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eFigure 1. Smoothed weather data for different weather stations in the Cape Town area: relative humidity (in %), pressure (in hectopascal), rainfall (in mm),

temperature (in degrees Celsius), and wind speeds (in meter/second).
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eFigure 2. Probability of load shedding (bottom 6 panels), and incidence rate ratios for number of hospital admissions

(top 6 panels), depending on weather indicators calculated with an additive (covariate adjusted) logistic regression model.

The reported weather indicators are sunshine (in hours), wind speed (in meter/second), rainfall (in mm), temperature (in

degrees Celsius), and relative humidity (in %). Each panel shows the respective estimated penalized spline, conditional on

other weather indicators and month.
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eFigure 3. Non-linear interaction between load shedding (same day or up to 2 days prior) and length of load shedding (average time, measured in minutes, per area

and per day), modelled via penalized splines in an additive Quasi-Poisson model.
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eFigure 4. Median yearly household income, as estimated in the national census from 2011, stratified by area. The dot map was produced by the tool of Adrian

Firth, available at https://dotmap.adrianfrith.com/.

https://dotmap.adrianfrith.com/


eFigure 5. Association between load shedding events in different areas measured by Cramer’s V . The closer Cramer’s V is to 1, i.e. the more red and the bigger

the circle, and the stronger the association between two areas in terms of load shedding events taking place on the same day.
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eTable 1. Average Treatment Effect (ATE) and incidence rate ratios (IRR) for diagnoses where the number of reported cases exceeds 25.

ICD-10 Diagnosis IRR 95% CI ATE 95% CI

J05 Acute obstructive laryngitis 1.74 0.53 5.73 0.05 0.01 0.10

T22 Burn & corrosion of shoulder & upper limb 1.47 0.45 4.85 0.29 0.21 0.37

T24 Burn & corrosion of lower limb 1.45 0.57 3.73 0.06 0.01 0.11

T23 Burn & corrosion of wrist and hand 1.37 0.49 3.83 0.01 -0.04 0.06

A41 Sepsis 1.34 0.62 2.91 0.00 -0.06 0.06

J44 Chronic obstructive pulmonary disease 1.29 0.58 2.88 -0.08 -0.16 -0.00

Q21 Congenital malformations of cardiac septa 1.27 0.37 4.34 0.61 0.49 0.73

J18 Pneumonia 1.24 0.74 2.07 0.00 -0.12 0.13

S09 Unspecified injuries of head 1.08 0.75 1.57 0.05 -0.08 0.18

G40 Epilepsy 1.08 0.54 2.16 -0.13 -0.23 -0.03

Z00 General examination 1.07 0.36 3.16 0.18 0.10 0.27

J21 Acute bronchiolitis 1.01 0.56 1.80 -0.24 -0.40 -0.07

T20 Burn & corrosion of head, face, and neck 0.95 0.42 2.14 -0.10 -0.17 -0.03

J45 Asthma 0.90 0.40 2.03 -0.07 -0.14 -0.01

T29 Burns of multiple regions 0.87 0.41 1.86 -0.13 -0.20 -0.06

A87 Viral meningitis 0.87 0.25 3.04 0.23 0.13 0.33

T74 Child abuse, neglect & other maltreatment 0.81 0.33 2.02 0.02 -0.02 0.07

A09 Infectious gastroenteritis 0.79 0.52 1.19 -0.12 -0.36 0.12

S42 Fracture of shoulder and upper arm 0.79 0.34 1.82 -0.04 -0.10 0.01

T21 Burn & corrosion of trunk 0.69 0.31 1.55 0.00 -0.07 0.08

S72 Fracture of femur 0.62 0.30 1.30 -0.09 -0.16 -0.02

S52 Fracture of forearm 0.61 0.30 1.23 -0.12 -0.19 -0.05

S06 Intracranial injury 0.59 0.16 2.17 -0.07 -0.11 -0.03

S82 Fracture of lower leg 0.59 0.25 1.40 -0.10 -0.15 -0.04

G03 Meningitis 0.56 0.13 2.50 -0.05 -0.10 -0.01

L02 Cutaneous abscess 0.52 0.24 1.15 -0.10 -0.18 -0.02

J22 Acute lower respiratory infection 0.37 0.14 0.99 -0.11 -0.17 -0.04



eText 1. Technical details about the statistical approaches used in the paper.

Content:

1) Notation and Variables

2) Frequentist Model Averaging

3) Quasi-Poisson Model: Model Specification

4) Targeted Maximum Likelihood Estimation

5) Other Models

Notation and Variables. We are interested in the number of admissions at Red Cross hospital Yi, measured on days

i = 1 . . . , 365. Then, E(Y ) refers to the expected number of admissions per day. The (main) interventions of interest are the

binary variable A indicating whether load shedding has been implemented on day i or not, and Ā2 which denotes whether

load shedding occurred on the same or any of the two preceding days. The matrix of potential confounders L includes hours

of sunshine (L1), wind speed (L2), humidity (L3), pressure (L4), precipitation (L5), temperature (L6), month (L7), last week

of the month (week of payment, L8), and a seasonal (weekly) trend modeled via sine and cosine terms, i.e.

cos(ωkt) and sin(ωkt) with ωk =
2kπ

T

with T = 7 days. More specifically we consider cos(ω1t) = L9, sin(ω1t) = L10, cos(ω2t) = L11, sin(ω2t) = L12, cos(ω3t) = L13,

sin(ω3t) = L14, cos(ω4t) = L15, sin(ω4t) = L16 to be potential confounders. Moreover, in most of the below described

models, we also consider past values of the weather indicators up to a lag of 2 days as well as past admissions (i.e. Yi−lag,

lag ∈ {1, 2, . . . , 13, 14, 21, 28}) to be of interest.

Frequentist Model Averaging. Since the potential set of adjustment variables is large, mostly due to the number of

lagged and seasonal variables, we need to reduce the number of variables, so that the implementation of the below specified

models is computationally feasible at all (i.e. for successful fitting of the splines and the causal inference procedures). A

classic approach would be model selection with hypothesis testing, or using a criterion such as Akaike’s Information Criterion

(AIC). However, data-driven model selection has the disadvantage that model selection uncertainty is not being taken into

account, i.e. different samples of data may yield different conclusions with respect to variable inclusion (Chatfield, 1995). An

alternative to model selection is model averaging.

With model averaging, one calculates a weighted average ˆ̄β =
∑
κ wκβ̂κ from the k estimators β̂κ (κ = 1, . . . , k) of the

set of candidate (regression) models M where the weights are calculated in a way such that ‘better’ models receive a higher

weight. A popular weight choice would be based on the exponential AIC,

wAIC
κ =

exp(− 1
2AICκ)∑k

κ=1 exp(− 1
2AICκ)

,

where AICκ is the AIC value related to model Mκ ∈M (Buckland et al., 1997). Note that the weights sum up to one. The

k point and k variance estimates can then be combined into a single model, based on the weights. In our analysis we are

not interested in this combined estimate but rather into a variable importance measure obtained from the model averaging

weights. With this, the sum of the weights of those models which include the variable of interest are simply being added

up. So, if there is a single best model (which has by far the lowest AIC), then this model receives weight 1 and all variables

contained in it receive a variable importance measure of 1 (and the others 0). However, if there are say 10 very good models

(measured by AIC), and only 4 of those contain the respective variable, then the sum of the weights of those 4 models would

determine the variable’s importance. We use a 50% support, i.e. a variable importance of 0.5 or higher, as a rule to include

a variable into our final model. More details are given below. Readers who are interested into model averaging may consult

the following references: Burnham and Anderson (2002), Hjort and Claeskens (2003), Hoeting et al. (1999).



Quasi-Poisson Model: Model Specification. Our considerations start with a Poisson model which considers all

potential variables of interest:

E(Y ) = exp(β0 + β1A+ Lβ2) (1)

where L includes L1, . . . , L16, L1
i−1, . . . , L

6
i−1, L1

i−2, . . . , L
6
i−2, and Yi−l, l ∈ {1, 2, . . . , 13, 14, 21, 28}. Note that a standard

Poisson model assumes E(Y ) = V ar(Y ) = µ which may not be met (and in fact is not met in our data1). For this reason

we use below only Quasi-Poisson models which allow V ar(Y ) = φE(Y ), where φ is a parameter which is constant across all

i = 1, . . . , n. The parameter φ can be estimated from the data using the χ2-statistic, and can also be used to correct the

standard maximum likelihood estimate V̂ar(β̂i,ML), i.e. one can use φ̂× V̂ar(β̂i,ML) to construct confidence intervals for β̂i.

With this approach we still use the model equation (1), but with more flexible variance estimation (McCullagh and Nelder,

1989).

To reduce the number of variables we consider different models in which a number of variables are being held fixed and

others vary (i.e. a group of related variables, say lagged variables) so that model averaging and the above introduced variable

importance measure can be calculated2.

i) To determine the lags needed for Yi−lag we implement model averaging based on the following full Quasi-Poisson model:

E(Y ) = exp(β0 + β1Ā
2 + β2Yi−1 + β3Yi−2 + β4Yi−3 + β5Yi−4 + β6Yi−5 + β7Yi−6 + β8Yi−7 + β9Yi−8 + β10Yi−9

+β11Yi−10 + β12Yi−11 + β13Yi−12 + β14Yi−13 + β15Yi−14 + β16Yi−21 + β17Yi−28 + β18L
9 + β19L

10 + β20L
11

+β21L
12 + β22L7 + β23L

8 + β24L
1 + β24L

2 + β24L
5 + β25L

3
i−1 + β26L

5
i−1 + β27L

6
i−1 + β28L

2
i−2)

This analysis yields variable importance measures > 0.5 for the following lags of Y : 1, 3, 7, 9.

ii) To determine the amplitude of the seasonal component, i.e. the k needed for cos(ωkt) and sin(ωkt), we implement model

averaging based on the following full Quasi-Poisson model:

E(Y ) = exp(β0 + β1Ā
2 + β2Yi−1 + β3Yi−3 + β4Yi−7 + β5Yi−9

+β6L7 + β7L
8 + β8L

1 + β9L
2 + β10L

5 + β11L
3
i−1 + β12L

5
i−1 + β12L

6
i−1 + β14L

2
i−2

β15L
9 + β16L

10 + β17L
11 + β18L

12 + β19L
13 + β20L

14 + β21L
15 + β22L

16)

Cosine and sine terms (i.e. L9 − L16) that are supported by a variable importance of > 0.5 are k = 1 and k = 2.

iii) To determine the importance of the potential confounder weather we implement model averaging for the following two

Quasi-Poisson and logistic regression models:

E(Y ) = exp(β0 + β1Ā
2 + β2Yi−1 + β3Yi−3 + β4Yi−7 + β5Yi−9 + β6L7 + β7L

8 + β8L
9 + β9L

10 + β10L
11 + β11L

12

β12L
1 + β13L

2 + β14L
3 + β15L

4 + β16L
5 + β17L

6 + β18L
1
i−1 + β19L

2
i−1 + β20L

3
i−1 + β21L

4
i−1 + β22L

5
i−1

+β23L
6
i−1 + β24L

1
i−2 + β25L

2
i−2 + β26L

5
i−2 + β27L

6
i−2)

P (A = 1) = β0 + β1Ai−1 + β2Ai−2 + β3L7 + β4L
8 + β5L

1 + β6L
2 + β7L

3 + β8L
4 + β9L

5 + β10L
6 + β11L

1
i−1

+β12L
2
i−1 + β13L

3
i−1 + β14L

4
i−1 + β15L

5
i−1 + β16L

6
i−1 + β17L

1
i−2 + β18L

2
i−2 + β19L

3
i−2 + β20L

4
i−2

+β21L
5
i−2 + β22L

6
i−2

Variables with an importance > 0.5 in either of the two models are L1, L2, L5, L3
i−1, L

5
i−1, L

6
i−1, L

2
i−2.

The above considerations yield to the following final (additive) Quasi-Poisson model which has been used to obtain the

main results in Table 1:

E(Y ) = exp(β0 + β1Ā
2 + L∗β2 + f1(Yi−1) + f2(Yi−3) + f3(Yi−7) + f4(Yi−9) + f5(L1) + f6(L2) + f7(L5)

+f8(L3
i−1) + f9(L5

i−1) + f10(L6
i−1) + f11(L2

i−2)) (2)

In the above equation, L∗ = (L7, L8, L9, L10, L11, L12). With f(·) we refer to unspecified smooth functions which we fit with

penalized splines, as implemented in the R-package mgcv (Wood, 2017). The estimate exp(β̂1) is the one reported in Table 1.
1We have overdispersion, i.e. the ratio of the deviance to the degrees of freedom is about 1.4. The estimated dispersion parameter for quasi

poisson family is 1.39935.
2with R-package MuMIn (Barton, 2017)



Targeted Maximum Likelihood Estimation (in our analysis). From a causal perspective we are interested in the

counterfactual outcome Y A=a
i which refers to the hypothetical outcome that would have been observed if at day i there had

been, possibly contrary to the fact, the intervention A = a, i.e. load shedding or not. More generally we would like to know

the expected number of admissions per day for a particular intervention, E(Y a). Since A is binary, a sensible target quantity

is

ψ = E(Y 1)− E(Y 0),

that is the average treatment effect meaning that we are interested in the difference in expected number of admissions per

day had load shedding being implemented during the whole year compared to if this had not been the case. If we look at Ā2

rather than A we can interpret ψ as the difference in expected number of admissions per day had there been a load shedding

event each day or on any of the preceding two days, during the whole year, compared to if this had not been the case. This

causal parameter can be identified under the following assumptions:

1. Consistency: if A is binary, then Yi = AiY
1
i + (1−Ai)Y 0

i .

2. Positivity: P (A = a|L = l) > 0 for ∀l with P (L = l) 6= 0.

3. Conditional exchangeability: Y a
∐
A|L for ∀A = a, L = l.

Consistency can be interpreted as having a well-defined intervention, that can’t be interpreted/implemented in multiple

ways. This assumption could be met in our data as implementation of load shedding as a temporary power-shutdown is

well-defined in the sense that the consequence of load shedding is the unavailability of electricity. Positivity requires a positive

probability of treatment assignment in all confounder strata, i.e. a positive probability of load shedding occurrence no matter

what season and weather. There are no practical or theoretical considerations which would point towards violation of this

assumption, however there may be practical positivity violations in the sample data because of the small sample size. An

indication of possible positivity violations would be very small (<< 0.01) estimated probabilities of treatment assignment

used in the TMLE procedure (see below). In our data probabilities varied between 0.01781 and 0.89374 showing no signs

of severe practical positivity violations. Conditional exchangeability would be violated if there are unmeasured confounders.

Our DAG (Figure 1, main manuscript) explains why we believe we have measured the main confounders, though we can’t

exclude the possibility of unmeasured confounders. Moreover, we consider the seasonal trend to be modeled correctly; if this

is not the case both conditional exchangeability and the (conditional) independence assumption needed for the modeling (i.e.

the validity of the likelihood functions used and application of super learning, see below) could be violated and this may

introduce bias.

The theory and application of TMLE has been described elsewhere3. Briefly, TMLE requires the fitting of both the

conditional expectation of the outcome E(Y |A,L) and the treatment mechanism P (A = 1|L). Modeling the conditional

outcome enables standardization with respect to the confounders, i.e. integrating L out, which equates to the (parametric)

g-formula:

E(Y a) =

∫
l

E(Y |A = a, L = l) dFl(l)

where FL(·) is the cumulative distribution function with respect to L. Thus, the average treatment effect ψ can be obtained

by using the g-formula to calculate E(Y 1) and E(Y 0). Practically this equates to fitting an appropriate regression model and

predicting the outcome for the whole sample for both A = 1 and A = 04. TMLE adds an additional targeted step whereby the

initial estimate is updated by a regression model which contains i) a fixed intercept/offset, which is the initial estimate of the

ATE (from the g-formula) and ii) a clever covariate which is a function of the inverse probabilities of treatment assignment

(based on P (A = 1|L)). This update reduces bias (if present) and improves efficiency (if no bias present). TMLE can readily

incorporate machine learning to estimate E(Y |A,L) and P (A = 1|L) while retaining valid inference. We have implemented

TMLE with super learning, a combination of machine learning and statistical forecasting.

Super learning means considering a set of prediction algorithms, for example regression models, shrinkage estimators

or boosting. Instead of choosing the algorithm with the smallest cross validation error, super learning chooses a weighted

3Good introductions for epidemiologists can be found in Luque Fernandez et al. (2018) and Schuler and Rose (2017)
4The empirical distribution, i.e. the data, is taken for L = l



combination of different algorithms, that is the weighted combination which minimizes the cross validation error. It can be

shown that this weighted combination will perform (asymptotically) at least as good as the best algorithm, if not better

(Van der Laan et al., 2008) and this is known as the oracle property of super learning. Briefly, super learning works as

follows:

1. First split the data into blocks of equal size (i.e. ten blocks of 100 observations for a sample size of 1,000 units and

the choice of 10-fold cross-validation) and fit each of the selected algorithms on the training set (i.e. on 9 out of the 10

blocks).

2. Then, predict the estimated probabilities of the outcome (Y ) using the validation set (i.e. the remaining one block) for

each algorithm.

3. Repeat steps 1 and 2 for each of the ten blocks. This yields predictions for all 1,000 observations for each learning

algorithm.

4. Now, estimate the cross validated risk for each learning algorithm, that is a function of the true values of Y and the

respective predictions, for example the (vector of the) squared differences.

5. Then, use non-negative least squares estimation to find the weighted linear combination of cross validated risks (related

to each learner) which predicts Y best. Note that the weights sum up to one.

6. Then, use the weights to create a weighted prediction from the different learning algorithms. This yields the super

learner estimate of E(Y |A,L) and P (A = 1|L) respectively.

In our analysis we have implemented TMLE with the following specifications [for the main result in Table 1]:

• Our outcome Y is the number of hospital admissions, A = Ā2 denotes whether load shedding occurred on the same or

any of the two preceding days, and the considered confounders are (based on the model building considerations above,

i.e. variable reduction with model averaging for computational feasibility) L1, L2, L5, L3
i−1, L

5
i−1, L

6
i−1 , L

2
i−2, L

7, L8,

L9, L10, L11, L12, Yi−1, Yi−3, Yi−7, Yi−9.

• Our target quantity is ψ, as discussed above.

• We use the R-package tmle to implement super learning (Gruber and van der Laan, 2012).

• We use super learning to estimate E(Y |A,L) and P (A = 1|L) with 10-fold cross validation, a squared loss function

(for cross validation), and a truncation level of 0.01, meaning that estimated probabilities P (A = 1|L) (needed for the

targeted update step) would have been truncated if they were lower than 0.01 (though this did not occur). We use the

following learners to estimate E(Y |A,L): a full linear regression model, a linear regression model with stepwise AIC

based model selection, a linear regression model with AIC based forward selection, GLM’s based on an EM-algorithm-

Bayesian model fitting (Gelman and Su, 2016), the arithmetic mean, a linear regression model with stepwise AIC based

model selection including interaction terms, LASSO estimation (Tibsharani, 1996), LASSO averaging (Schomaker,

2012) for the full model and models with interactions and squared terms (Schomaker, 2017), boosting (Ridgeway, 2017),

multivariate adaptive regression splines (Milborrow, 2017), Mallow’s model averaging (Hansen, 2007), Jackknife Model

Averaging (Hansen and Racine, 2012), linear regression after screening variables with LASSO, multivariate adaptive

regression splines after screening variables with LASSO, and boosting after screening with Cramer’s V (Heumann

et al., 2016, Chapter 4). The same learners have been used to estimate P (A = 1|L) except Mallow’s Model Averaging,

Jackknifel Model Averaging, and the LASSO. In addition k-nearest neighbour classification has been used.

The Negative Binomial Model. Recall the Quasi-Poisson model used to obtain the results reported in Table 1:

E(Y ) = exp(β0 + β1Ā
2 + L∗β2 + f1(Yi−1) + f2(Yi−3) + f3(Yi−7) + f4(Yi−9) + f5(L1) + f6(L2) + f7(L5)

+f8(L3
i−1) + f9(L5

i−1) + f10(L6
i−1) + f11(L2

i−2))

An alternative to using the above model, would still be using the above model, but instead of using the assumption that

the observations Yi follow a Poisson distribution (conditional on the covariates), one can assume that they follow a negative



binomial distribution:

P (Y = y) =
Γ(φ+ y)

Γ(y + 1)Γ(φ)

(
φ

φ+ λ

)φ(
λ

φ+ λ

)y
Note that Γ(n) is the Gamma function, defined as Γ(n) = (n − 1)! for positive integers and Γ(x) =

∫∞
0
tx−1 exp(−t)dt

otherwise. For φ→∞ this distribution approaches a Poisson distribution. While for a Poisson distribution we get a variance

of λ, it is λ+ λ2/φ for the negative binomial approach, thus allowing to adjust for overdispersion. Our results are based on

the negative binomial model as explained above, implemented with the glm.nb from the library MASS. No splines have been

used to include the covariates.

The INGARCH model. The integer-valued GARCH model, also known as the autoregressive Poisson model, is similar

to the models used above – with the difference that the mean conditional on the past (E(Yi|Fi)) is modeled, i.e. we explicitly

acknowledge the time-series structure by modeling a stochastic process conditional on the past. With Fi we mean the

history of the joint process {Yi, Ai,Li}. In our analysis, we use the following INGARCH model for which we assume a

negative-binomial distribution of Yi:

E(Y ) = exp(β0 + α1λi−1 + α2λi−2 + α3λi−3 + β1Ā
2 + L̃β2)

where L̃ contains all variables from equation (2) and λi = E(Yi|Fi). The decision to include the conditional means up to

a lag of 3 has been based on model selection with AIC. Thus, the INGARCH model is identical to our negative-binomial

model above, with the exception of the inclusion of three conditional means. Background on inference of these models,

as well as good references, can be found in Liboschik et al. (2017). This reference also explains useful diagnostic for the

INGARCH model, all of which are shown in eFigure 6. The autocorrelation function of the residuals does not exhibit any

serial correlation that hasn’t been taken into account by the model (as the autocorrelation is small and below the blue limits).

There is also no sign that the residuals are inappropriate. However, the probability integral transform (PIT) histogram is not

ideal, it should be more uniformly distributed. Moreover, the marginal calibration plot, which plots the difference between

the average predictive cumulative distribution function (cdf) and the empirical cdf, shows major deviations from zero. This

means that the number of hospital admissions, given the past, is not modelled well by the INGARCH model. It is also worth

mentioning that with the INGARCH approach we haven’t been able to include non-linear relationships with splines.



eFigure 6. Diagnostics for the fitted INGARCH model.
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