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A bound for outcome misclassification, selection bias,

and unmeasured confounding

Result 1

Let A denote a binary exposure of interest, ¥ a binary outcome and Y* the misclassified
version, and C measured covariates. Additionally let S be a binary indicator of selection into
a study, so that we can collect data only on the subset of the population for which § = 1.
Finally, assume that there exist Uy and U, such that YII S| A,C,U; and Y, 1 A | C,U,, but

that it is not necessarily true that Y IS | A,C or Y, I A | C.

We can estimate a confounded risk ratio observed in the selected population, subject to

(potentially differential) outcome misclassification, RR%}S, but our inferential goal is a causal

risk ratio for the true outcome in the entire population, RRK{}Q:

Pr(Y'=1|A=1,5=1,c)

RRObS:
AY " Pr(Y*=1]A=0,5S=1,c)
Pr(Y1 =1 | C)
RRtrue:
AY PF(Y():llC)

We have from VanderWeele & Li! that, for RRY}® > 1,

Pr(Y=1|A=1,S=1,0)

RR%Y < BF,, x
AY =T pr(Y=1]A=0,S=1,c¢)

for

Pr(Y*=1|Y=y,A=1,S=1,¢)
BF,, = RRuy(y 501 = . 2
" AVl S=L = e Y = 1Y =y, A=0,8S= 10 2)

Then, since we are assuming that Y II S | A, C, Uy, from Smith & VanderWeele? we have that

Pr(¥Y=11A=1,5=1,c¢) <BF ><Pr(Y:1|A:1,c)

3
Pr(Y=1]A=0,S=1,¢) - " Pr(Y=1|A=0,c¢) ()

for

B, — RRy,yja=1 X RRsy,ja=1 " RRy,yja=0 X RRsy,|a=0
* " RRy,yjaz1 + RRsp,jaz1 — 1~ RRy,yjazo + RRsy,jaz0 — 1




where

max, Pr(Y=1|A=a,c,U; =u)

RRy, yitca = for a=0,1
U = P (Y =1 A=ac.U=u O °
Pr(Us=u|A=1,85=1,c)
RRs, a1 =
SUlA=L = O B U =u | A=1,5=0,¢)
Pr(Us=u|A=0,5=0,c)
RRsu, 40 = ' !
SU5|A—0 mBXPr(Us:u|A:0,S:17C) ( )

Finally, since we are assuming that ¥, I A | C, U, from Ding & VanderWeele? we have

Pr(Y:1|A:1,c)< Pr(Y1=1]¢)

BF, x 1= 19
Pry=1]A=0.0) - ““Pr(¥o=10 5)
for
RRap. X RR
BFC _ AU, U.Y (6)
RRAUC + RRUCY -1
where

Pr(U.=u|A=1,c¢)
RRay, =
A = O B (U, =u | A=0,0)
RR max, Pr(Y=1|A=a,c,U; =u)
= max .
vey a min,Pr(Y=1|A=a,c,U; =u)

Putting together expressions (1), (3), and (5), we have Result 1:

Pr(¥=11A=1,5=1,c¢)
Pr(¥=11A=0,5=1,c¢)
Pr(Y=1|A=1,c¢)

RRYY < BF,, x

< BF,, x BF, %
- T Pr(Y=1]A=0,¢)
PI‘(Y1:1|C)
< BF,, xBFyxBF, Xx ——— <
- g “TPr(Yp=1]c¢)
= BF,, X BF; X BF. x RRY}° . (7)

An alternative decomposition

Now assume that there exist Uy and U, such that Y*II S| A,C,Us and Y, 11 A | C,U.. This
may be the case if, for example, selection into the study is based on a factor related to the

(mis)measured outcome, not the true outcome.



Then we can bound the bias with the same final expression, but some of the parameters

within the bias factors are defined slightly differently.

The possible magnitude of selection bias can be defined in terms of the misclassified

outcome, so that

B, — RRy,y+ja=1 X RRsy,ja=1 o RRy,y+14=0 X RRsy,|a=0
* " RRy,y+jaz1 + RRsya=1 — 1~ RRy,y+jaz0 + RRsp,jaz0 — 1
where
Pr(Y*=1|A=a,c U, =
RRUSY*|A:a = il I‘( | GG s u) for a = O, 1

min, Pr(Y*=1|A=a,c,Us =u)
and RRgy,ja=1 and RRgy,ja=0 are defined as in (4) above.
Then, the measurement error correction applies to the entire population, so that

Pr(Y*=1|Y=y,A=1,¢)
BF,, = RRuy-|, = .
m = BRAYly = O S Yy 1| Y =y, A=0,0)

Expression (7) now holds with the newly defined BFy and BF,,.

A bound for exposure misclassification, selection bias,

and unmeasured confounding

Unlike the bound for outcome misclassification, the bound for exposure misclassification

from VanderWeele & Li! applies to the odds ratio, not the risk ratio, and the sensitivity

parameters are also not risk ratios. That is,

Pr(Y=1|A"=1,c) Pr(Y=1|A=1,c)
Pr(Y=0|A*=1,c Pr(Y=0|A=1,c

( ) < BF’. x ( )
Pr(Y=1|A*=0,c) m Pr(Y=1|A=0,c)
Pr(Y=0|A*=0,c) Pr(Y=0]A=0,c)

for

=~

s’1 fl’ Lll s
1-st 1-f1  f! s

’r _ 1 1 0
BF;, = ORy+|, = max T T
1=sy 1-f5 1=si 1=/

where s{, =Pr(A*=1|Y=y,A=1,c) and f{=Pr(A"=1|Y =y,A=0,c).

<N
Bnd

St

(8)



Applying this bound after factoring out selection bias, we would find that we are left with

Pr(Y=0|A=0,¢c) Pr(Y=0]|A"=1,c¢)
Pr(Y=0|A=1,¢) Pr(Y=0]|A*=0,c¢)

RRSY < BF), x BF, x BF, x RRY} x

for some BF,, BF;, and BF., which is not as useful for sensitivity analysis. However, if
the outcome is sufficiently rare that Pr(Y =0|-) = 1 in all strata, a simpler bound holds

approximately, as we show next.

Again we can define the parameters in the bound in two ways by considering two sets of

assumptions.

Result 2

If there exist Uy and U, such that YIS | A,C,U; and Y, 1A | C,U;,and if Pr(Y =0]:) = 1,

then we have Result 2:

RRObS — Pr(¥=1]A"=1,5=1,¢)
AY T Pr(Y=1|A*=0,S=1,¢)

< BF, x BF; x BF, x RR}}*

for BF, = ORya+|4,5=1 equivalent to the expression (9), but with s}, =Pr (A" =1|Y =y,A=1,8=1,¢)

and fy =Pr(A*=1|Y =y,A=0,8=1,c); BF; as defined in (4); and BF, as defined in (6).

An alternative decomposition

Alternatively, if Y II § | A*,C,U; and Y, 1 A | C,U,, then the bound holds approximately
with

RRy,yja=1 X RRsy,ja*=1 RRy,y|a*=0 X RRsy,ja+=0

BF; = X
* " RRy,yja=1 + RRsp,jar=1 — 1~ RRy,yjas=0 + RRsy, a0 — 1

where RRy yja*=« and RRgy,|a:=0 are defined as above, with all A replaced with A* and Y*

replaced with Y, and with BF), as originally defined in expression (9).



Interpretation of the exposure misclassification parameters

While all of the sensitivity parameters we have considered thus far are risk ratios, we have
seen that those making up the bound for exposure misclassification are not. If, however, the
misclassified exposure is sufficiently rare that Pr(A* =0 | -) ~ 1, then we can interpret the

sensitivity parameters as risk ratios:

Pr(A*=1|Y=1,A=
BF:n:RRYA*m:maxa( r( | - a,c)) or

Pr(A*=1|Y=0,A=a,c)
Pr(A*=1|Y=1,A=a,5=1,¢)
Pr(A*=1|Y=0,A=a,S=1,¢)]

BF,, = RRya*|q,5=1 = maxa (

Alternatively, if the exposure is not particularly rare, we can interpret the sensitivity pa-
rameters as squares of the RR equivalents, using the square-root approximation of the odds

ratio.4

Inference in the selected population

Result 3 (Under outcome misclassification)

It may be that our target of inference is the selected population only, so that

Pr(v1=1|8=1,¢)
RRtrue — )
AYIS=L = Pr(yy=1]8=1,c)

In this case we need that assumption Y, I A | § = 1,C,U., U : we must simultaneously
consider both the factor(s) creating selection bias and the factor(s) creating confounding
(which may be one and the same). Let U, denote the vector (U, U.). Then after factoring

out the misclassification bias, we have Result 3:

Pr(Y=1A=1,8=1,¢)

Pr(¥=11A=0,5=1,¢)
PF(Y1=1|S:1,C)
Pr(Yo=1]S=1c)

RRYY < BF,, x

< BF,, x BF. X

= BF, x BF;e x RRy}_, (10)



for

RRAUSC X RRUSCY

BF;. =
RRAUSC + RRUSCY -1

where

RRay :maXPr(Usc:ulAzl,Szl,c)

se u Pr(Ue=u|A=0,S=1,c¢)
max, Pr(Y=1|A=a,S=1,c,Usc = u)
min, Pr(Y=1|A=a,S=1,c,Uy = u)

RRUSC Yy = max
a

and BF,, is defined as in (2).

Under exposure misclassification

Again we consider the bias due to selection and unmeasured confounding jointly. The bound
in expression (10) holds with BF;, constructed with s, =Pr(A*=1|Y=y,A=1,5=1,¢)

and fy=Pr(A*=1|Y=y,A=0,5S=1,0).

The multi-bias E-value

The bounds in Results 1, 2, and 3 allow researchers and consumers of research to choose values
for bias parameters and investigate their possible effects on an observed risk ratio. Target-
adjusted sensitivity analysis, on the other hand, quantifies the strength of bias necessary to
shift an observation to another value, often the null value, though others can be used.® The
E-value for unmeasured confounding is an example of this approach. We can calculate an
equivalent value for a combination of biases using the bounds in this article. The E-value
for unmeasured confounding refers to a value that can be shown to be sufficient to explain
away an observed estimate and that jointly minimizes the maximum of the two sensitivity
parameters for unmeasured confounding.® Similarly, the multi-bias E-value describes the
minimum value that all of the sensitivity parameters for each of the biases would have to

take on for a given observed risk ratio to be compatible with a truly null risk ratio. Since the



overall bias is monotone increasing in the individual bias parameters, it follows that if any one
of the bias parameters is less than the multi-bias E-value, then at least one other parameter

would have to be greater than the multi-bias E-value in order to completely explain a result.

Recall that under non-differential misclassification of the exposure, the BF,, factor in
the bound is not a risk ratio. If the misclassified exposure is rare, then that parameter
can be interpreted as an approximate risk ratio; otherwise, an approximate square root
transformation for the odds ratio can be applied so as to approximate the risk ratio.! In this
way all the parameters that the multi-bias E-value pertains to are on the (approximate) risk

ratio scale.

Figure 2 shows the size of the multiple-bias E-value for various combinations of biases
and across a range of observed risk ratios. In general, this demonstrates that when there
are multiple forms of bias, very little of each type could be sufficient to produce a risk ratio
that is within the range we generally see in epidemiologic studies. For example, when the
null is true, it is possible to observe a risk ratio of 4 if each of the outcome misclassification
(RRay|y,s=1), selection bias (RRy,yja=1, RRy,yja=1, RRsu,ja=1, RRsy,a=0), and unmeasured

confounding (RRy,y, RRay,) parameters is approximately 1.89.

Of course, it is unlikely that each of these sensitivity analysis parameters would be equal
to the others, and equal to 1.89. The bounds in this article can be used to assess the bias with
a more realistic set of parameters. However, comparing multiple-bias E-values for various
combinations of biases may be useful when planning studies to assess where resources should
be invested to avoid certain biases, or to assess where a more in-depth bias analysis would be

most useful.

Unfortunately, we know of no closed-form solution for this value when we are faced with
all three types of bias, but it is easily solved numerically. The expressions to be solved are
given in the final column of Table 1. To calculate the analogous multi-bias E-value needed

to shift the observed RR%I;,S to some risk ratio, RR%}‘%, other than the null, one can simply



replace RR%),S in the each formula with RRZ?,S / RR%}e. Also, each formula presupposes that

RR%'}S >=1; for apparently protective exposures, the inverse should be taken first.

We will demonstrate interpretation of the multiple bias E-value with respect to our

examples, and then briefly describe an R package that can be used to implement the results.

Examples

Recall from the main text that the study of HIV infection in children found RR?S,S =6.75,7
which we determined was possibly affected by selection bias and unmeasured confounding.
The multi-bias E-value for that study, given the assumptions about bias we have made, is
4.64. This tells us that RRy,yja=1 = RRsy,ja=1 = RRay, = RRy,y =2 4.64 could suffice to
completely explain the observed result, but weaker combined bias would not. If, for example,
selection bias were indeed weaker, the strength of the unmeasured confounding parameters
would have to be stronger than 4.64 for the observation to be compatible with a truly null
effect. Repeating the calculation with the lower limit of the confidence interval, we obtain
a multi-bias E-value of 2.73. If all of the parameters were this large, it is possible that the

confidence interval would include the null.

The estimate from the vitamins-leukemia study was RRZE; = 0.51.8 After taking the
inverse so thatRRleSY = 1/0.51 = 1.96, we find that the multi-bias E-value for exposure
misclassification and unmeasured confounding is 1.35. In order to interpret that number
consistently across biases, the multi-bias E-value we have calculated pertains to RRay,,
RRy.y, and RRy4+|4, the latter being the square-root approximation of the ORy4«|, term in
the bound for exposure misclassification.! This allows us to interpret 1.35 as the minimum
strength on the risk ratio scale that an unmeasured confounder, or set of confounders, would
have to have on the outcome, that would have to relate vitamin use to the confounder, and
that the false positive probability or sensitivity for vitamin use would have to be increase

by, in order for these biases to explain the entire observed risk ratio. Again, this is simply a



heuristic, not something we would expect to be the case; for example, we might expect weaker
misclassification but stronger confounding. For the limit of the confidence interval closest to
the null, 0.89, if we take inverses, we obtain 1/0.89 = 1.12 and the multi-bias E-value for this
is only 1.06, indicating that whether the true risk ratio is smaller than or greater than 1 is

indeed sensitive to relatively small amounts of bias.

Derivation

To form a multiple bias E-value,® we can set all of the parameters that make up the terms
in the bounds equal to each other, then solve for that value to see what magnitude of bias

would result in an RR%}S of at least the value observed, if RRY}® = 1.

For example, for the bound for outcome misclassification, general selection bias, and

unmeasured confounding;:

RRy,yja=1 X RRsy,ja=1

RR° < max RR qy+|y g1 X
AY = AY*|y,S=1
RRUSY|A=1 + RRSUS|A=1 -1

RRy,yja=0 X RRsy,|a=0 o RRau, x RRy,y 1
RRUSY|A=O + RRSUSM:Q -1 RRAUC + RRUCY -1
%2 %2 x2
=x X X X
2x—-1 2x-1 2x-1
x?
A 11
(2x - 1)3 (1)

for x = RRay+|y,s=1 = RRy,yja=1 = RRsu,ja=1 = RRy,yja=0 = RRsy,ja=0 = RRav. = RRy,y.

To our knowledge, this polynomial has no closed-form solution. However, we can easily

solve it numerically.

For example, if RR%’S = 3, then x = 1.71, meaning that if each of the parameters were at
least 1.71, the observed risk ratio could be consistent with a truly null causal risk ratio. If
any of the parameters were smaller than 1.71, others would have to be larger if the causal

risk ratio were truly null.

We can solve the inequality for any combination of parameters that make up a particular

10



bound in a given situation (e.g., for outcome misclassification and selection bias only, or
for exposure misclassification with a rare outcome and unmeasured confounding). When
considering exposure misclassification, to calculate a multiple bias E-value, we first must
confirm that the outcome is rare. Then, if the misclassified exposure is rare, we can solve
equation (11) and interpret it with respect to the appropriate parameters; if the exposure is
not rare, we can solve

‘ RRy,yja=1 X RRsy,ja=1
RRObh < RR2 . X s s
AY YAa.5=1 ™ RRy,yjaz1 + RRsy,jaz1 — 1

RRy,yja=0 X RRsu,|a=0 o RRav, X RRy,y 1
RRUSYIA:O + RRSUS|A:0 -1 RRAUC + RRUCY -1
9 x2 x2 x2
=x" X X X
2x—-1 2x-1 2x-1
C(2x-1)3

and interpret with respect to the same parameters.

Implementation in R

We can use new functions from the R package EValue? to either calculate the appropriate
multiple bias E-value or to calculate a bound for the bias, given proposed parameters. The
primary new functions in the package, multi_bound() and multi_evalue(), accept a set of
biases (out of confounding(), selection(), and misclassification(), which take various
arguments describing the bias in more detail). The function multi_bias() is used to declare
those biases. The multi_bound() function requires values for the parameters making up the
bound for the biases in question. The multi_evalue() function requires just a value for the
observed risk ratio, and prints a message to the user about the sensitivity parameters it refers

to.

We will demonstrate the new package functionality by working through the examples in

the main text. We will then show how the new functions can be used to recreate examples

11



from earlier literature as well.

Llibrary(EValue)

Examples from the main text

The multi_bias() function takes as arguments one or more of the three bias functions,
confounding(), selection(), and misclassification(). They should be listed in the order
in which they occur in the data (i.e., does the measurement happen in the sample, or is the
sample selected based on mismeasured exposure or outcome values?). Each of selection()
and misclassification() take additional arguments depending on the assumptions and

simplifications of a given scenario.

In the HIV example, we were interested in the composite bias due to confounding and
selection. We were willing to make the assumption that the outcome is more likely in the
selected portion of both exposure groups, so we include the argument "increased risk".
(The "general" argument is in contrast to "selected", the latter meaning that we are only
interested in inference in the selected population. Since "general" is the default, we could
leave it out.)

HIV_biases <- multi_bias(confounding(),

selection("general", "increased risk"))

Printing the biases prints out the arguments that are required for the multi_bound()

function for easy copying and pasting into that function.

HIV_biases
multi_bound(biases = HIV_biases,
RRAUc = 2.3, RRUcY = 2.5, RRUsYA1 = 3, RRSUsA1 = 2)

[1]1 2.269737

Because the labeling of the arguments is not necessarily intuitive, we might want to

12



confirm which refers to which parameter. We can use the summary() function on a object

created with the multi_bias() function to print more information about the biases.

summary(HIV_biases)

bias output argument
1 confounding RR_AUc RRAUc
2 confounding RR_UcY RRUcY

3 selection RR_UsY|A=1 RRUsYA1
4 selection RR_SUs|A=1 RRSUsA1

For easy copying and pasting of the notation we used in this appendix and in the main
text, the argument latex = TRUE can be used in the summary function to print out an

additional column with the parameters in our notation.

To calculate a multi-bias E-value, we must provide the observed effect estimate along
with the set of biases. There are two options for doing so. The first is to declare the effect
estimate with one of RR(), OR(), or HR(), depending on whether it is a risk, odds, or hazard

ratio.

multi_evalue(biases = HIV_biases,
est = OR(6.75, rare = TRUE),
lo = 2.79, hi = 16.31)

point Llower upper
RR 6.750000 2.790000 16.31
Multi-bias E-values 4.635703 2.728474 NA

The lower and upper bound of the confidence interval are assumed to be on the same

scale.

Next we will look at the vitamins-leukemia example from the text. The misclassifi-
cation() bias requires one of either "outcome" or "exposure"; if exposure misclassification
is of interest, the user is also required to specify whether the outcome and/or exposure are

sufficiently rare to use a risk ratio approximation for an odds ratio (irrespective of whether

13



the effect estimate is actually on the odds ratio scale).

leuk_biases <- multi_bias(confounding(),
misclassification("exposure",
rare_outcome = TRUE,
rare_exposure = FALSE))
leuk_biases

Again we can calculate the bound and multi-bias E-value as in the text.

multi_bound(biases = leuk_biases, RRAUc = 2, RRUcY = 1.22, ORYAa = 1.59)

[1]1 1.747568

multi_evalue(biases = leuk_biases,
est = OR(0.51, rare = TRUE),
lo = 0.3, hi = 0.89)

point lower upper
RR 0.510000 0.3 0.890000
Multi-bias E-values 1.351985 NA 1.058404

We can easily demonstrate that the E-value is the same whether or not the effect estimate
is inverted if the exposure is apparently protective. Also, if we don’t want the message about
the parameters to print, we can use the argument verbose = FALSE.
multi_evalue(biases = leuk_biases,

est = OR(1/0.51, rare = TRUE),

hi = 1/0.3, lo = 1/0.89,
verbose = FALSE)

point Lower upper
RR 1.960784 1.123596 3.333333
Multi-bias E-values 1.351985 1.058404 NA

Finally, we presented a multi-bias E-value for all three biases. We can use the summary ()

function to just print the single value, instead of the matrix of the estimates and confidence

14



limits and E-values for both.

summary(multi_evalue(biases = multi_bias(confounding(),
selection("general"),
misclassification("outcome")),
est = RR(4)))

[1] 1.888478

Extensions not appearing in the main text

We may want to vary the magnitude of the parameters used to calculate the bounds. We’ll

use the biases from the HIV example to demonstrate.

# original bound
multi_bound(biases = HIV_biases, RRAUc = 2, RRUcY = 2.5,
RRUSYA1 = 3, RRSUsA1 = 2)

[1] 2.142857

# vary RRAUc from 1.25 to 3
sapply(seq(1.25, 3, by = .25), function(RRAUc) {
multi_bound(biases = HIV_biases, RRAUc = RRAUc,
RRUcY = 2.5, RRUsYA1 = 3, RRSUsA1 = 2)

b))

[1] 1.704545 1.875000 2.019231 2.142857 2.250000 2.343750 2.426471 2.500000

# vary RRAUc and RRUcY
param_vals <- seq(1.25, 3, by = .25)

params <- expand.grid(RRAUc
RRUCY

param_vals,

param_vals)

vals <- mapply(multi_bound,
RRAUc = params$RRAUc,

15



RRUcY = params$RRUcY,
MoreArgs = list(biases = HIV_biases,
RRUsYA1 = 3, RRSUsA1 = 2))
matrix(vals,
ncol = length(param_vals),

dimnames = list(param_vals, param_vals)

)

1.25 1.5 1.75 2 2.25 2.5 2.75 3
1.25 1.562500 1.607143 1.640625 1.666667 1.687500 1.704545 1.718750 1.730769
1.5 1.607143 1.687500 1.750000 1.800000 1.840909 1.875000 1.903846 1.928571
1.75 1.640625 1.750000 1.837500 1.909091 1.968750 2.019231 2.062500 2.100000
2 1.666667 1.800000 1.909091 2.000000 2.076923 2.142857 2.200000 2.250000
2.25 1.687500 1.840909 1.968750 2.076923 2.169643 2.250000 2.320312 2.382353
2.5 1.704545 1.875000 2.019231 2.142857 2.250000 2.343750 2.426471 2.500000
2.75 1.718750 1.903846 2.062500 2.200000 2.320312 2.426471 2.520833 2.605263
3 1.730769 1.928571 2.100000 2.250000 2.382353 2.500000 2.605263 2.700000

Of course, all of the parameters in the bound could be varied, but summarizing the
resulting bounds in a simple table or figure becomes more difficult with more than two

dimensions.

When calculating a multi-bias E-value, we may also think that the null is unlikely but
wish to consider how much bias could have shifted a different true value to the observed
value. For example, in the HIV example, we could calculate a multi-bias E-value for a true

risk ratio of 2 rather than the null value of 1:

multi_evalue(biases = HIV_biases,
est = OR(6.75, rare = TRUE),
lo = 2.79, hi = 16.31,
true = 2)

point Lower upper
RR 6.750000 2.790000 16.31
Multi-bias E-values 3.077243 1.643623 NA
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The multi-bias E-value for the point estimate, 3.08 is of course smaller than the “null”
E-value of 4.64, as less bias could have resulted in an OR of 6.75 if the true OR were 2 than

would have been necessary to shift it from 1.

The interpretation of the parameters differs depending on the ordering of the selection
bias and misclassification. We can see that the parameters expected in the multi_bound()
function and printed by the multi_evalue() function reflect the ordering in which the biases

are added to multi_bias() (see output column).

summary (
multi_bias(selection("general"),

misclassification("exposure", rare_outcome = TRUE))

)
bias output argument
1 selection RR_UsY|A=1 RRUsYAT1
2 selection RR_SUs|A=1 RRSUsAT
3 selection RR_UsY|A=0 RRUsYAO
4 selection RR_SUs|A=0 RRSUsAO
5 exposure misclassification OR_YA*|a,S  ORYAaS
summary (
multi_bias(misclassification("exposure", rare_outcome = TRUE),
selection("general"))
)
bias output argument
1 selection RR_UsY|A*=0 RRUsYAO
2 selection RR_SUs|A*=1 RRSUsA1
3 selection RR_UsY|A*=1 RRUsYAT
4 selection RR_SUs|A*=1 RRSUsAI
5 exposure misclassification OR_YAx*|a ORYAa

When selection bias and confounding are both of interest, but restricting inference to the
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selected population only is desired, the parameters are shared by the two biases:

summary (
multi_bias(confounding(),
selection("selected"),
misclassification("exposure", rare_outcome = TRUE))

bias output argument
1 confounding and selection RR_AUsc|S RRAUscS
2 confounding and selection RR_UscY|S RRUscYS

3 exposure misclassification OR_YAx|a,S  ORYAaS

Finally, we can see the expected relationship between the multi-bias bound and the

multi-bias E-value.

biases <- multi_bias(confounding(),
selection("general", "decreased risk"),

misclassification("outcome"))

# calculate bound with those parameters all equal to 2
multi_bound(biases, RRAUc = 2, RRUcY = 2, RRUsYAO = 2, RRSUsAO = 2, RRAYyS = 2)

[1] 3.555556

# get multi-bias e-value for that value; should be ~2
summary(multi_evalue(biases, est = RR(3.555556)))

[1] 1.999997

Examples from earlier literature

The multi-bias bound and E-value are generalizations of previously published results. To
demonstrate, we recreate here some examples from three articles introducing the bound and

E-value concept for confounding, selection bias, and differential misclassification.
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From Sensitivity Analysis without Assumptions, Ding & VanderWeele 20163

# example from page 370

biases_ex1 <- confounding()

# specifying parameters in bound

multi_bound(biases = biases_ex1, RRAUc = 2, RRUcY = 2)

[1] 1.333333

# Table 1, page 371
# consider all possible combinations for bound
param_vals <- c(1.3, 1.5, 1.8, 2, 2.5, 3, 3.5, 4, 5, 6, 8, 10)
params <- expand.grid(RRAUc = param_vals,
RRUcY = param_vals)
tablel_vals <- mapply(multi_bound, RRAUc = params$RRAUc, RRUcY = params$RRUcY,
MoreArgs = list(biases = biases_ex1))
tablel <- matrix(tablel_vals,
ncol = length(param_vals),
dimnames = list(param_vals, param_vals)

)
round(tablel, 2)

1.3 1.5 1.8 2 2.5 3 3.5 4 5 6 8 10

1.3 1.06 1.08 1.11 1.13 1.16 1.18 1.20 1.21 1.23 1.24 1.25 1.26
1.5 1.08 1.12 1.17 1.20 1.25 1.29 1.31 1.33 1.36 1.38 1.41 1.43
1.8 1.11 1.17 1.25 1.29 1.36 1.42 1.47 1.50 1.55 1.59 1.64 1.67
2 1.131.201.29 1.33 1.43 1.50 1.56 1.60 1.67 1.71 1.78 1.82
2.5 1.16 1.25 1.36 1.43 1.56 1.67 1.75 1.82 1.92 2.00 2.11 2.17
3 1.181.29 1.42 1.50 1.67 1.80 1.91 2.00 2.14 2.25 2.40 2.50
3.5 1.20 1.31 1.47 1.56 1.75 1.91 2.04 2.15 2.33 2.47 2.67 2.80
4 1.21 1.33 1.50 1.60 1.82 2.00 2.15 2.29 2.50 2.67 2.91 3.08
5 1.231.36 1.55 1.67 1.92 2.14 2.33 2.50 2.78 3.00 3.33 3.57
6 1.24 1.38 1.59 1.71 2.00 2.25 2.47 2.67 3.00 3.27 3.69 4.00
8 1.251.41 1.64 1.78 2.11 2.40 2.67 2.91 3.33 3.69 4.27 4.71
10 1.26 1.43 1.67 1.82 2.17 2.50 2.80 3.08 3.57 4.00 4.71 5.26
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# reduce an observed RR of 2.5 to true value of 1.5, page 371
RR(2.5), true = 1.5))

summary(multi_evalue(biases = confounding(), est

[1] 2.720763

# smoking and lung cancer e-value, page 373

summary(multi_evalue(biases = confounding(), est = RR(10.73)))

[1] 20.94777

From Bounding bias due to selection, Smith & VanderWeele, 20192

biases_ex2 <- selection("general")
# result 1A example

multi_bound(biases = biases_ex2,
RRUsYA1 = 2, RRSUsA1 = 1.7, RRUsSYAO = 2, RRSUsAO = 1.5)

(1] 1.511111

# result 1B example
multi_evalue(biases = biases_ex2, est = OR(73.1, rare = TRUE), lo = 13.0)

point Lower upper
RR 73.10000 13.000000 NA
Multi-bias E-values 16.58415 6.670587 NA

# result 4B example
summary(multi_evalue(biases = selection('general", "S = U", "increased risk"),
est = OR(5.2, rare = TRUE)))

(11 5.2
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# result 5B example
multi_evalue(biases = selection("selected"),
est = OR(1.5, rare = TRUE), lo = 1.22)

point Lower upper
RR 1.500000 1.220000 NA
Multi-bias E-values 2.366025 1.738081 NA

From Simple Sensitivity Analysis for Differential Measurement Error, Vander-

Weele & Li 2019

biases_ex3 <- misclassification("exposure",
rare_outcome = TRUE, rare_exposure = TRUE)
multi_evalue(biases = biases_ex3, est = OR(1.51, rare = TRUE), lo = 1.03)

point lower upper
RR 1.51 1.03 NA
Multi-bias E-values 1.51 1.03 NA
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Figure 1: Multi-bias E-values for various combinations of biases and for observed risk ratios
ranging from 1 to 7.
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These examples show how various combinations of biases can be represented by directed

acyclic graphs, and the independence assumptions that are implied.

A. This DAG depicts unmeasured confounding
(through U.), selection bias (through Us), and dif-
ferential misclassification of the outcome (due to
the A — Y™ edge). The assumptions Y IT S |
A,C,Us and Y, T A | C,U, are met. This implies
that we can apply the outcome misclassification
bound, then the selection bias bound, then the un-
measured confounding bound for inference in the
total population.

B. This DAG depicts unmeasured confounding
(through U.), selection bias (through Uj), and dif-
ferential misclassification of the outcome (due to
the A — Y™ edge). The assumptions Y* IT S |
A, C,Usand Y, IT A | C,U,. are met. This implies
that we can apply the selection bias bound, then
the outcome misclassification bound, then the un-
measured confounding bound for inference in the
total population.

C. This DAG depicts unmeasured confounding
(through U..), selection bias (through Uy), and dif-
ferential misclassification of the exposure (due to
the Y — A* edge). The assumption Y, IT A | S =
1,C,Us, U, is met. This implies that we can apply
the the exposure misclassification bound, then the
joint bound for selection bias and unmeasured con-
founding for inference in the selected population.

D. This DAG depicts unmeasured confounding
(through U..), selection bias (through Uy), and dif-
ferential misclassification of the exposure (due to
the Y — A* edge). The assumptions Y IT S |
A* C,Us and Y, T A | C,U. are met. This im-
plies that we can apply the selection bias bound,
then the exposure misclassification bound, then the
unmeasured confounding bound for inference in the
total population.

Figure 2: Directed acyclic graphs depicting multiple biases.
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