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1 Supplemental methods

1.1 The three plots

Young and collaborators frequently cite two other graphicalmethods (Schweder andSpjøtvoll

1982; Simonsohn, Nelson, and Simmons 2014).

All three graphical methods take as input a set of 𝑁 p-values ℙ = {𝑝1, 𝑝2, … , 𝑝𝑁}. In
Schweder and Spjøtvoll (1982) these are taken from separate tests of𝑁 different hypotheses.

In Simonsohn, Nelson, and Simmons (2014) and the works by Young and collaborators,

the p-values are (nominally) produced by applying a given statistical hypothesis test to 𝑁
replications of a given study design, each replication drawing samples of size 𝑛 from a given

population. This corresponds to the simplest case of meta-analysis. Thus the p-values in ℙ
are nominally samples from a single underlying distribution 𝑝𝑖 ∼ 𝑃. Note that, if the real
effect is zero 𝛿 = 0, then 𝑃 is the uniform distribution on [0, 1].

1.2 Schweder and Spjøtvoll’s p-value plot

Young and collaborators have frequently cited the “p-value plot” presented in Schweder and

Spjøtvoll (1982). For this p-value plot, let 𝑟𝑎𝑛𝑘𝑑𝑒𝑠𝑐(𝑝𝑖) be the (1-indexed) descending rank

of 𝑝𝑖 ∈ ℙ, i.e., 𝑟𝑎𝑛𝑘𝑑𝑒𝑠𝑐(𝑝𝑖) is the number of p-values 𝑝𝑗 ∈ ℙ greater than or equal to 𝑝𝑖.
The largest p-value has descending rank 1, and the smallest p-value has descending rank

𝑁. Then Schweder and Spjøtvoll’s p-value plot plots the graph (1 − 𝑝𝑖, 𝑟𝑎𝑛𝑘𝑑𝑒𝑠𝑐(𝑝𝑖)). See
fig. 1.

Schweder and Spjøtvoll (1982) give a brief (and rather informal) argument that the

relationship between 1 − 𝑝𝑖 and 𝑟𝑎𝑛𝑘𝑑𝑒𝑠𝑐(𝑝𝑖) should be approximately linear “when [𝑝𝑖] is
not too small” and that, from left to right, “often, the plot will not show a clearcut break but

rather a gradual bend” away from linearity. Their argument concludes that “the slope of

that straight line is an estimate of … the number of true null hypotheses” in ℙ, and so the
former can be used to estimate the latter (Schweder and Spjøtvoll 1982, 494). Schweder and

Spjøtvoll’s p-value plot is designed around different assumptions and to answer a different

question than either of the other two plots. Also, Schweder and Spjøtvoll’s p-value plot

generally ignores “small” p-values, which roughly correspond to the statistically significant

p-values. They illustrate their method with example data and a straight line “drawn by visual

fit” rather than regression analysis.
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Figure 1: Examples of Schweder and Spjøtvoll’s p-value plot, drawn at random from the

simulation results (Schweder and Spjøtvoll 1982). Rows and colors correspond to conditions

or real effects (𝛿), from zero (0) to moderate-strong (0.6) and a mixed condition 𝛿 =
{0.0, 0.6}. Columns correspond to indices for the simulation runs that produced these
results, and are not meaningful. (In particular, there is no relationship between simulation

run 𝑗 in condition 𝑎 and simulation run 𝑗 in condition 𝑏.) In Schweder and Spjøtvoll’s
p-value plot, each point corresponds to a single p-value in the meta-analysis (simulation

run); the y-axis is the p-value itself and the x-axis is the descending rank of the p-value.
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1.3 Simonsohn, Nelson, and Simmons’ p-curve

Young and collaborators have regularly echoed concerns about the replication crisis un-

folding in social psychology and certain areas of biomedical research (for example, Young,

Acharjee, and Das 2019, 50). In particular, they appeal to concerns about p-hacking (Si-

monsohn, Nelson, and Simmons 2014). Note that, other than Young’s p-value plot, Young

and collaborators have provided no specific1 empirical[^counting] evidence of p-hacking in

environmental epidemiology, and to my knowledge no such evidence has been published

(Hicks 2021).

Young and collaborators have frequently associated Young’s p-value plot with a method

developed to detect p-hacking, called a “p-curve” (Simonsohn, Nelson, and Simmons 2014;

for a comparison of several methods to detect p-hacking, see McShane, Böckenholt, and

Hansen 2016). The intuition behind the p-curve is that p-hacking will tend to produce

an excess number of p-values “just below” the conventional 0.05 threshold for statistical
significance. Formally, Simonsohn et al.’s p-curve first divides the interval [0, 0.05] into
5 bins at the thresholds 0.01, 0.02, 0.03, 0.04, 0.05, then calculates 𝑁𝑏, the number of p-
values in bin 𝑏. The p-curve is the graph (𝑏𝑡, 𝑁𝑏), where 𝑏𝑡 is the threshold for bin 𝑏. The
method then formally tests for p-hacking by applying statistical tests of the null hypothesis

that the restricted distribution 𝑃 |𝑝<0.05 is uniform. See fig. 2.

Note that the p-curve is a histogram on the interval [0, 0.5] with binwidth 0.01, and
that it only includes statistically significant p-values. Thus the p-curve and Schweder and

Spjøtvoll’s p-value plot not only produce different kinds of plots, but actually direct their

attention to different — typically disjoint — subsets of p-values. The two kinds of plots

cannot be equivalent to each other. At no point have Young and collaborators acknowledged

this fundamental difference between the two methods that they cite as support for their own

method.

1.4 Young’s p-value plot

For Young’s p-value plot, let 𝑟𝑎𝑛𝑘𝑎𝑠𝑐(𝑝𝑖) be the (1-indexed) ascending rank of 𝑝𝑖 ∈ ℙ,
i.e., 𝑟𝑎𝑛𝑘𝑎𝑠𝑐(𝑝𝑖) is the number of p-values 𝑝𝑗 ∈ ℙ less than or equal to 𝑝𝑖. The smallest
p-value has ascending rank 1, and the largest p-value has ascending rank 𝑁. Without loss of

generality, if ℙ is already in ascending order 𝑝1 < 𝑝2 < ⋯ < 𝑝𝑁, then 𝑟𝑎𝑛𝑘𝑎𝑠𝑐(𝑝𝑖) = 𝑖.
And Young’s p-value plot is the graph (𝑖, 𝑝𝑖).

Statistically-minded readers might have already noted that Young’s p-value plot is a

rescaled QQ-plot of ℙ against the uniform distribution, with the theoretical quantiles 𝑞𝑖 =
𝑖
𝑁 = 𝑟𝑎𝑛𝑘𝑎𝑠𝑐(𝑝𝑖)

𝑁 . It is not equivalent to the other two plots, and so cannot be validated by

references to them. First, 𝑟𝑎𝑛𝑘𝑑𝑒𝑠𝑐(𝑝𝑖) = 𝑁 − 𝑟𝑎𝑛𝑘𝑎𝑠𝑐(𝑝𝑖) + 1, and so for a fixed number
1Young and collaborators do cite Head et al. (2015), which used text mining methods to examine p-values

reported in “all Open Access papers available in the PubMed database,” classified at the journal level into 22

disciplines. Head et al. (2015) did not report the full size of their sample, but did include tens of thousands

of p-values from “Medical and health sciences,” which likely includes epidemiology but also other fields with

very different methods, e.g., small-n animal model experiments and industry-funded clinical trials. While their

statistical tests did find evidence of p-hacking in “Medical and health sciences,” they did not consider subfields.

Based on the methodological and funding diversity of the fields covered, and the lack of information about the

distribution of subfields within their sample, we should be hesitant about drawing inferences to subfields.
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Figure 2: Examples of Simonsohn et al.’s p-curve, drawn at random from the simulation

results (Simonsohn, Nelson, and Simmons 2014). Rows and colors correspond to conditions

or real effects (𝛿), from zero (0) to moderate-strong (0.6) and a mixed condition 𝛿 =
{0.0, 0.6}. Columns correspond to indices for the simulation runs that produced these
results, and are not meaningful. (In particular, there is no relationship between simulation

run 𝑗 in condition 𝑎 and simulation run 𝑗 in condition 𝑏.) Simonsohn et al.’s p-curve is
restricted to p-values below the conventional 0.05 threshold; empty plots correspond to cases

in which no p-values were below the threshold. These p-values are binned at the thresholds

0.01, 0.02, 0.03, 0.04, 0.05, and each point corresponds to the number of p-values in the
given bin. This plot is equivalent to a histogram.
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of studies 𝑁 Young’s p-value does have a 1-1 mathematical relationship to Schweder and

Spjøtvoll’s p-value plot. In geometric terms, Young’s p-value plot swaps the axes of Schweder

and Spjøtvoll’s p-value plot and reverses the direction of the ranking. However, a regression

line fit to Schweder and Spjøtvoll’s p-value plot will not deterministically correspond to a

regression line fit to Young’s p-value plot; see discussion in the supplemental results. In

addition, the properties that Young and collaborators use in their analysis of their p-value

plots do not correspond to the properties used by Schweder and Spjøtvoll (which, again,

are justified with informal arguments rather than a formal analysis). So, even if Schweder

and Spjøtvoll’s p-value plot can be considered validated for certain purposes (it should be

clear that I’m skeptical on this point), this does not validate Young’s p-value plot as used by

Young and collaborators. Second, Simonsohn, Nelson, and Simmons’ p-curve constructs a

histogram on a subset of p-values; this is a completely different construction from Young’s

p-value plot, and so citations to the former also do not validate the latter.

1.5 Likelihood

The likelihood conception of evidence is not strongly associated with any one statistician or

philosopher of science, though it can be associated with one approach to Bayesian statistics

(Kass and Raftery 1995; Romeijn 2017).

Formally, the likelihood conception of evidence compares two rival hypotheses 𝐻1 and
𝐻2 using some data 𝑑. The likelihood ratio is defined as

𝐾(𝐻1, 𝐻2; 𝑑) = 𝐿(𝐻1; 𝑑)
𝐿(𝐻2; 𝑑)

= 𝑝𝑟(𝑑|𝐻1)
𝑝𝑟(𝑑|𝐻2)

.

If𝐾 > 1, then the evidence favors𝐻1; and𝐾 < 1 then the evidence favors𝐻2. Sometimes
log𝐾 is used to create symmetry between 𝐻1 and 𝐻2. On one common interpretive scale,
∣log10 𝐾∣ < 0.5 is “not worth more than a bare mention,” not supporting either hypothesis;
0.5 < ∣log10 𝐾∣ < 1 is “substantial”; 1 < ∣log10 𝐾∣ < 2 is “strong”; and 2 < ∣log10 𝐾∣ is
“decisive” (Kass and Raftery 1995).

To apply the likelihood conception of evidence to Young and collaborators’ skeptical

claims about air pollution,𝐻1 will be the zero or mixture hypothesis, the rival hypothesis𝐻2
will be the hypotheses (a-h), and the data 𝑑will be the analysis outputs (i-iv). (For simplicity,
the same dichotomous frequentist test outputs are used, e.g., statistically significant or not,

rather than continuous-valued likelihoodist or Bayesian alternatives.) In each case, insofar

as 𝐾 < 0.5, this implies that the p-value plot does not provide evidence to support the zero
or mixture hypotheses.

2 Supplemental results

2.1 Gaps

Fig. 3 shows the distribution of sizes of the largest gap across effect sizes.
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Figure 3: Distribution of gaps: Each violin plot shows the distribution of sizes of the

largest gap for each real effect size. The horizontal line indicates the threshold .125 for a

plot to be considered “gappy.” Except for the very large effect size, most plots across almost

all effect sizes have gaps.
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2.2 Slopes

Fig. 4 and fig. 5 show the distribution of slopes of regression lines fit to theQQ-plot, Schweder

and Spjøtvoll’s p-value plot, and Young’s p-value plot across effect sizes. fig. 5 uses the same

data as the left panel of fig. 4, with a wider aspect ratio for readability and dashed lines

indicating the thresholds for a slope of “approximately 1.”

Figure 4: Distribution of slopes: Each violin plot shows the distribution of slopes for the

linear regression fit to each plot across each real effect size. Note that the slopes for Young’s

p-value plot are rescaled from the QQ-plot.

Fig. 6 shows the relationship between the slopes of Young’s and Schweder and Spjøtvoll’s

p-value plots. For an ordinary least-squares regression of 𝑦 against 𝑥, the slope of the fitted
regression line is 𝑟𝑠𝑥/𝑠𝑦, where 𝑟 is the estimated correlation coefficient between 𝑥 and 𝑦
and the 𝑠 are the estimated standard deviations. So the slope of 𝑥 and 𝑦 (swapping the axes)
is 𝑟𝑠𝑦/𝑠𝑥. The ratio of the first slope to the reciprocal of the second slope is 𝑟2. This might
suggest a deterministic relationship between the slopes of Schweder and Spjøtvoll’s and

Young’s p-value plots. However, the estimated correlation coefficient 𝑟 is calculated from
observations drawn from the random variables𝑋 and 𝑌, and so 𝑟 itself is an observation
drawn from a random variable. That is, the observed value of 𝑟 will vary between different
iterations of the study. So the relationship between the slopes of the two p-value plots is

noisy. See fig. 4.
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Figure 5: Slopes for the QQ-plot: Data are the same as in the left panel of fig. 4. These

slopes are used for the slope analysis that supposedly gives evidence of zero effects. The

dashed lines indicate the 1 ± .1 threshold used for “approximately 1.”
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Figure 6: Relationship between slopes of Young’s and Schweder and Spjøtvoll’s

p-value plots: Scatterplot of the slopes for the two p-value plots, log-log scale. The two

plots are in a 1-1 relationship with each other, by reversing an axis and swapping the x and y

axes. But the slopes of the regression lines fit to each plot are not in a 1-1 relationship.
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2.3 Linearity

Fig. 7 shows the distribution of area under the curve (AUC) of the QQ-plot across each real

effect size. AUC has its maximum (expected) value of 0.5 when the real effect size 𝛿 = 0,
and decreases as the curve of the QQ-plot bends away from linearity. So AUC can be used as

a continuous measure of linearity.

Figure 7: Area under the curve (AUC) of the QQ-plot: Each violin plot shows the

distribution of area under the curve (AUC) across each real effect size. When the real effect

size is 𝛿 = 0, distribution of p-values is uniform and the expected QQ-plot is a straight line

𝑦 = 𝑥. The area under this perfectly linear QQ-plot is .5, as indicated by the median in the
corresponding violin plot. The AUC distribution for the very small effect is almost identical

to the zero effect, and expected AUC decreases as real effect size increases. The distribution

for the mixed or heterogenous effect overlaps with the distributions for almost every other

effect size, except for very large effects.

2.4 Severity analysis
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Table 1: Severity analysis results. 𝐻0 indicates the null or rival hypothesis playing the role
of ¬𝐻. “False” and “true” indicate the number of simulation runs in which the test output is

false and true, respectively, and p is calculated as the fraction of true runs.

𝐻0 output p false true

𝛿 = 0 ii-gap 0.84 79 421

𝛿 = 0 iii-range 0.61 194 306

𝛿 = 0 iii-T 0.55 226 274

𝛿 = 0 iii-TOST 0.21 394 106

𝛿 = 0 iii-KS 1.00 1 499

𝛿 = 0 iv-AIC 0.68 158 342

𝛿 = 0 iv-F 0.54 232 268

𝛿 = 0.01 ii-gap 0.85 75 425

𝛿 = 0.01 iii-range 0.61 193 307

𝛿 = 0.01 iii-T 0.54 230 270

𝛿 = 0.01 iii-TOST 0.17 416 84

𝛿 = 0.01 iii-KS 1.00 0 500

𝛿 = 0.01 iv-AIC 0.71 144 356

𝛿 = 0.01 iv-F 0.55 225 275

𝛿 = 0.2 ii-gap 0.91 43 457

𝛿 = 0.2 iii-range 0.56 218 282

𝛿 = 0.2 iii-T 0.58 209 291

𝛿 = 0.2 iii-TOST 0.13 435 65

𝛿 = 0.2 iii-KS 0.98 9 491

𝛿 = 0.2 iv-AIC 0.78 109 391

𝛿 = 0.2 iv-F 0.67 164 336

𝛿 = 0.5 ii-gap 0.93 35 465

𝛿 = 0.5 iii-range 0.16 419 81

𝛿 = 0.5 iii-T 0.42 291 209

𝛿 = 0.5 iii-TOST 0.00 500 0

𝛿 = 0.5 iii-KS 0.05 474 26

𝛿 = 0.5 iv-AIC 1.00 0 500

𝛿 = 0.5 iv-F 1.00 0 500

𝛿 = 0.8 ii-gap 0.54 230 270

𝛿 = 0.8 iii-range 0.00 500 0

𝛿 = 0.8 iii-T 0.00 498 2

𝛿 = 0.8 iii-TOST 0.00 500 0

𝛿 = 0.8 iii-KS 0.00 500 0

𝛿 = 0.8 iv-AIC 1.00 0 500

𝛿 = 0.8 iv-F 1.00 0 500

𝛿 = 1.2 ii-gap 0.04 480 20

𝛿 = 1.2 iii-range 0.00 500 0
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𝛿 = 1.2 iii-T 0.00 500 0

𝛿 = 1.2 iii-TOST 0.00 500 0

𝛿 = 1.2 iii-KS 0.00 500 0

𝛿 = 1.2 iv-AIC 1.00 0 500

𝛿 = 1.2 iv-F 1.00 0 500

𝛿 > 0 ii-gap 0.65 863 1637

𝛿 > 0 iii-range 0.27 1830 670

𝛿 > 0 iii-T 0.31 1728 772

𝛿 > 0 iii-TOST 0.06 2351 149

𝛿 > 0 iii-KS 0.41 1483 1017

𝛿 > 0 iv-AIC 0.90 253 2247

𝛿 > 0 iv-F 0.84 389 2111

𝛿 is mixed ii-gap 0.99 7 493

𝛿 is mixed iii-range 0.45 276 224

𝛿 is mixed iii-T 0.75 125 375

𝛿 is mixed iii-TOST 0.00 500 0

𝛿 is mixed iii-KS 0.32 338 162

𝛿 is mixed iv-AIC 0.98 8 492

𝛿 is mixed iv-F 0.96 18 482

𝛿 is non-zero ii-gap 0.71 870 2130

𝛿 is non-zero iii-range 0.30 2106 894

𝛿 is non-zero iii-T 0.38 1853 1147

𝛿 is non-zero iii-TOST 0.05 2851 149

𝛿 is non-zero iii-KS 0.39 1821 1179

𝛿 is non-zero iv-AIC 0.91 261 2739

𝛿 is non-zero iv-F 0.86 407 2593

𝛿 is not mixed ii-gap 0.69 942 2058

𝛿 is not mixed iii-range 0.33 2024 976

𝛿 is not mixed iii-T 0.35 1954 1046

𝛿 is not mixed iii-TOST 0.09 2745 255

𝛿 is not mixed iii-KS 0.51 1484 1516

𝛿 is not mixed iv-AIC 0.86 411 2589

𝛿 is not mixed iv-F 0.79 621 2379

2.5 Likelihood analysis

Fig. 8 and fig. 9 show the results of the likelihood analysis; see the supplemental materials

for a tables and interactive versions of these results. Log likelihood ratios are reported, so

results above 0.5 support 𝐻1 and results below −0.5 support 𝐻2. So, by the weak severity
criterion, when the results of the likelihood analysis are < 0.5, the test output does not
provide evidence supporting the target hypothesis of zero or mixed effect.

For “gaps” in the plot, calculating the likelihood ratiowould require simulation conditions

that included p-hacking and other questionable research practices. Because the simulation
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Figure 8: Results of the likelihood analysis for 𝐻1 ∶ 𝛿 = 0. Each point gives the
log likelihood ratio for 𝐻1 vs. rival hypothesis, given an output. Each panel represents
one comparison of 𝐻1 against a rival hypothesis 𝐻2. Position on the y-axis indicates the
strength of the evidence that the output provides to the hypotheses: greater values indicate

more support for 𝐻1 over 𝐻2. (Points at the plot margins have infinite value due to division
by zero.) Shaded regions indicate the degree of support for one hypothesis against the other,

in order from lightest to darkest: none, “substantial,” “strong,” “decisive.” An interactive

version of this plot is included in the automatic reproduction of the analysis for this paper.
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Figure 9: Results of the likelihood analysis for 𝐻1 ∶ 𝛿 is mixed. Interpretation is the

same as fig. 8.
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does not currently support these kinds of conditions, likelihood analysis cannot be used for

this output.

The zero effect hypothesis is supposedly supported by a slope of approximately 1. All four

methods provide “decisive” support for a zero effect against strong and very strong effects,

and all except the T-test provide “substantial” or better support against moderate effects.

The TOST approach provides stronger or equally strong evidence, compared to the other

approaches, across all of the rival hypotheses. When the rival hypothesis includes small or

very small effects, other approaches either do not provide evidence to support zero effects.

So, as with the severity analysis,whether and to what degree the “45-degree line” might

provide evidence for zero effects depends on the choice of rival hypothesis and analytical

approach used. In addition, and again as in the severity analysis, the visual assessment

apparently used by Young and collaborators will provide weaker evidence than the range

test, which does not provide evidence against rivals that include small effects. So, against

rival hypotheses that include small effects, insofar as Young and collaborators are relying

on visual judgment, the “45-degree line” does not provide evidence of a zero effect.

For the mixed effect hypothesis, all of the points for both AIC and the F-test are in the

“not worth mentioning” or no evidence range, and so neither method provides evidence to

support heterogeneity. This is the same conclusion reached by the severity analysis.

Table 2: Likelihood analysis results. “llr” is the log likehood ratio. Values > 0.5 indicate
support for 𝐻1.

𝐻1 𝐻2 output llr 𝐿(𝐻1) 𝐿(𝐻2)
𝛿 = 0 𝛿 = 0.01 iii-range 0.00 0.61 0.61

𝛿 = 0 𝛿 = 0.01 iii-T 0.01 0.55 0.54

𝛿 = 0 𝛿 = 0.01 iii-TOST 0.10 0.21 0.17

𝛿 = 0 𝛿 = 0.01 iii-KS 0.00 1.00 1.00

𝛿 = 0 𝛿 = 0.2 iii-range 0.04 0.61 0.56

𝛿 = 0 𝛿 = 0.2 iii-T -0.03 0.55 0.58

𝛿 = 0 𝛿 = 0.2 iii-TOST 0.21 0.21 0.13

𝛿 = 0 𝛿 = 0.2 iii-KS 0.01 1.00 0.98

𝛿 = 0 𝛿 = 0.5 iii-range 0.58 0.61 0.16

𝛿 = 0 𝛿 = 0.5 iii-T 0.12 0.55 0.42

𝛿 = 0 𝛿 = 0.5 iii-TOST Inf 0.21 0.00

𝛿 = 0 𝛿 = 0.5 iii-KS 1.28 1.00 0.05

𝛿 = 0 𝛿 = 0.8 iii-range Inf 0.61 0.00

𝛿 = 0 𝛿 = 0.8 iii-T 2.14 0.55 0.00

𝛿 = 0 𝛿 = 0.8 iii-TOST Inf 0.21 0.00

𝛿 = 0 𝛿 = 0.8 iii-KS Inf 1.00 0.00

𝛿 = 0 𝛿 = 1.2 iii-range Inf 0.61 0.00

𝛿 = 0 𝛿 = 1.2 iii-T Inf 0.55 0.00

𝛿 = 0 𝛿 = 1.2 iii-TOST Inf 0.21 0.00

𝛿 = 0 𝛿 = 1.2 iii-KS Inf 1.00 0.00

15



𝛿 = 0 𝛿 > 0 iii-range 0.36 0.61 0.27

𝛿 = 0 𝛿 > 0 iii-T 0.25 0.55 0.31

𝛿 = 0 𝛿 > 0 iii-TOST 0.55 0.21 0.06

𝛿 = 0 𝛿 > 0 iii-KS 0.39 1.00 0.41

𝛿 = 0 𝛿 is mixed iii-range 0.14 0.61 0.45

𝛿 = 0 𝛿 is mixed iii-T -0.14 0.55 0.75

𝛿 = 0 𝛿 is mixed iii-TOST Inf 0.21 0.00

𝛿 = 0 𝛿 is mixed iii-KS 0.49 1.00 0.32

𝛿 = 0 𝛿 is non-zero iii-range 0.31 0.61 0.30

𝛿 = 0 𝛿 is non-zero iii-T 0.16 0.55 0.38

𝛿 = 0 𝛿 is non-zero iii-TOST 0.63 0.21 0.05

𝛿 = 0 𝛿 is non-zero iii-KS 0.40 1.00 0.39

𝛿 = 0 𝛿 is not mixed iii-range 0.27 0.61 0.33

𝛿 = 0 𝛿 is not mixed iii-T 0.20 0.55 0.35

𝛿 = 0 𝛿 is not mixed iii-TOST 0.40 0.21 0.09

𝛿 = 0 𝛿 is not mixed iii-KS 0.30 1.00 0.51

𝛿 is mixed 𝛿 = 0 iv-AIC 0.16 0.98 0.68

𝛿 is mixed 𝛿 = 0 iv-F 0.25 0.96 0.54

𝛿 is mixed 𝛿 = 0.01 iv-AIC 0.14 0.98 0.71

𝛿 is mixed 𝛿 = 0.01 iv-F 0.24 0.96 0.55

𝛿 is mixed 𝛿 = 0.2 iv-AIC 0.10 0.98 0.78

𝛿 is mixed 𝛿 = 0.2 iv-F 0.16 0.96 0.67

𝛿 is mixed 𝛿 = 0.5 iv-AIC -0.01 0.98 1.00

𝛿 is mixed 𝛿 = 0.5 iv-F -0.02 0.96 1.00

𝛿 is mixed 𝛿 = 0.8 iv-AIC -0.01 0.98 1.00

𝛿 is mixed 𝛿 = 0.8 iv-F -0.02 0.96 1.00

𝛿 is mixed 𝛿 = 1.2 iv-AIC -0.01 0.98 1.00

𝛿 is mixed 𝛿 = 1.2 iv-F -0.02 0.96 1.00

𝛿 is mixed 𝛿 > 0 iv-AIC 0.04 0.98 0.90

𝛿 is mixed 𝛿 > 0 iv-F 0.06 0.96 0.84

𝛿 is mixed 𝛿 is non-zero iv-AIC 0.03 0.98 0.91

𝛿 is mixed 𝛿 is non-zero iv-F 0.05 0.96 0.86

𝛿 is mixed 𝛿 is not mixed iv-AIC 0.06 0.98 0.86

𝛿 is mixed 𝛿 is not mixed iv-F 0.08 0.96 0.79
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