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eAppendix 1: Derivations and Proofs.

We will use the notation A ?? BjC to denote that A is independent of B conditional on C. Total

e¤ects are identi�ed if, conditional on some set of measured covariates C, the e¤ect of exposure A on

outcome Y is unconfounded given C; in counterfactual notation, this is Ya ?? AjC. Controlled direct

e¤ects are identi�ed if control is made for a set of covariates C that includes all confounders of not

only the exposure-outcome relationship but also the mediator-outcome relationship. In counterfactual

notation, we require that for all a and m,

Yam ?? AjC (A1)

Yam ??M jfA;Cg: (A2)

If this is the case then the controlled direct e¤ect is identi�ed by

P (Yam > jjc)
P (Yam � jjc)

=
P (Ya�m > jjc)
P (Ya�m � jjc)

=
P (Y > jja;m; c)
P (Y � jja;m; c)=

P (Y > jja;m; c)
P (Y � jja;m; c)

since

P (Yam > jjc)
P (Yam � jjc)

=
P (Ya�m > jjc)
P (Ya�m � jjc)

=
P (Yam > jja; c)
P (Yam � jja; c)

=
P (Ya�m > jja�; c)
P (Ya�m � jja�; c)

by (A1)

=
P (Yam > jja;m; c)
P (Yam � jja;m; c)

=
P (Ya�m > jja�;m; c)
P (Ya�m � jja�;m; c)

by (A2)

=
P (Y > jja;m; c)
P (Y � jja;m; c)=

P (Y > jja�;m; c)
P (Y � jja�;m; c) by consistency.

Natural direct and indirect e¤ects will be identi�ed if, in addition to assumptions (A1) and (A2),

the following two assumptions hold, that for all a, a� and m,

Ma ?? AjC (A3)

Yam ??Ma� jC: (A4)

Assumption (A3) can be interpreted as: conditional on C, there is no unmeasured confounding
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of the exposure-mediator relationship. On a causal diagram interpreted as a set of non-parametric

structural equations11, if assumption (A2) holds, then assumption (A4) will hold if there is no variable

L that is a¤ected by the exposure A and that itself a¤ects both M and Y .

If assumptions (A1)-(A4) hold, then we have

P (YaMa� > jjc)
P (YaMa� � jjc)

=

X
m
P (Yam > jjc;Ma� = m)P (Ma� = mjc)X

m
P (Yam � jjc;Ma� = m)P (Ma� = mjc)

by iterated expectations

=

X
m
P (Yam > jjc)P (Ma� = mja�; c)X

m
P (Yam � jjc)P (Ma� = mja�; c)

by (A4) and (A3)

=

X
m
P (Yam > jja; c)P (M = mja�; c)X

m
P (Yam � jj; ac)P (M = mja�; c)

by (A1) and consistency

=

X
m
P (Yam > jja;m; c)P (M = mja�; c)X

m
P (Yam � jj; a;m; c)P (M = mja�; c)

by (A2)

=

X
m
P (Y > jja;m; c)P (M = mja�; c)X

m
P (Y � jja;m; c)P (M = mja�; c)

by consistency.

If we apply this result and replace a with a� we get
P (Ya�Ma�>jjc)
P (Ya�Ma��jjc)

=

X
m
P (Y >jja�;m;c)P (M=mja�;c)X

m
P (Y�jja�;m;c)P (M=mja�;c)

and

from this it follows that the natural direct e¤ect is given by:

NDE =

X
m
P (Y > jja;m; c)P (M = mja�; c)X

m
P (Y � jja;m; c)P (M = mja�; c)

=

X
m
P (Y > jja�;m; c)P (M = mja�; c)X

m
P (Y � jja�;m; c)P (M = mja�; c)

:

If we apply this result and replace a� with a we get P (YaMa>jjc)
P (YaMa�jjc)

=

X
m
P (Y >jja;m;c)P (M=mja;c)X

m
P (Y�jja;m;c)P (M=mja;c)

and

from this it follows that the natural indirect e¤ect is given by:

NIE =

X
m
P (Y > jja;m; c)P (M = mja; c)X

m
P (Y � jja;m; c)P (M = mja; c)

=

X
m
P (Y > jja;m; c)P (M = mja�; c)X

m
P (Y � jja;m; c)P (M = mja�; c)

:

Suppose that the mediator follows a normal distribution with constant conditional variance �2:

E[M ja; c] = �0 + �1a+ �02c

The ordinal logistic regression model is:
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logfP (Y � jja;m; c)
P (Y > jja;m; c)g = �j � (�

j
1a+ �

j
2m+ �

j
3am+ �

j0
4 c)

We will consider potential interaction between the exposure and the mediator, but this can of

course be dropped by setting �j3 = 0. The outcome regression model also implies:

logfP (Y > jja;m; c)
P (Y � jja;m; c)g = ��j + (�

j
1a+ �

j
2m+ �

j
3am+ �

j0
4 c):

Note that if the reference category J = 1 is su¢ ciently common (e.g. P (J = 1ja;m; c) > 90%)

then we have the following approximation:

logfP (Y > jja;m; c)g �

logfP (Y > jja;m; c)
P (Y � jja;m; c)g = ��j + (�j1a+ �

j
2m+ �

j
3am+ �

j0
4 c):

Under confounding assumptions (1)-(4) we have that logfP (YaMa�>jjc)
P (YaMa��jjc)

g

� logfP (YaMa� > jjc)g

= logf
Z
P (Yam > jjc;Ma� = m)P (Ma� = mjc)dmg

= logf
Z
P (Yam > jjc)P (Ma� = mjc)dmg by (4)

= logf
Z
P (Y > jja;m; c)P (M = mja�; c)dmg by (1)-(3)

� logf
Z
exp(��j + �j1a+ �

j
2m+ �

j
3am+ �

j0
4 c)P (M = mja�; c)dmg

= logfexp(��j + �j1a+ �
j0
4 c)

Z
expf(�j2 + �

j
3a)mgP (M = mja�; c)dmg

= logfexp(��j + �j1a+ �
j0
4 c)E[e

(�j2+�
j
3a)M ja�; c]g

= logfexp(��j + �j1a+ �
j0
4 c) exp((�

j
2 + �

j
3a)(�0 + �1a

� + �02c) +
1

2
(�j2 + �

j
3a)

2�2)g

= ��j + �j1a+ �
j0
4 c+ (�

j
2 + �

j
3a)(�0 + �1a

� + �02c) +
1

2
(�j2 + �

j
3a)

2�2:
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Similarly, we have that logfP (YaMa>jjc)
P (YaM�jjc) g

� ��j + �j1a+ �
j0
4 c+ (�

j
2 + �

j
3a)(�0 + �1a+ �

0
2c) +

1

2
(�j2 + �

j
3a)

2�2

and logfP (Ya�Ma�>jjc)
P (Ya�Ma��jjc)

g

� ��j + �j1a� + �
j0
4 c+ (�

j
2 + �

j
3a
�)(�0 + �1a

� + �02c) +
1

2
(�j2 + �

j
3a
�)2�2

Thus for the natural indirect e¤ect odds ratio we have

logfNIEg = log[
P (YaMa > jjc)
P (YaMa � jjc)

=
P (YaMa� > jjc)
P (YaMa� � jjc)

]

= log[
P (YaMa > jjc)
P (YaMa � jjc)

]� log[P (YaMa� > jjc)
P (YaMa� � jjc)

]

� ��j + �j1a+ �
j0
4 c+ (�

j
2 + �

j
3a)(�0 + �1a+ �

0
2c) +

1

2
(�j2 + �

j
3a)

2�2

�f��j + �j1a+ �
j0
4 c+ (�

j
2 + �

j
3a)(�0 + �1a

� + �02c) +
1

2
(�j2 + �

j
3a)

2�2g

= (�j2�1 + �
j
3�1a)(a� a�):

Exponentiating the equalities, NIE � expf(�j2�1 + �
j
3�1a)(a� a�)g.

For the natural direct e¤ect odds ratio, we have that

logfNDEg = log[
P (YaMa� > jjc)
P (YaMa� � jjc)

=
P (Ya�Ma� > jjc)
P (Ya�Ma� � jjc)

]

= log[
P (YaMa� > jjc)
P (YaMa� � jjc)

]� log[P (Ya
�Ma� > jjc)

P (Ya�Ma� � jjc)
]

� ��j + �j1a+ �
j0
4 c+ (�

j
2 + �

j
3a)(�0 + �1a

� + �02c) +
1

2
(�j2 + �

j
3a)

2�2

�f��j + �j1a� + �
j0
4 c+ (�

j
2 + �

j
3a
�)(�0 + �1a

� + �02c) +
1

2
(�j2 + �

j
3a
�)2�2g

= f�j1 + �
j
3(�0 + �1a

� + �02c+ �
j
2�
2)g(a� a�) + 0:5�j23 �2(a2 � a�2):

Exponentiating gives

NDE � exp[f�j1 + �
j
3(�0 + �1a

� + �02c+ �
j
2�
2)g(a� a�) + 0:5�j23 �2(a2 � a�2)]: (A1)

Now suppose that �j3 = 0 then the natural indirect e¤ect odds ratio reduces to NIE � expf�
j
2�1(a�
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a�)g and the natural direct e¤ect odds ratio reduces to NDE � expf�j1(a� a�)g.

If what is of interest is the controlled direct e¤ect, then if assumptions 1 and 2 hold then we have

that CDE(m) =

P (Yam > jjc)
P (Yam � jjc)

=
P (Ya�m > jjc)
P (Ya�m � jjc)

=
P (Yam > jja;m; c)
P (Yam � jja;m; c)

=
P (Ya�m > jja;m; c)
P (Ya�m � jja;m; c)

Under the ordinal logistic regression model we have that CDE(m) =

P (Yam > jja;m; c)
P (Yam � jja;m; c)

=
P (Ya�m > jja;m; c)
P (Ya�m � jja;m; c)

=
expf��j + �j1a+ �

j
2m+ �

j
3am+ �

j0
4 cg

expf��j + �j1a� + �
j
2m+ �

j
3a
�m+ �j04 cg

= expf(�j1 + �
j
3m)(a� a�)g:

Now suppose that we have a proportional odds model with �j1; �
j
2; �

j
3; �

j
4 all constant across j so

that

logfP (Y � jja;m; c)
P (Y > jja;m; c)g = �j � (�1a+ �2m+ �3am+ �

0
4c):

The expressions above then simplify to:

NIE � expf(�2�1 + �3�1a)(a� a�)g

NDE � exp[f�1 + �3(�0 + �1a� + �02c+ �2�2)g(a� a�) + 0:5�23�2(a2 � a�2)]

CDE(m) = expf(�1 + �3m)(a� a�)g

We now consider standard errors for the controlled direct e¤ect and natural direct and indirect

e¤ect log odds ratios. Suppose that the ordinal logistic regression model has been �t using standard

software and that the linear regression model has likewise been �t using standard software. Let

�0 = (�1; :::; �J) Suppose furthermore that the resulting estimates �̂ of � � (�0; �1; �
0
2)
0, �̂ of
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� � (�0; �1; �2; �3; �04)0 and �̂2 of �2 have covariance matrices

�� =

0BBBB@
��00 ��01 ��02

��10 ��11 ��12

��20 ��21 ��22

1CCCCA ;

�� =

0BBBBBBBBBB@

��00 ��01 ��02 ��03 ��04

��10 ��11 ��12 ��13 ��14

��20 ��21 ��22 ��23 ��24

��30 ��31 ��32 ��33 ��34

��40 ��41 ��42 ��43 ��44

1CCCCCCCCCCA
and

��2 = (�
�2

11 );

respectively, where ��ij is the covariance between �̂i and �̂j and �
�
ij is the covariance between �̂i

and �̂j . These matrices can be obtained from standard statistical software packages. Under a linear

regression for the mediator, let RSS denote the residual sum of square; an unbiased estimate of

�̂2 is given by RSS=(n � p) where n is the sample size and p is the number of parameters in the

regression model; the variance of �̂2 can be estimated by 2�̂4

n�p . Then standard errors of the log of

the controlled direct e¤ect odds ratios and natural direct and indirect e¤ect e¤ects can be obtained

(using the Delta method) as
p
���0ja� a�j (A2)

with

� �

0BBBB@
�� 0 0

0 �� 0

0 0 ��2

1CCCCA
and with � � (0; 0; 00; 00; 1; 0;m; 00; 0) for the log of the controlled direct e¤ect odds ratio, � �

(0; �2 + �3a; 0
0; 00; 0; �1; �1a; 0

0; 0) for the log of the natural indirect e¤ect odds ratio, and � �

(�3; �3a
�; �3c; 00; 1; �3�2; �0+ �1a

�+ �02c+ �2�
2+ �3�

2(a+ a�); 00; �3�2+0:5�
2
3(a+ a

�)) for the log of

the natural direct e¤ect odds ratio. In these expressions, 00 denotes a row vector of the dimension

of c or �0 = (�1; :::; �J) containing zeroes only. Once a con�dence interval has been obtained for
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the log controlled direct e¤ect odds ratio and the log natural direct/indirect e¤ect odds ratio as

given, then con�dence intervals for the controlled direct e¤ect odds ratio and the natural indirect

and direct e¤ects can be obtained by simply exponentiating the con�dence intervals in for the log of

these quantities.

The e¤ects above are sometimes referred to as "pure" (natural) direct e¤ects and "total" natural

indirect e¤ects.9 These are
P (YaMa�>jjc)
P (YaMa��jjc)

=
P (Ya�Ma�>jjc)
P (Ya�Ma��jjc)

and P (YaMa>jjc)
P (YaM�jjc) =

P (YaMa�>jjc)
P (YaMa��jjc)

. Instead we could

consider the e¤ects P (YaMa>jjc)
P (YaMa�jjc)

=
P (Ya�Ma>jjc)
P (Ya�Ma�jjc)

and P (Ya�Ma>jjc)
P (Ya�Ma�jjc)

=
P (Ya�Ma�>jjc)
P (Ya�Ma��jjc)

. These are what Robins

and Greenland9 refer to as the "total" (natural) direct e¤ects and "pure" natural indirect e¤ects. The

total direct e¤ect and pure indirect e¤ect likewise multiply to the total e¤ect. These two e¤ects di¤er

from the e¤ects primarily considered here in the way that they account for mediated interaction1;8:13,

with "total" denoting which of the e¤ects (direct or indirect) picks up the mediated interaction and

"pure" denoting the e¤ect that does not. Likewise the natural direct and indirect e¤ects on the

di¤erence scale that were considered in the text: P (YaMa� = jjc)� P (Ya�Ma� = jjc) for the natural

direct e¤ect and P (YaMa = jjc) � P (YaMa� = jjc) for the natural indirect e¤ect could be referred

to as pure direct e¤ect and the total indirect e¤ect. Once again we could alternatively consider

a "total direct e¤ect", P (YaMa = jjc) � P (Ya�Ma = jjc), and a pure indirect e¤ect, P (Ya�Ma =

jjc)�P (Ya�Ma� = jjc) and the two of these e¤ect sum to the total e¤ect, P (Ya = jjc)�P (Ya� = jjc).

This total direct e¤ect and pure indirect e¤ect on the di¤erence are also reported by Imai et al.5;6

software in addition to the pure direct e¤ect and total indirect e¤ect.

We note that with a nominal categorical outcome (j = 1; :::K) under a multinomial logistic

regression:

logfP (Y = jja;m; c)
P (Y = 1ja;m; c)g = �

j
0 + �

j
1a+ �

j
2m+ �

j
3am+ �

j0
4 c

with a reference category (J = 1) that is relatively common (e.g. > 90%) and a normally distributed

mediator with constant conditional variance �2, it is straightforward to show that the analytic

expressions for natural direct and indirect e¤ect odds ratios given in VanderWeele and Vansteelandt3

are applicable also to the multinomial logistic regression but one would have a di¤erent natural direct

and indirect e¤ect odds ratio,
P (YaMa�=jjc)
P (YaMa�=1jc)

=
P (Ya�Ma�=jjc)
P (Ya�Ma�=1jc)

and P (YaMa=jjc)
P (YaMa=1jc)

=
P (YaMa�=jjc)
P (YaMa�=1jc)

, for each of

the j = 2; :::;K categories compared with the reference category j = 1.

eAppendix 2. Illustration
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The methods in this paper were developed to assess the direct and indirect e¤ects of an actual

trial on a suicide risk reduction intervention; the parameters in the simulated illustration were set to

approximately correspond to anticipated distributions and e¤ect sizes. Treatment of suicidal ideation

with major depressive disorder (MDD) represents an unmet medical need. Finding treatments to

reduce the imminent risk of suicide in patients with MDD is important for clinical practice. In con-

ducting clinical research in this patient population, there are challenges to appropriately measuring

improvement in suicidal ideation risk. It is di¢ cult to di¤erentiate how much of the improvement is

due to the nonspeci�c improvement in symptoms of depression and how much of the improvement is

an independent e¤ect of treatment on suicide risk. There is then interest in examining the mediating

role of depressive symptoms on assessment of suicide risk.

A simulated illustration was performed using the following speci�cations. Subjects were ran-

domly assigned to receive an active treatment or placebo. The subject�s suicide risk and depressive

symptoms were measured before dosing and after dosing, using a 5-item assessment of suicide risk

rating scale and a depression continuous scale, respectively. Both scales were scored such that the

higher the score, the worse the symptoms. A mediation analysis was then conducted to assess the

impact of the e¤ect of treatment on the change from baseline in the assessment of suicide risk score

above and beyond the e¤ect of treatment on the change from baseline to end point in the depression

scale total score, the primary e¢ cacy endpoint. Since the change from baseline in the assessment of

suicide risk is an ordinal variable, we propose a mediation model that assesses the degree of treat-

ment e¤ect upon an ordinal response variable in the presence of another variable (i.e. the mediating

variable).

Parameters for the simulated illustration have been set to correspond to what we might expect

from the suicide study: distribution of baseline assessment of suicide risk, change from baseline in

depression rating scale, and change from baseline in assessment of suicide risk. A sample size of 300

was employed. The distribution of baseline assessment of suicide risk corresponding to levels 1 � 5

were set at 0:0526, 0:0526, 0:0526, 0:474, and 0:368, respectively. The frequency of the outcome (i.e.

change in assessment of suicide risk) was set for levels �4; :::; 0 as 14; 30; 21; 20; 215 respectively. The

simulation proceeded as follows:

Step 1: Generate C (baseline assessment of suicide risk as covariate) from the multinomial dis-

tribution with the probability shown above.
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Step 2: Randomly assign subjects to treatment group (A =1 or A=0), then generate mediator

(change in depression rating scale) from the model E[M ja; c] = �0 + �1a+ �02c with �0 = �9; �1 =

�6; �2 = �0:1 with standard deviation or the residual error equal to � = 10

Step 3: Generate the outcome from the model logfP (Y � jja;m; c)=P (Y > jja;m; c)g = �j �

(�1a + �2m + �3am + �
0
4c) with �1 = �0:5; �2 = 0:1; �3 = 0; �4 = �0:1; �1 = �5:1; �2 = �3:8; �3 =

�3:3; �4 = �2:9:

The proportional odds model without an interaction term was �t to the simulated data and

direct and indirect e¤ects were estimated using the simulation based approach described above. The

results for the estimates of the natural direct and indirect e¤ects and the total e¤ect on the di¤erence

scale, along with 95% con�dence intervals, for each category are given in Table 1. The omnibus tests

for any mediation had p-value < 0:01. The simulated results would suggest that active treatment

has a clinically meaningful independent e¤ect on the assessment of suicide risk that extends beyond

its e¤ect on depressive symptoms, but that some of the e¤ect is indeed mediated by depressive

symptoms. For all �ve outcome levels roughly a half (and always between a third and two third) of

the e¤ect appears to be mediated (Table 1).

Table 1. Direct, indirect and total e¤ects on the di¤erence scale with 95% con�dence intervals for

simulated suicide risk reduction example

P (Y = 0) P (Y = �1) P (Y = �2) P (Y = �3) P (Y = �4)

Indirect E¤ect �:10 (�:17;�:06) 0:03 (:01; :05) 0:05 (:02; :07) 0:02 (:01; :03) 0:01 (:00; :02)

Direct E¤ect �:12 (�:22;�:03) 0:02 (:00; :05) 0:05 (:01; :09) 0:03 (:01; :06) 0:02 (:00; :05)

Total E¤ect �:22 (�:34;�:13) 0:05 (:02; :09) 0:09 (:05; :14) 0:05 (:02; :08) 0:03 (:01; :07)

eAppendix 3: Simulation-Based Code and Example

We generate data from a linear regression model

E[M ja; c] = �0 + �1a+ �02c:

with �0 = 0; �1 = �0:33; �2 = 0:15 and from a proportional odds model

logfP (Y � jja;m; c)
P (Y > jja;m; c)g = �j � (�1a+ �2m+ �3am+ �

0
4c)
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with �1 = �0:5; �2 = 0; �3 = 0:5; �4 = 1; �5 = 1:3; �6 = 2 and �1 = �0:5; �2 = 0:2; �3 = 0; �4 = 0:2:

We simulate 500 observations. This can be done with the following code in R:

Nn <- 500

b1 <- -0.33

b2 <- 0.15

t1 <- -0.5

t2 <- 0.2

t4 <- 0.2

a1 <- -.5

a2 <- 0

a3 <- 0.5

a4 <- 1

a5 <- 1.3

a6 <- 2

a <- rbinom(Nn,1,0.5)

c <- rnorm(Nn)

m <- rnorm(Nn) + a*b1 + c*b2

p1 <- exp(a1 - (t1*a + t2*m+t4*c)) / (1 + exp(a1 - (t1*a + t2*m+t4*c)) )

p2 <- exp(a2 - (t1*a + t2*m+t4*c)) / (1 + exp(a2 - (t1*a + t2*m+t4*c)) ) - exp(a1 - (t1*a +

t2*m+t4*c)) / (1 + exp(a1 - (t1*a + t2*m+t4*c)) )

p3 <- exp(a3 - (t1*a + t2*m+t4*c)) / (1 + exp(a3 - (t1*a + t2*m+t4*c)) ) - exp(a2 - (t1*a +

t2*m+t4*c)) / (1 + exp(a2 - (t1*a + t2*m+t4*c)) )

p4 <- exp(a4 - (t1*a + t2*m+t4*c)) / (1 + exp(a4 - (t1*a + t2*m+t4*c)) ) - exp(a3 - (t1*a +

t2*m+t4*c)) / (1 + exp(a3 - (t1*a + t2*m+t4*c)) )

p5 <- exp(a5 - (t1*a + t2*m+t4*c)) / (1 + exp(a5 - (t1*a + t2*m+t4*c)) ) - exp(a4 - (t1*a +

t2*m+t4*c)) / (1 + exp(a4 - (t1*a + t2*m+t4*c)) )

p6 <- exp(a6 - (t1*a + t2*m+t4*c)) / (1 + exp(a6 - (t1*a + t2*m+t4*c)) ) - exp(a5 - (t1*a +

t2*m+t4*c)) / (1 + exp(a5 - (t1*a + t2*m+t4*c)) )

p7 <- 1 - exp(a6 - (t1*a + t2*m+t4*c)) / (1 + exp(a6 - (t1*a + t2*m+t4*c)) )

rrr <- runif(Nn)
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y <- 1 + (rrr > p1)

y <- y + (rrr > (p1+p2))

y <- y + (rrr > (p1+p2+p3))

y <- y + (rrr > (p1+p2+p3+p4))

y <- y + (rrr > (p1+p2+p3+p4+p5))

y <- y + (rrr > (p1+p2+p3+p4+p5+p6))

To carry out the simulation-based approach, Imai et al.�s software can be loaded using the com-

mands:

require(MASS)

install.packages("mediation")

library(mediation)

library(sandwich)

The following code will then carry out the mediation analysis for each outcome value j: the total

e¤ect, P (Ya = jjc)� P (Ya� = jjc); the natural direct e¤ect P (YaMa� = jjc)� P (Ya�Ma� = jjc); and

the natural indirect e¤ect P (YaMa = jjc)� P (YaMa� = jjc).

fy <- factor(y)

mydata <- data.frame(fy, y, a, m)

med.�t <- lm(m ~a, data = mydata)

out.�t <- polr(fy ~m + a, data = mydata)

med.out <- mediate(med.�t, out.�t, treat = "a", mediator = "m", boot=TRUE, sims=1000)

summary(med.out)

The relevant output is then "ACME (treated)" as this is what we have been referring to as the

natural indirect e¤ects and "ADE (control)" as this is what we have been referring to as the natural

direct e¤ect, and the "Total e¤ect", as discussed further in eAppendix 1 above. In this example, this

output for one random sample of size 500 is:

Pr(Y=1) Pr(Y=2) Pr(Y=3) Pr(Y=4) Pr(Y=5) Pr(Y=6) Pr(Y=7)

ACME (treated) 0.01924 -1.27e-03 -0.002938 -0.004168 -0.002036 -0.003594 -0.005231
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2.5% 0.00378 -2.97e-03 -0.005747 -0.008402 -0.004226 -0.007548 -0.010679

97.5% 0.03671 -5.85e-05 -0.000524 -0.000833 -0.000396 -0.000751 -0.000956

p-value 0.01200 3.60e-02 0.012000 0.012000 0.012000 0.012000 0.012000

Pr(Y=1) Pr(Y=2) Pr(Y=3) Pr(Y=4) Pr(Y=5) Pr(Y=6) Pr(Y=7)

ADE (control) 0.1189 0.000654 -0.0130 -0.0247 -0.0136 -0.02612 -0.0422

2.5% 0.0459 -0.005040 -0.0250 -0.0428 -0.0244 -0.04705 -0.0750

97.5% 0.1949 0.007077 -0.0046 -0.0094 -0.0049 -0.00928 -0.0156

p-value 0.0020 0.790000 0.0020 0.0020 0.0020 0.00200 0.0020

Pr(Y=1) Pr(Y=2) Pr(Y=3) Pr(Y=4) Pr(Y=5) Pr(Y=6) Pr(Y=7)

Total Effect 0.1381 -0.000617 -0.01591 -0.0288 -0.01568 -0.0297 -0.0474

2.5% 0.0634 -0.006993 -0.02853 -0.0466 -0.02666 -0.0512 -0.0795

97.5% 0.2102 0.006110 -0.00668 -0.0132 -0.00658 -0.0124 -0.0208

p-value 0.0000 0.918000 0.00000 0.0000 0.00000 0.0000 0.0000

Because whether the direct and indirect e¤ects are positive or negative often just depends on the

signs of the coe¢ cients, and since the p-values are computed by non-parametric bootstrap, many of

the p-values numerically coincide.

Note that the e¤ects themselves will vary across categories j. It may be the case that some of

the direct and indirect e¤ects for certain categories j are non-zero and some are not. It is possible

to construct an omnibus test as to whether any of the direct e¤ects are non-zero, or whether any

of the indirect e¤ects are non-zero. This can be done as follows. For example, for the indirect

e¤ect let Ij denote the estimate of the natural indirect e¤ect P (YaMa = jjc) � P (YaMa� = jjc) for

category j. Calculate an overall measure of departure from the null of no e¤ect for any of the J

outcome levels as Q = I21 + I
2
2 + :::+ I

2
J : Then create some number K (e.g. K = 5000) bootstrapped

samples from the original data. For each bootstrapped sample k, estimate the mediated e¤ects for

this sample and call these Ik1; Ik2; :::; IkJ . If we then consider (Ik1 � I1); :::; (IkJ � IJ) each of these

will have mean 0 across repeated bootstrapped samples. Our departure measure for the kth sample

is Qk = (Ik1 � I1)2 + (Ik2 � I2)2 + ::: + (IkJ � IJ)2. We can calculate Qk for each of the K = 5000
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samples. The p-value is then the proportion of the K samples for which Qk is greater than the actual

observed Q = I21 + I
2
2 + ::: + I

2
J from the actual data. The same procedure could be used for the

natural direct e¤ect and the total e¤ect.
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