Supplementary materials

Outdoor artificial light at night and reproductive endocrine and glucose homeostasis and polycystic ovary syndrome in women of reproductive age

Lanlan Fang^{a,b#}, Cong Ma^{c,d#}, Guosheng Wang^{a,b#}, Yongzhen Peng^{a,b}, Hui Zhao^{a,b}, Yuting Chen^{a,b}, Yubo Ma^{a,b}, Guoqi Cai^{a,b}, Yunxia Cao^{c,d**}, Faming Pan^{a,b*}

List of charts

e Figure 1. Flow diagram for inclusion and exclusion of study subjects.

e Figure 2. Directed acyclic graph for the associations of ALAN and PCOS.

e Figure. 3. Distribution of outdoor ALAN exposure during 1 year or month before hormone measurement.

e Figure. 4. Distribution of outdoor ALAN exposure during 1 year or month before glucose measurement.

e Figure. 5. The adjusted OR for the association between ALAN and PCOS by age (A), BMI (B), education level (C), and season (D). The model was adjusted age, BMI, education, occupation, season, PM_{2.5} at the residential address, GDP per capita (quartiles), infertile type, and infertile factors, and the corresponding grouping factors were removed from the models.

e Figure. 6. The long-term effects of ALAN on sex hormones and glucose homeostasis markers in participants with and without PCOS.

e Figure. 7. The short-term effects of ALAN on sex hormones and glucose homeostasis markers in participants with and without PCOS.

e Table 1. Serum hormones, glucose homeostasis markers, as well as seasons at disease diagnosis and hormones and glucose homeostasis testing in the study population.

e Table 2. Descriptive data of exposure level of ALAN during the 1 year or month exposure windows.

e Table 3. Demographic characteristics of 20633 women by ALAN quintiles during 1 year before disease diagnosis.

e Table 4. Demographic characteristics of 20633 women by ALAN quintiles during 1 month before disease diagnosis.

e Table 5. Sensitivity analysis of effects of ALAN exposure on PCOS further adjusted for urbanity levels in the fully adjusted model.

e Table 6. Sensitivity analysis of effects of ALAN exposure on PCOS in the fully adjusted models excluding PM_{2.5}.

e Table 7. The joint effects of ALAN at the residential address and PM_{2.5} on PCOS.

e Table 8. Sensitivity analysis of long-term and short-term effects of ALAN exposure on female LH/FSH≥2, T≥2 nmol/L, and HOMA-IR≥2.6 in the fully adjusted model.

e Table 9. Sensitivity analysis of effects of ALAN exposure on PCOS in participants who excluded women with infertility.

e Figure 1. Flow diagram for inclusion and exclusion of study subjects.

e Figure 2. Directed acyclic graph for the associations of ALAN and PCOS.

e Figure. 3. Distribution of outdoor ALAN exposure during 1 year or month before hormone measurement.

e Figure. 4. Distribution of outdoor ALAN exposure during 1 year or month before glucose measurement.

e Figure. 5. The adjusted OR for the association between ALAN and PCOS by age (A), BMI (B), education level (C), and season (D). The model was adjusted age, BMI, education, occupation, season, $PM_{2.5}$ at the residential address, GDP per capita (quartiles), infertile type, and infertile factors, and the corresponding grouping factors were removed from the models.

e Figure. 6. The long-term effects of ALAN on sex hormones and glucose homeostasis markers in participants with and without PCOS.

e Figure. 7. The short-term effects of ALAN on sex hormones and glucose homeostasis markers in participants with and without PCOS.

e Table 1. Serum hormones, glucose homeostasis markers, as well as seasons at disease diagnosis and hormones and glucose homeostasis testing in the study population.

Characteristic	Overall	Non-PCOS	PCOS	Duchuc
Characteristic	(n=20,633)	(n = 17,822)	(n = 2,811)	P value
Sex hormones				
FSH, mIU/mL, Mean \pm SD	7.4±2.4	7.5±2.4	6.4±1.7	< 0.001
Missing	706	581	125	
LH, Median (IQR)	4.6 (3.0)	4.3 (2.6)	7.6 (6.1)	< 0.001
Missing	652	430	222	
LH/ FSH, Median (IQR)	0.6 (0.5)	0.6 (0.4)	1.2 (1)	< 0.001
Missing	993	734	259	
T, nmol/L, Mean \pm SD	$1.4{\pm}0.7$	$1.4{\pm}0.7$	$1.7{\pm}0.8$	< 0.001
Missing	2,385	2,016	369	
Glucose homeostasis markers				
FI, mU/L, Median (IQR)	9.4 (6.6)	9.1 (6.2)	11.7 (8.6)	< 0.001
Missing	8,785	7,766	1,019	
FPG, mmol/L, Mean ± SD	5.3±0.4	5.3±0.4	5.3±0.5	0.026
Missing	8,944	7,882	1,062	
HOMA-IR, Mean \pm SD	2.6±1.5	2.5±1.4	3.2±1.7	< 0.001
Missing	11,880	10,466	1,414	
HOMA-β, Median (IQR)	106.7 (72.1)	103.1 (67.4)	130.9 (94.2)	< 0.001
Missing	11,880	10,476	1,404	
Season at disease diagnosis, n (%)				< 0.001
Spring (March-May)	6,218 (30.1)	5,464 (30.7)	754 (26.8)	
Summer (June-August)	6,041 (29.3)	5,194 (29.1)	847 (30.1)	
Autumn (September-November)	5,460 (26.5)	4,666 (26.2)	794 (28.2)	
Winter (December-February)	2,914 (14.1)	2,498 (14)	416 (14.8)	
Season at hormones measurement, n (%)				0.5
Spring (March-May)	7,353 (36.0)	6,370 (36.1)	983 (35.0)	
Summer (June-August)	5,514 (27.0)	4,758 (27.0)	756 (26.9)	
Autumn (September-November)	4,575 (22.4)	3,918 (22.2)	657 (23.4)	
Winter (December-February)	3,010 (14.7)	2,596 (14.7)	414 (14.7)	
Missing	181	180	1	
Season at glucose measurement, n (%)				>0.9
Spring (March-May)	4,048 (33.0)	3,411 (33.0)	637 (32.9)	
Summer (June-August)	3,307 (27.0)	2,781 (26.9)	526 (27.2)	
Autumn (September-November)	3,198 (26.1)	2,690 (26.1)	508 (26.2)	
Winter (December-February)	1,705 (13.9)	1,440 (14)	265 (13.7)	
Missing	8,375	7,500	875	

Categorical variables were presented as n (%). n, numbers of subjects; %, percentage. Normally distributed continuous variables were expressed as mean \pm SD; non-normally distributed continuous

variables were expressed as median (IQR).

	Exposure windows	$Mean \pm SD$	\mathbf{P}_0	P ₂₅	P50	P ₇₅	P ₁₀₀
PCOS	During 1-year before	16.0+16.2	0.00	0.78	14.03	30.94	86.38
	disease diagnosis	10.9±10.2					
	During 1-month before	17 1 16 0	0.00	0.84	13.73	30.96	107.79
	disease diagnosis	17.1±10.9					
Sex hormones	During 1-year before	1671161	0.00	0.75	13.74	30.71	86.38
	hormones measurement	10./±10.1					
	During 1-month before	16.9±16.8	0.00	0.80	13.36	30.54	111.83
	hormones measurement						
Glucose	During 1-year before	17.1±16.3	0.00	0.84	14.27	31.27	82.84
homeostasis	glucose measurement						
markers	During 1-month before	17.3±17.1	0.00	0.89	14.97	31.01	149.88
	glucose measurement						

e Table 2 Descriptive data of exposure level of ALAN during the 1 year or month exposure windows.

e Table 3 Demographic characteristics of 20633 women by ALAN quintiles during 1 year before disease diagnosis.

Chamatariatia	Quintile 1	Quintile 2	Quintile 3	Quintile 4	Quintile 5
Unaracteristic	N = 4,127	N = 4,125	N = 4,128	N = 4,126	N = 4,127
age, Mean ± SD	29.8 ± 5.2	30.0 ± 5.2	$3\overline{0.9\pm4.9}$	31.2 ± 4.8	$3\overline{1.5 \pm 4.7}$
BMI, kg/m ² , Mean \pm SD	22.8 ± 3.2	22.8 ± 3.3	22.4 ± 3.0	22.2 ± 3.0	22.0 ± 2.9
Education, n (%)					
<middla sahaal<="" td=""><td>2,718.0</td><td>2,469.0</td><td>1,261.0</td><td>819.0</td><td>589.0</td></middla>	2,718.0	2,469.0	1,261.0	819.0	589.0
	(65.9)	(59.9)	(30.5)	(19.8)	(14.3)
High/technical school	1,180.0	1,273.0	1,913.0	1,874.0	1,811.0
	(28.6)	(30.9)	(46.3)	(45.4)	(43.9)
× 11	229.0 (5.5) 383.0 (9.3)	282 0 (0 2)	954.0	1,433.0	1,727.0
≥college		383.0 (9.3)	(23.1)	(34.7)	(41.8)
Occupation, n (%)					
Unomployment	2,032.0	1,907.0	1,373.0	1,111.0	898.0
Ollemployment	(49.2)	(46.2)	(33.3)	(26.9)	(21.8)
Manual worker	1,017.0	1,048.0	1,009.0	900.0	912.0
Manual worker	(24.6)	(25.4)	(24.4)	(21.8)	(22.1)
Technical nonconnel	102 0 (4 7)	252 0 (9 6)	602.0	769.0	755.0
rechnical personnel	195.0 (4.7)	555.0 (8.0)	(14.6)	(18.6)	(18.3)
Businessman/service staff	170.0 (4.1)	179.0 (4.3)	414.0	523.0	655.0

			(10.0)	(12.7)	(15.9)
Commenter of the fi	715.0	638.0	730.0	823.0	907.0
Government starr	(17.3)	(15.5)	(17.7)	(19.9)	(22.0)
Season at disease					
diagnosis, n (%)					
Service (Marsh Mars)	1,355.0	1,267.0	1,216.0	1,166.0	1,214.0
Spring (March-May)	(32.8)	(30.7)	(29.5)	(28.3)	(29.4)
Summer (June August)	1,180.0	1,218.0	1,215.0	1,205.0	1,223.0
Summer (June-August)	(28.6)	(29.5)	(29.4)	(29.2)	(29.6)
Autumn (September-	1,036.0	1,092.0	1,112.0	1,122.0	1,098.0
November)	(25.1)	(26.5)	(26.9)	(27.2)	(26.6)
Winter (December-	556.0	548.0	585.0	633.0	592.0
February)	(13.5)	(13.3)	(14.2)	(15.3)	(14.3)
Infertile type, n (%)					
Drimony infartility	2,355.0	2,227.0	2,205.0	2,262.0	2,287.0
T finary intertinty	(57.1)	(54.0)	(53.4)	(54.8)	(55.4)
Secondary infertility	1,772.0	1,898.0	1,923.0	1,864.0	1,840.0
	(42.9)	(46.0)	(46.6)	(45.2)	(44.6)
Infertile factors, n ()					
Non-female factor	1,553.0	1,719.0	1,451.0	1,596.0	1,740.0
Tion-temate factor	(37.6)	(41.7)	(35.2)	(38.7)	(42.2)
Female factor	2,574.0	2,406.0	2,677.0	2,530.0	2,387.0
i emaie ractor	(62.4)	(58.3)	(64.8)	(61.3)	(57.8)
Previous year $PM_{2.5}$, Mean \pm SD	49.5 ± 10.7	50.9 ± 9.5	51.5 ± 9.5	51.8 ± 9.0	50.3 ± 9.6
City-GDP, ¥ per capita, n					
(%)					
1(101 20270	1,354.0	1,361.0	1,166.0	590.0	200.0 (7.0)
16121-33370	(32.8)	(33.0)	(28.2)	(14.3)	289.0 (7.0)
22270 52240	1,512.0	1,537.0	1,463.0	612.0	210.0(5.2)
33370-52249	(36.6)	(37.3)	(35.4)	(14.8)	219.0 (5.5)
57740 11/200	878.0	786.0	984.0	1,365.0	1,275.0
52249-116300	(21.3)	(19.1)	(23.8)	(33.1)	(30.9)
116200 100672	383 0 (0 2)	441.0	515.0	1,559.0	2,344.0
116300-1226/3	505.0 (9.5)	(10.7)	(12.5)	(37.8)	(56.8)

The mean values and percentages in different quintiles were compared using ANOVA analysis and $\chi 2$ tests; the distributions of the characteristics by quintiles were significantly different (all p<0.05).

e Table 4 Demographic characteristics of 20633 women by ALAN quintiles during 1 month before

disease diagnosis.

Chamatanistia	Quintile 1	Quintile 2	Quintile 3	Quintile 4	Quintile 5
Characteristic	N = 4,127	N = 4,126	N = 4,127	N = 4,126	N = 4,127
age, Mean \pm SD	29.8 ± 5.2	30.1 ± 5.2	30.9 ± 4.9	31.1 ± 4.7	31.5 ± 4.8
BMI, kg/m ² , Mean \pm SD	22.7 ± 3.2	22.8 ± 3.3	22.4 ± 3.1	22.2 ± 3.0	22.1 ± 2.9
Education, n (%)					
 dia solo al 	2,678.0	2,486.0	1,248.0	817.0	627.0
	(64.9)	(60.3)	(30.2)	(19.8)	(15.2)
High/tashuisal sahaal	1,193.0	1,282.0	1,895.0	1,883.0	1,798.0
Figh/technical school	(28.9)	(31.1)	(45.9)	(45.6)	(43.6)
Saallaga	256 0 (6 2)	258 0 (8 7)	984.0	1,426.0	1,702.0
≥conege	230.0 (0.2)	558.0 (8.7)	(23.8)	(34.6)	(41.2)
Occupation, n (%)					
Unomploymont	2,004.0	1,924.0	1,361.0	1,087.0	945.0
Onempioyment	(48.6)	(46.6)	(33.0)	(26.3)	(22.9)
Manual worker	1,030.0	1,039.0	1,006.0	938.0	873.0
Walluar worker	(25.0)	(25.2)	(24.4)	(22.7)	(21.2)
Technical personnal	212.0 (5.1)	226.0 (8.1)	608.0	756.0	760.0
reclinical personnel	212.0 (3.1)	550.0 (8.1)	(14.7)	(18.3)	(18.4)
Businessman/service staff	171 0 (4 1)	183 0 (4 4)	402 0 (9 7)	529.0	656.0
Businessman/service starr	1/1.0 (4.1)	185.0 (4.4)	402.0 (9.7)	(12.8)	(15.9)
Government staff	710.0	644.0	750.0	816.0	893.0
Government starr	(17.2)	(15.6)	(18.2)	(19.8)	(21.6)
Season at disease diagnosis,	n (%)				
Spring (March May)	1,315.0	1,262.0	1,251.0	1,186.0	1,204.0
Spring (Waren-Way)	(31.9)	(30.6)	(30.3)	(28.7)	(29.2)
Summer (June August)	1,132.0	1,273.0	1,194.0	1,263.0	1,179.0
Summer (June-August)	(27.4)	(30.9)	(28.9)	(30.6)	(28.6)
Autumn (September-	1,082.0	1,047.0	1,053.0	1,109.0	1,169.0
November)	(26.2)	(25.4)	(25.5)	(26.9)	(28.3)
Winter (December-	598.0	544.0	629.0	568.0	575.0
February)	(14.5)	(13.2)	(15.2)	(13.8)	(13.9)
Infertile type, n (%)					
Drimary infertility	2,362.0	2,229.0	2,176.0	2,294.0	2,275.0
I finally intertinty	(57.2)	(54.0)	(52.7)	(55.6)	(55.1)
Secondary infertility	1,765.0	1,897.0	1,951.0	1,832.0	1,852.0
Secondary micruity	(42.8)	(46.0)	(47.3)	(44.4)	(44.9)

Infertile factors, n ()

Non formale factor	1,547.0	1,732.0	1,430.0	1,623.0	1,727.0
Non-Iemale factor	(37.5)	(42.0)	(34.6)	(39.3)	(41.8)
Escuela fratar	2,580.0	2,394.0	2,697.0	2,503.0	2,400.0
Female factor	(62.5)	(58.0)	(65.4)	(60.7)	(58.2)
Previous month PM _{2.5} ,	$44.4 \pm$	$44.5 \pm$	$46.9\pm$	$45.5 \pm$	$43.1\pm$
Mean \pm SD	18.4	19.2	19.9	20.0	17.4
Missing	12	4	6	0	0
City-GDP, ¥ per capita	ı, n (%)				
16121-33370	1,341.0	1,375.0	1,117.0	610.0	317.0 (7.7)
	(32.5)	(33.3)	(27.1)	(14.8)	
22270 52240	1,505.0	1,538.0	1,382.0	654.0	264.0 (6.4)
33370-52249	(36.5)	(37.3)	(33.5)	(15.9)	264.0 (6.4)
52240 11(200	908.0	769.0	974.0	1,374.0	1,263.0
52249-116300	(22.0)	(18.6)	(23.6)	(33.3)	(30.6)
11(200 122(72	272.0(0.0)	444.0	654.0	1,488.0	2,283.0
116300-122673	373.0 (9.0)	(10.8)	(15.8)	(36.1)	(55.3)

The mean values and percentages in different quintiles were compared using ANOVA analysis and $\chi 2$ tests; the distributions of the characteristics by quintiles were significantly different (all p<0.05).

e Table 5. Sensitivity analysis of effects of ALAN exposure on PCOS further adjusted for urbanity levels in the fully adjusted model.

Long-term exposure ^a	
Prior year ALAN exposure	OR (95%CI)
Continuous (per IQR increased ^b)	1.34 (1.19,1.51)
Quintile 1 (median 0.1 nW/cm ² /sr)	Reference ^c
Quintile 2 (median 1.2 nW/cm ² /sr)	1.04 (0.91, 1.19)
Quintile 3 (median 14.0 nW/cm ² /sr)	1.21 (1.12, 1.53)
Quintile 4 (median 28.2 nW/cm ² /sr)	1.57 (1.31, 1.87)
Quintile 5 (median 39.7 nW/cm ² /sr)	1.59 (1.32, 1.91)
Short-term exposure ^a	
Prior month ALAN exposure	
Continuous (per IQR increased ^b)	1.17 (1.05,1.30)
Quintile 1 (median 0.0 nW/cm ² /sr)	Reference
Quintile 2 (median 1.2 nW/cm ² /sr)	1.09 (0.96, 1.25)
Quintile 3 (median 13.7 nW/cm ² /sr)	1.21 (1.04, 1.40)
Quintile 4 (median 27.8 nW/cm ² /sr)	1.47 (1.24, 1.74)
Quintile 5 (median 41.4 nW/cm ² /sr)	1.26 (1.06, 1.51)

a: The model was adjusted for age, BMI, education, occupation, season, PM_{2.5} at the residential

address, GDP per capita (quartiles), infertile type, infertile factors, and urbanity levels; ^b: An IQR increase in outdoor ALAN during 1-year or month is 30.2 or 30.1 nW/cm²/sr; ^c: *P* for trend<0.05.

e Table 6. Sensitivity analysis of effects of ALAN exposure on PCOS in the fully adjusted models excluding PM_{2.5}.

Long-term exposure ^a				
Prior year ALAN exposure	OR (95%CI)			
Continuous (per IQR increased ^b)	1.12 (1.01,1.24)			
Quintile 1 (median 0.1 nW/cm ² /sr)	Reference ^c			
Quintile 2 (median 1.2 nW/cm ² /sr)	0.96(0.84,1.10)			
Quintile 3 (median 14.0 nW/cm ² /sr)	1.08(0.95,1.24)			
Quintile 4 (median 28.2 nW/cm ² /sr)	1.16(1.00,1.34)			
Quintile 5 (median 39.7 nW/cm ² /sr)	1.16(0.99,1.36)			
Short-term exposure ^a				
Prior month ALAN exposure				
Continuous (per IQR increased ^b)	1.10 (1.00,1.20)			
Quintile 1 (median 0.0 nW/cm ² /sr)	Reference			
Quintile 2 (median 1.2 nW/cm ² /sr)	1.06 (0.93, 1.21)			
Quintile 3 (median 13.7 nW/cm ² /sr)	1.08 (0.94, 1.24)			
Quintile 4 (median 27.8 nW/cm ² /sr)	1.27 (1.10, 1.46)			
Quintile 5 (median 41.4 nW/cm ² /sr)	1.10 (0.94, 1.28)			

^a: The model was adjusted for age, BMI, education, occupation, season, PM_{2.5} at the residential address, GDP per capita (quartiles), infertile type, and infertile factors;

^b: An IQR increase in outdoor ALAN during 1-year or month is 30.2 or 30.1 nW/cm²/sr;

^c: *P* for trend<0.05.

e Table 7. The joint effects of ALAN at the residential address and PM_{2.5} on PCOS.

Long-term effect	OR (95%CI)	P interaction term
Prior year ALAN	1.16 (1.02, 1.32)	
Prior year PM _{2.5}	0.75 (0.65, 0.86)	
Prior year ALAN * PM _{2.5}	1.03 (0.87, 1.23)	0.714
Short-term effect		
Prior month ALAN	1.15 (1.02, 1.29)	
Prior month PM _{2.5}	0.72 (0.63, 0.83)	
Prior month ALAN * PM _{2.5}	0.95 (0.81, 1.10)	0.471

The model was adjusted for age, BMI, education, occupation, season, $PM_{2.5}$ at the residential address, GDP per capita (quartiles), infertile type, and infertile factors.

Prior year ALAN		Prior month ALAN		
Indicators	OR (95%CI)	Indicators	OR (95%CI)	
	LH/FS	H≥2		
quintile 1	Reference	quintile 1	Reference	
quintile 2	0.98(0.78,1.24)	quintile 2	0.94(0.75,1.19)	
quintile 3	1.04(0.81,1.32)	quintile 3	1.04(0.81,1.32)	
quintile 4	1.25(0.96,1.62)	quintile 4	1.27(0.99,1.64)	
quintile 5	1.16(0.87,1.55)	quintile 5	1.30(0.99,1.71)	
	T≥2 nm	nol/L		
quintile 1	Reference	quintile 1	Reference	
quintile 2	1.15(1.02,1.29)	quintile 2	1.15(1.03,1.29)	
quintile 3	1.12(0.99,1.26)	quintile 3	1.09(0.97,1.24)	
quintile 4	1.19(1.04,1.36)	quintile 4	1.11(0.98,1.26)	
quintile 5	1.22(1.06,1.40)	quintile 5	1.13(0.99,1.30)	
	HOMA-I	R≥2.6		
quintile 1	Reference	quintile 1	Reference	
quintile 2	1.01(0.87,1.18)	quintile 2	1.02(0.87,1.18)	
quintile 3	1.20(1.03,1.41)	quintile 3	1.17(1.00,1.37)	
quintile 4	1.11(0.94,1.32)	quintile 4	1.12(0.95,1.33)	
quintile 5	1.14(0.96,1.37)	quintile 5	1.12(0.94,1.33)	

e Table 8. Sensitivity analysis of long-term and short-term effects of ALAN exposure on female $LH/FSH \ge 2$, $T \ge 2 \text{ nmol/L}$, and HOMA-IR ≥ 2.6 in the fully adjusted model.

The model was adjusted for age, BMI, education, occupation, season, PM_{2.5} at the residential address, GDP per capita (quartiles), infertile type, and infertile factors.

e Table 9. Sensitivity analysis of effects of ALAN exposure on PCOS in participants who excluded women with infertility.

Long-term exposure ^a	
Prior year ALAN exposure	OR (95%CI)
Continuous (per IQR increased ^b)	1.26(1.05,1.53)
Quintile 1 (median 0.1 nW/cm ² /sr)	Reference
Quintile 2 (median 1.2 nW/cm ² /sr)	1.42(1.10,1.84)
Quintile 3 (median 14.0 nW/cm ² /sr)	1.51(1.14,2.00)
Quintile 4 (median 28.2 nW/cm ² /sr)	1.57(1.16,2.12)
Quintile 5 (median 39.7 nW/cm ² /sr)	1.69(1.24,2.32)
Short-term exposure ^a	
Prior month ALAN exposure	

Continuous (per IQR increased ^b)	1.10 (0.92,1.31)
Quintile 1 (median 0.0 nW/cm ² /sr)	Reference
Quintile 2 (median 1.2 nW/cm ² /sr)	1.33(1.03,1.72)
Quintile 3 (median 13.7 nW/cm ² /sr)	1.29(0.97,1.71)
Quintile 4 (median 27.8 nW/cm ² /sr)	1.35(1.01,1.80)
Quintile 5 (median 41.4 nW/cm ² /sr)	1.34(0.99,1.82)

^a: The model was adjusted for age, BMI, education, occupation, season, PM_{2.5} at the residential address, GDP per capita (quartiles), and infertile type;

^b: An IQR increase in outdoor ALAN during 1-year or month is 30.2 or 30.1 nW/cm²/sr.