.25 1.29 1.31 1.33 1.36 1.38 1.41 1.43

1.8 1.11 1.17 1.25 1.29 1.36 1.42 1.47 1.50 1.55 1.59 1.64 1.67

2 1.13 1.20 1.29 1.33 1.43 1.50 1.56 1.60 1.67 1.71 1.78 1.82

2.5 1.16 1.25 1.36 1.43 1.56 1.67 1.75 1.82 1.92 2.00 2.11 2.17

3 1.18 1.29 1.42 1.50 1.67 1.80 1.91 2.00 2.14 2.25 2.40 2.50

3.5 1.20 1.31 1.47 1.56 1.75 1.91 2.04 2.15 2.33 2.47 2.67 2.80

4 1.21 1.33 1.50 1.60 1.82 2.00 2.15 2.29 2.50 2.67 2.91 3.08

5 1.23 1.36 1.55 1.67 1.92 2.14 2.33 2.50 2.78 3.00 3.33 3.57

6 1.24 1.38 1.59 1.71 2.00 2.25 2.47 2.67 3.00 3.27 3.69 4.00

8 1.25 1.41 1.64 1.78 2.11 2.40 2.67 2.91 3.33 3.69 4.27 4.71

10 1.26 1.43 1.67 1.82 2.17 2.50 2.80 3.08 3.57 4.00 4.71 5.26
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# reduce an observed RR of 2.5 to true value of 1.5, page 371

summary(multi_evalue(biases = confounding(), est = RR(2.5), true = 1.5))

[1] 2.720763

# smoking and lung cancer e-value, page 373

summary(multi_evalue(biases = confounding(), est = RR(10.73)))

[1] 20.94777

From Bounding bias due to selection, Smith & VanderWeele, 20192

biases_ex2 <- selection("general")

# result 1A example

multi_bound(biases = biases_ex2,

RRUsYA1 = 2, RRSUsA1 = 1.7, RRUsYA0 = 2, RRSUsA0 = 1.5)

[1] 1.511111

# result 1B example

multi_evalue(biases = biases_ex2, est = OR(73.1, rare = TRUE), lo = 13.0)

point lower upper

RR 73.10000 13.000000 NA

Multi-bias E-values 16.58415 6.670587 NA

# result 4B example

summary(multi_evalue(biases = selection("general", "S = U", "increased risk"),

est = OR(5.2, rare = TRUE)))

[1] 5.2
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# result 5B example

multi_evalue(biases = selection("selected"),

est = OR(1.5, rare = TRUE), lo = 1.22)

point lower upper

RR 1.500000 1.220000 NA

Multi-bias E-values 2.366025 1.738081 NA

From Simple Sensitivity Analysis for Differential Measurement Error, Vander-

Weele & Li 20191

biases_ex3 <- misclassification("exposure",

rare_outcome = TRUE, rare_exposure = TRUE)

multi_evalue(biases = biases_ex3, est = OR(1.51, rare = TRUE), lo = 1.03)

point lower upper

RR 1.51 1.03 NA

Multi-bias E-values 1.51 1.03 NA
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Figure 1: Multi-bias E-values for various combinations of biases and for observed risk ratios
ranging from 1 to 7.
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These examples show how various combinations of biases can be represented by directed

acyclic graphs, and the independence assumptions that are implied.

A Y

S

Us

Uc C

Y ∗

A. This DAG depicts unmeasured confounding
(through Uc), selection bias (through Us), and dif-
ferential misclassification of the outcome (due to
the A → Y ∗ edge). The assumptions Y q S |
A,C,Us and Ya q A | C,Uc are met. This implies
that we can apply the outcome misclassification
bound, then the selection bias bound, then the un-
measured confounding bound for inference in the
total population.

A Y

Uc

Us

C

S

Y ∗

B. This DAG depicts unmeasured confounding
(through Uc), selection bias (through Us), and dif-
ferential misclassification of the outcome (due to
the A → Y ∗ edge). The assumptions Y ∗ q S |
A,C,Us and Ya q A | C,Uc are met. This implies
that we can apply the selection bias bound, then
the outcome misclassification bound, then the un-
measured confounding bound for inference in the
total population.

A Y

S

Us

Uc C

A∗

C. This DAG depicts unmeasured confounding
(through Uc), selection bias (through Us), and dif-
ferential misclassification of the exposure (due to
the Y → A∗ edge). The assumption Ya q A | S =
1, C, Us, Uc is met. This implies that we can apply
the the exposure misclassification bound, then the
joint bound for selection bias and unmeasured con-
founding for inference in the selected population.

A Y

A∗
Uc S

C Us

D. This DAG depicts unmeasured confounding
(through Uc), selection bias (through Us), and dif-
ferential misclassification of the exposure (due to
the Y → A∗ edge). The assumptions Y q S |
A∗, C, Us and Ya q A | C,Uc are met. This im-
plies that we can apply the selection bias bound,
then the exposure misclassification bound, then the
unmeasured confounding bound for inference in the
total population.

Figure 2: Directed acyclic graphs depicting multiple biases.
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