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Exposure to Wildfire-specific Fine Particulate Matter and Risk of Hospital Admissions in Urban and Rural Counties in the Western 

US 2004-2009. Supplemental Material 

eAppendix Methods 1: ICD-9 codes of diagnoses 

The diagnoses are classified using ICD-9 codes and are primary discharge causes of hospital admissions. Cardiovascular diseases are 

coded as the sum of admissions for ICD-9 390 to 459, including heart failure (ICD-9 428), heart rhythm disturbances (ICD-9 426–

427), cerebrovascular events (ICD-9 430–438), ischemic heart disease (ICD-9 410–414 and 429), and peripheral vascular disease 

(ICD-9 440–449).  Respiratory diseases are the aggregated admissions for chronic obstructive pulmonary disease (COPD) (ICD-9 

490–492) and respiratory tract infections (ICD-9 464–466, 480–487). 

eAppendix Methods 2: details on GEOS-Chem modeling 

GEOS-Chem is a 3-dimensional global chemistry model that solves for the temporal and spatial evolution of gas-phase species and 

aerosol (http://acmg.seas.harvard.edu/geos/index.html). Input to the model consists of gridded meteorological data sets at fine spatial 

and temporal resolution as well as both anthropogenic and wildfire emission inventories.  Here we use meteorological fields from the 

Goddard Earth Observing System (GEOS-5) of the NASA Modeling and Assimilation Office (GMAO).  We also apply observed 

wildfire area burned based on the Global Fire Emissions Database (GFED3), a resource heavily relied on by the atmospheric 

community (http://www.globalfiredata.org). Given these input fields, GEOS-Chem calculates the chemistry, transport, and fate of 

atmospheric species, using equations that represent the physics and chemistry of atmospheric composition. For this study, we used the 

aerosol-only version of GEOS-Chem, which includes emissions of all primary particulate matter as well as the gas-phase precursors to 

secondary particulate matter. Oxidation of gas-phase precursors in this version of the model is carried out through application of 

monthly mean fields of oxidants calculated beforehand with the full-chemistry version of GEOS-Chem.  Output from GEOS-Chem 

consists of 3-dimensional gridded output of speciated, daily mean particulate matter in terms of mass. Total PM2.5 in the model is 

taken to be the sum of sulfate, nitrate, ammonium, organic carbon and black carbon.  We identify wildfire-specific PM2.5 by 

performing a pair of simulations – one with fire emissions turned on and one without these emissions. Wildfire-specific PM2.5 is 

defined as the difference in PM2.5 output from these two simulations.  

 GEOS-Chem concentrations of PM2.5 over the United States, including wildfire PM2.5, have been extensively validated on a variety of 

timescales, including daily
3-6

 and seasonal
7
. Zhang et al. (2014)

8
, while focused on ozone, included validation of daily mean wildfire 

PM2.5 in GEOS-Chem. Simulated wildfire PM2.5 from other regions has also been evaluated on daily timescales (e.g. 
9,10

).  We use 
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ground-based or aircraft measurements, not satellite data, to validate the GEOS-Chem surface PM2.5, including wildfire PM2.5. 

Satellite data of particulate matter are not useful to validate surface PM2.5 mainly because such data describe the column amount of 

particulate matter through the atmosphere in mg m
-2

, not the surface concentrations in μg m
-3

.  Efforts have been made to infer surface 

concentrations of PM2.5 from satellite data, but such efforts rely, in fact, on GEOS-Chem to translate column amounts into surface 

levels (e.g., 
11

). 

GEOS-Chem has been used previously to assess the health impacts of surface pollution. For example, van Donkelaar et al. (2015)
11

 

used GEOS-Chem simulations to convert satellite observations of column particulate matter (in mg m
-2

) into surface concentrations 

(in μg m
-3

).  This study calculated 2001-2012 global trends in annual mean PM2.5 at the surface at ~10 x 10 km, the spatial resolution 

of the satellite data. The GEOS-Chem simulation for van Donkelaar et al. (2015) was performed at 2 x 2.5 degree resolution globally 

(~200 x 250 km), with a few target regions at 0.5 x 0.67 degrees, the same resolution as we used here for the western United States.  

The van Donkelaar et al. (2015) approach cannot distinguish between wildfire PM2.5 and other types of particulate matter and achieves 

fine spatial resolution only at the expense of temporal resolution.  (The satellite data at 10 x 10 km spatial scales are noisy on the daily 

level.)  Our use of GEOS-Chem takes advantage of the model’s capability to fill in the temporal and spatial gaps in the ground-based 

network and allows us to diagnose wildfire-specific PM2.5 at the daily level. 

eAppendix Methods 3: Details about area weighted averaging 

We added a gridded layer (0.5x0.67 degree) on top of an equal-area projected map of the study domain (31-49N, 101-125W). There 

are 1332 grids in the study domain, 1188 of which overlapped with the Western US boundary. We calculated the areas of each county 

and each fragment the grids fall in the counties.  Then we calculated the area ratio of each grid fragment within a county’s boundary 

by dividing county area by fragment area. The county-level exposure was the sum of each area ratio in the county times the 

concentration in the grids that fall into the county. 

eAppendix Methods 4: Statistical Modeling 

We fitted a log-linear mixed-effects regression model for each disease group (cardiovascular or respiratory diseases) for smoke wave 

days and matched control days across all 561 counties. The model can be expressed as: 
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Where: 

   
  is the count of hospital admissions for a disease group on day   in county  . We assume   follows a Poisson distribution.  

  
  is the total population at risk on day   in county  .   

   is county-specific random effect.  

   
  is a binary indicator for smoke wave day or non-smoke-save day.  

We adjusted for scaled temperature       , modeled non-fire PM2.5 levels (     ), age categories (      : 65-74, 75-84, 85+ 

years), gender categories, race categories (White, Black, other), weekend or weekday, and study year. A binary indicator variable for 

smoke wave was specified as 1 on a smoke wave day and 0 on matched non-smoke-wave days. The model included a county-specific 

random intercept and fixed effect for daily continuous measurement of temperature, modeled non-fire PM2.5 levels, sex (male, female), 

age category (65-74, 75-84, >85y), race (White, Black, other), type of day (weekend, weekday), and year. The analysis is weighted, 

which means smoke wave days matched with <3 non-smoke-wave days are weighted less than smoke wave days matched with three 

non-smoke-wave days. This model estimates the relative rate (RR) of hospital admissions on smoke wave days compared with non-

smoke-wave days. 

 

eAppendix Results 1: Single-day smoke wave results 

 

The sensitivity analysis of the association between single-day smoke wave and hospital admissions showed stronger effect that the 

effect of the smoke wave days using main definition (>2 consecutive days with wildfire-specific PM2.5>20μg/m
3
) (Table A.4). 

Compared to matched control days with wildfire-specific PM2.5<20μg/m
3
, single-day smoke waves (daily wildfire-specific 

PM2.5>20μg/m
3
) are associated with an increase of 5.65% (95% CI: 1.23%, 10.26%) in respiratory hospital admissions. The trend of 

effect by smoke wave intensity is consistent with that of the main analysis, i.e. more intense smoke waves led to higher associations. 

No association was observed between single-day smoke waves and CVD admissions. Single-day smoke waves have potentially 

stronger association with respiratory admissions rate, possibly due to a larger sample size and the acute response of respiratory 

diseases. 
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eAppendix Results 2: Smoke wave effect among counties with fee-for-service enrollment >75% 

Our study populations are Medicare beneficiaries who are enrolled in the fee-for-service plan. Counties have different percentage of 

Medicare beneficiaries enrolled in the fee-for-service plan. Average percentage of fee-for-service enrollment in a county is 89.4% 

among the 561 counties. Of the 561 counties, 471 (84%) had over 80% Medicare beneficiaries enrolled in the fee-for-service plan. 

Only 30 out of the 561 counties (5%) had <60% FFS coverage.  

To examine whether the differences in fee-for-service enrollment leads to selection bias, we conducted sensitivity analysis among 

counties with fee-for-service enrollment >75% for intense smoke wave days (with wildfire-specific PM2.5 threshold = 37μg/m
3
). There 

are 176 counties that experience at least one intense smoke wave and with fee-for-service enrollment >75%. Compared to matched 

control days with wildfire-specific PM2.5<20μg/m
3
, the effect of intense smoke wave days on respiratory admissions is: 7.4% (95% CI: 

-6.3%, 23.2%). 

 

eTable 1. Selected quantile values in original modeled total PM2.5, monitoring PM2.5, and calibrated modeled total PM2.5 (μg/m
3
). 

 

% quantiles 0 10 20 30 40 50 60 70 80 90 100 

Original modeled total PM 0.02 1.14 1.61 2.02 2.44 2.90 3.43 4.10 5.12 7.28 2902.4 

Monitoring PM 0 3.65 4.73 5.70 6.60 7.60 8.70 10.20 12.23 15.70 242.58 

Calibrated modeled total PM 0 3.65 4.73 5.70 6.60 7.60 8.70 10.20 12.23 15.70 242.58 
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eTable 2. Frequency distribution and average temperature of smoke wave county-days and matched non-smoke-wave county-days in 

different years. 

 

Smoke wave days 

 

May June July August September October 

Total (% among all 

smoke wave days) 

Average  

Temperature (
o
F) 

2004 7 5 144 305 28 112 601 (5.96) 67.7 

2005 0 40 34 453 123 1 651 (6.46) 68.6 

2006 0 87 279 958 1200 28 2552 (25.3) 70.5 

2007 0 29 724 1554 430 47 2784 (27.6) 68.7 

2008 6 543 1882 323 246 51 3051 (30.3) 67.1 

2009 0 0 46 245 150 0 441 (4.38) 68.6 

Total (% among 

all smoke wave 

days) 

13 

(0.13) 

704 

(6.98) 

3109 

(30.8) 

3838 

(38.1) 

2177 

(21.6) 

239 

(2.37) 10,080 (100) 68.5 

Matched Non-smoke-wave days 

 

May June July August September October 

Total (% among all 

matched non-smoke-

wave days) 

Average  

Temperature (
o
F) 

2004 5 416 1901 2163 1226 116 5827 (20.0) 71.6 

2005 9 362 1912 1877 1197 145 5502 (18.9) 67.4 

2006 8 352 1659 1368 453 118 3958 (13.6) 68.1 

2007 6 356 1371 1087 828 169 3817 (13.1) 70.7 

2008 7 152 753 2010 1011 127 4060 (13.9) 70.4 

2009 9 422 1963 2204 1210 173 5981 (20.5) 72.3 

Total (% among 

all matched non-

smoke-wave 

days) 

44 

(0.15) 

2060 

(7.07) 

9559 

(32.8) 

10709 

(36.7) 

5925 

(20.3) 

848 

(2.91) 29,145 (100) 69.9 
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eTable 3 (a). Average daily surface temperature during smoke wave days with different intensities of smoke wave days (daily 

wildfire-specific PM2.5 levels). “smokewave 98” denotes smoke wave days defined with a threshold of 98
th

 percentile of all daily 

wildfire-specific PM2.5 values in all counties. 

Intensity of smokewave 98 days (μg/m
3
) Temperature (

o
F) 

20-23 (98
th 

– 98.5
th

 quantile) 70.0 

23.01-28 (98.5
th

 – 99
th

 quantile) 70.3 

28.01-37 (99
th

 – 99.5
th

 quantile) 70.1 

>37 (>99.5
th

 quantile) 69.3 

eTable 3 (b). Average daily surface temperature during smoke wave days with different intensities of smoke wave days (daily 

wildfire-specific PM2.5 levels). 

Length of smokewave20 (days) Temperature (
o
F) 

2 (20% quantile) 70.3 

3 (40% quantile) 70.1 

4-5 (60% quantile) 71.9 

6+ (80% quantile) 69.0 

 

eTable 4. Results of sensitivity analysis: association between single-day smoke waves and CVD and respiratory admissions for the 

study population during 2004-2009*. 

Threshold (μg/m
3
) CVD effect (95% CI) Respiratory effect (95% CI) 

20 -0.31 (-1.95, 2.62) 5.65 (1.23, 10.26) 

23 -0.14 (-2.60, 2.38) 6.08 (1.23, 11.17) 

28 0.36 (-2.44, 3.23) 8.27 (2.68, 14.15) 

37 -1.22 (-4.66, 2.35) 11.20 (4.07, 18.82) 

*Significant results are denoted in bold. 

 



7 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

eFigure 1. Study domain.  
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eFigure 2. Quantile distribution plot for monitoring data, original modeled total PM2.5, and calibrated total PM2.5. After calibration the 

calibrated total PM2.5 now has similar mean and variance as real-world measurements.  
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eFigure 3. Wildfire-specific PM2.5 across all smoke wave days: a) Average daily wildfire-specific PM2.5 in each day within a smoke 

wave, b) frequency of smoke waves durations in days during 2004-2009. For the top panel, the solid black circles are the mean 

wildfire-PM2.5 levels on a given day within a smoke wave (e.g., 1 represents the first day of a smoke wave, 2 the second day of a 

smoke wave). The numbers in red are the mean wildfire-PM2.5 values for that day within a smoke wave (i.e., the red number 

represents the mean of the black circles for that day within a smoke wave). Each “x” represents the intensity of one smoke wave day 

in one county. The bottom panel shows the frequency of smoke wave days within a smoke wave. The red vertical line represents the 

median length of smoke waves. 
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                               (a)

(b) 

eFigure 4. Dates and locations of 

smoke wave days (a) in 2004 

compared with dates and 

locations of MODIS satellite 

records of large wildfire events in 

2004 (fire radiative power >500)
1
 

(b). Each color represents a 

different range of 1-4 days. The 

same color in (a) and (b) 

indicates the same range of 1-4 

days. 

Since smoke wave days are 

defined based on daily wildfire-

specific PM2.5 (rather than fire 

event days), their dates and 

locations do not necessarily 

reflect the exact dates and 

locations of wildfire events.  We 

found that the dates and locations 

of smoke wave days generally 

matched well with MODIS 

records of large wildfires. The 

smoke wave days in North 

Dakota, South Dakota and 

Montana are due to wildfires in 

Canada as wildfire smoke can 

travel across continent
2
. 
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