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Effects of natural compounds derived from edible plants in in vitro cell models  

1. Phenolic compounds 

1.1 Capsaicin 

Capsaicin suppresses the activation and proliferation of mouse GRX cells or rat HSC-

T6 cells, two immortalized HSCs, and promotes the rat HSCs apoptosis, supporting its 

antifibrotic effect 1, 2. The action mechanisms of capsaicin in HSCs are particularly 

associated with the inhibition of PPARγ-mediated TGF-β1/Smad pathway and Notch-

mediated TNF-α secretion 1-4.  

1.2 Chlorogenic acid 

Chlorogenic acid inhibits HSCs proliferation and profibrotic factor expression in 

immortalized rat HSC-T6 cells and human LX2 cells through the inhibition of oxidative 

stress and IL-13/miR-21/TGF-β1/Smad7 signaling, respectively 5-8. Chlorogenic acid 

also alleviates fatty acids or palmitic acid-induced hepatocyte toxicity in primary or 

non-transformed cultured hepatocytes, and the mechanism is related to activating silent 

information regular 1 (SIRT1) signaling and inhibiting endoplasmic reticulum (ER) 

stress 9, 10. In mouse macrophage cell lines RAW264.7 and Ana-1, chlorogenic acid 

enhances lipopolysaccharide (LPS) and interferon-γ (IFN-γ)-induced M1 polarization 

11, 12. In addition, ECM production induced by HMGB1 reduces in primary human 

LSECs (liver sinusoidal endothelial cells) after treatment with chlorogenic acid 8. The 

above studies in in vitro models support that chlorogenic acid is beneficial for the 

treatment of liver fibrosis and injury. Additionally, chlorogenic acid decreases the 

replication of hepatitis B virus (HBV) and hepatitis C virus (HCV) in HBV or HCV-

infected cells and HBV-infected duck, proving that chlorogenic acid may be useful for 

treating hepatitis B and C liver diseases 13, 14.  

1.3 Curcumin 

Numerous studies confirm that curcumin reduces activation, proliferation and 

migration of HSCs, and promotes apoptosis of activated HSCs in primary or 

immortalized HSCs, which supports its anti-fibrosis effect 15-17. The mechanism is 

correlated with inhibition of DNA methylation, AMPK-mediated glycolysis, wnt/β-

catenin pathway, hedgehog signaling, cannabinoid receptor type-1, DLK1 expression, 



connective tissue growth factor (CTGF) expression, succinate/HIF-1α signaling 

pathway, CXCL12/CXCR4 biological axis, or MyD88 pathway, as well as increase of 

PPARγ expression, AMPK/PGC1α (peroxisome proliferator-activated receptor gamma 

coactivator 1α) axis-activated superoxide dimutase-2 (SOD2) expression or Plin5 gene 

expression 15-32. Moreover, curcumin inhibits epithelial-mesenchymal transition (EMT) 

and differentiation of hepatocytes in BNL CL.2 cells (mouse embryonic hepatocytes), 

supporting its anti-liver fibrosis effect, which is mediated by oxidative stress and 

autophagy 33. Curcumin also alleviates EMT of human intrahepatic biliary epithelial 

cells by reducing Smad and hedgehog signaling, and increasing CD109 expression 34. 

Another study in RAW264.7 cells (a mouse macrophage cell line) shows that curcumin 

inhibits activated RAW264.7 toward to M1 macrophages and reduces monocyte 

infiltration by lowering phosphorylation levels of ERK1/2 and p38 35. In addition, 

Curcumin suppresses HCV replication in Huh7.5 cells expressing the HCV genotype 

by modulating heme oxygenase-1 (HO-1) and PI3K-AKT signaling 36.  

1.4 Ellagic acid 

Ellagic acid could beneficially regulate the differentiation of primary rat HSCs in 

culture, supporting its antifibrotic effect 37. Ellagic acid also reduces vitamin k3 (VK3)-

induced hepatocyte damage by inhibiting reactive oxygen species (ROS) productions 

in Chang human liver (CHL) cells 38. Additionally, ellagic acid relieves host immune 

tolerance in HBeAg transgenic mice and HBV-infected cells, and inhibits HCV 

replication in HCV-infected cells, supporting the protective property of ellagic acid 

against HBV and HCV-elicited diseases 39-41. 

1.5 Epigallocatechin-3-Gallate 

It has been reported that EGCG inhibits the HSCs proliferation, promotes the HSCs 

apoptosis, or reduces fibrosis markers expression in primary culture HSCs or stable 

human HSCs (LI90, TWNT-4 and LX-2 cells), supporting its anti-liver fibrosis effect 

42-50. The mechanism of EGCG in above in vitro liver fibrosis models may be related to 

decreasing PDGF receptor activation and oxidative stress, inhibiting Rho signaling, or 

regulating PI3K/Akt/Smads pathway 42, 43, 45-48. EGCG also alleviates stimulant-

induced primary hepatocyte injure by attenuating oxidative stress, apoptosis and 



autophagy, promoting FGF21-AMPK pathway, or reducing JNK/IRS1/AKT/GSK 

pathway 51-54. In isolation lymphocyte and primary mouse Kupffer cells, EGCG induces 

M1-to-M2 polarization of infiltrating macrophages, further demonstrating its 

hepatoprotection 55, 56. In addition, data obtained from HBV or HCV-infected cells have 

shown that EGCG could inhibit virus infection and replication by promoting farnesoid 

X receptor (FXR), and inhibiting ERK1/2-HNF4α (hepatocyte nuclear factor 4α) axis 

or CD81 receptor, supporting protection of EGCG against HBV or HCV-induced 

hepatopathy 57-60. 

1.6 Resveratrol 

Resveratrol inhibits the activation of HSCs in mouse GRX cell model via modulating 

inflammatory cytokines and PPARγ/SIRT1 ratio, in rat HSC-T6 cell model via 

regulating NFκB and the PI3K/Akt signaling, and in human LX-2 cell model via 

suppressing Akt/NFκB and Hippo pathways, which supports its anti-liver fibrotic 

effects 61-66. Resveratrol also attenuates TGF-β1, cytokine or hydroquinone-induced 

primary hepatocytes toxicity and apoptosis by modulating miR-190a-5p/HGF axis or 

inhibiting oxidative stress damage 67-70. In human hepatocyte Chang cell line, 

resveratrol decreases alcohol-induced hepatocyte apoptosis through suppressing ER 

stress-mediated caspase-12 activation and phosphodiesterase activity 71. In addition, 

resveratrol could mitigate HBV-induced hepatocellular carcinoma in HBV-infectious 

hepatoma cells or transgenic mice 72, 73. However, some reports show that resveratrol 

increases HBV or HCV replication in virus-infectious cells or mice, signifying that 

resveratrol should be cautious as a medicine or dietary supplement when treating 

hepatitis B or C patients 74, 75.  

1.7 Sinapic acid 

Sinapic acid mitigates alcohol-induced hepatocyte damage in AML-12 cells by 

reducing oxidative stress and bromodomain-containing protein 4 (BRD4)-mediated 

pyroptosis 76.  

1.8 Syringic acid and Vanillic acid 

Syringic acid and vanillic acid inhibit the expression of collagen I (COL1) and α smooth 

muscle actin (α-SMA) in the primary rat HSCs, supporting their antifibrosis 77.  



1.9 Vitamin E 

Vitamin E suppresses the proliferation of activated primary rat HSCs, enhances the 

viability of silver nanoparticle-impaired primary mouse hepatocytes, ameliorates the 

apoptosis and pyroptosis of H2O2-induced primary sheep hepatocytes, mitigates 

fructose-induced human hepatic L02 cell injury by activating Nrf2/CES1 pathway, 

supporting the anti-liver fibrosis effects of vitamin E 78-81. 

 

2. Flavonoid compounds 

2.1 Genistein 

The results obtained from fatty acid-induced hepatic steatosis models in primary human 

hepatocytes or rat liver cell line BRL cells, supports the protection of genistein against 

NAFLD, which is related to activating AMPK pathway or enhancing PPARα expression 

82, 83. In addition, genistein significantly inhibits the proliferation and fibrosis markers 

expression of primary cultured or immortalized rat HSCs through upregulating the 

SIRT1 expression or inhibiting Akt/p38-mediated peroxidation 84-86.  

2.2 Hesperidin and Hesperetin 

In fatty acid-induced human monocyte THP-1 cells, ER stress-induced inflammation 

could be inhibited by hesperidin, supporting that hesperidin could be used for the 

treatment of NAFLD 87. Also, hesperidin improves tert-butyl hydroperoxide-induced 

hepatocytes injury in human hepatic L02 cells, which is related to the activation of 

Nrf2/HO-1 pathway 88. 

In addition, hesperetin inhibits the HSCs proliferation and promotes the HSCs apoptosis, 

supporting its anti-liver fibrosis effect 89. Hesperetin also attenuates palmitate or 

acetaminophen-induced apoptosis, oxidative stress and inflammation via activating 

GRP78 and upregulating HO-1 expression in primary rat hepatocytes or AML12 

hepatocytes 90, 91.  

2.3 Naringin and Naringenin 

Naringin inhibits toxins-induced DNA fragmentation and apoptosis in primary 

hepatocytes, and the mechanism may involve the activation of AMPK pathway 92, 93. 

In addition, in primary hepatocytes, Kupffer cells and immortalized macrophage RAW 



264 cells, naringenin exhibits antifibrotic effects by suppressing NLRP3/NFκB 

pathway or reducing macrophage infiltration into adipose tissue 94, 95. Moreover, 

naringenin decreases the accumulation of extracellular matrix in activated HSCs 

through the inhibition of Smad3 signaling, further supporting its anti-liver fibrosis 96, 97. 

Naringenin also exhibits hepatoprotective effect against hepatic steatosis in HBV-

transgenic mice, and HCV-infected mice, patient livers and Huh7.5.1 cells, which is 

related to modulating ER stress or PPAR signaling, and upregulating p53-dependent 

PTEN (phosphatase and tensin homolog) expression 98-102. 

2.4 Quercetin 

Quercetin could modulate the proliferation and apoptosis of HSCs by activating ER 

stress 103, 104. In primary or immortalized hepatocytes, quercetin also mitigates oxidative 

damage and apoptosis caused by irritants via upregulating HO-1, SIRT or PGC1α 

signaling, activating Nrf2-keap1 pathway, or reducing ER stress or HMGB1, Nrf2 and 

NADPH oxidase expressions 105-111. In macrophage Raw 264.7 cells, quercetin inhibits 

M1 polarization and promotes transformation to the M2 phenotype via modulating 

Notch1 or Nrf2-mediated HO-1 pathway 112, 113. Quercetin also inhibited the migration 

of human THP-1 macrophage, and inflammation of infiltrating human macrophages 

MΦs 114, 115. Evidence from these cell experiments supports the hepatoprotective and 

anti-fibrotic effects of quercetin. In addition, quercetin suppresses the replication of 

HBV and HCV in virus-expressing cells, implying that quercetin could protect liver 

against hepatitis B and C-induced liver damage 116-119. 

 

3. Sulphur-containing compounds and other compounds 

3.1 S-allylcysteine  

S-allylcysteine (SAC) inhibits indomethacin or alcohol-induced hepatocytes apoptosis 

in rat liver cell line BRL‐3A cells, supporting its liver protective effect 120, 121. 

3.2 Lipoic acid 

In primary human or rat hepatocytes, lipoic acid ameliorates toxins-induced apoptosis 

by suppressing ER stress, FFA (free fatty acid) oxidation and iNOS gene expression, 

enhancing pyruvate oxidation, or activating insulin receptor/PI3K/Akt pathway 122-125. 



Moreover, in immortalized RAW 264.7 macrophages and primary rat Kupffer cells, 

lipoic acid inhibits LPS-induced nitric oxide (NO) and TNF-α production, supporting 

its hepatoprotective effects 126. 

3.3 Sulforaphane 

Oh CJ et al. report that sulforaphane markedly inhibits the expression of fibrosis 

markers in hTERT cell line (an immortalized human HSCs), supporting its reversible 

effect on liver fibrosis 127. Ishida K et al.  also find that sulforaphane shows liver 

protective effect by Nrf2-mediated antioxidation and inhibition of the LPS/TLR4 

pathway in human LX-2 cells 128. Another study by using LX-2 cell line suggests that 

the anti-liver fibrosis of sulforaphane may be also associated with the inhibition of 

miRNA-423-5p 129. In immortalized human hepatocytes HHL5 cells, sulforaphane also 

reverses homocysteine-induced hepatocyte injure via reducing ER stress and increasing 

Nrf2 translocation 130. In addition, sulforaphane inhibits HCV replication via 

upregulating PI3K/Nrf2 Pathway-mediated HO-1 expression in HCV-infectious cells, 

representing its protection against viral-induced liver injure 131.  

3.4 Betaine 

Betaine reduces cycloheximide-induced primary rat hepatocyte damage by activating 

heme oxygenase HO-1 expression, mitigates the injury of isolated hepatocytes from 

ethanol-fed rats by decreasing methylation-related s-adenosylhomocysteine levels, and 

alleviates LPS or polyinosinic-polycytidylic acid-induced injury in RAW 264.7 

macrophage cells by inhibiting oxidative stress and inflammation, supporting the liver 

protection of betaine 132-134. In addition, betaine could suppress hepatitis B virus (HBV) 

and hepatitis C virus (HBV) in virus-containing cells or HBV-positive ducklings, 

representing that betaine protects liver against HBV and HCV damages 135, 136. 

 3.5 Caffeine 

The studies in HSCs support the anti-fibrosis effects of caffeine. In LX2 cells, an 

immortalized human HSCs, caffeine suppresses cell proliferation and adhesion, and 

promotes cell apoptosis, which is mediated by endoplasmic reticulum stress-associated 

autophagy through the IRE1-α pathway 137, 138. In HSC-T6 cells, an immortalized rat 

HSCs, caffeine inhibits the cell proliferation via acting on adenosine A2A receptor and 



subsequently suppressing the cAMP-PKA-Src-ERK1/2/p38 MAPK signal pathway 139. 

Caffeine also exhibits anti-fibrosis in primary cultured rat or mouse HSCs, through 

inhibiting the cAMP/PKA/CREB pathway or Akt1 signaling, respectively 140-142. 

Moreover, caffeine inhibits CTGF expression induced by TGF-β in hepatocytes, and 

reduces ROS and TNF-α expression in Kupffer cells isolated from ALD mice 143, 144. 

Some studies show that caffeine inhibits the PGE2 Synthesis of hepatocytes or the 

replication of HCV in in HBV or HCV-transfected liver cells, respectively, supporting 

that caffeine is beneficial to HBV or HCV-induced liver injure 145, 146. 

3.6 Lycopene  

Lycopene alleviates stimulants-induced cellular damage by inhibiting oxidative stress 

or promoting M2 polarization in hepatocytes or Raw 264.7 macrophages, respectively, 

supporting the protective effects of lycopene on the liver 147-150. Moreover, lycopene 

could also reduce the expression of the fibrosis markers or proliferation of HSCs in two 

rodent HSCs cell lines (GRX cell, mice; RI-T cell, rats) 151, 152. 

3.7 α-Mangostin and γ-Mangostin 

α-mangostin and γ-mangostin also ameliorate free fatty acid-induced hepatocyte 

damage by stimulating SIRT1/LKB1/AMPK pathway in immortalized human L02 liver 

cells, supporting their potentials for NAFLD treatment 153, 154. Moreover, another 

research group finds that α-mangostin significantly suppresses the proliferation and 

migration of HSCs by inhibiting the activation of TGF-β/Smads, ERK1/2 and Akt 

pathways in LX-2 cell model 155, 156. In addition, Wang et. al report that γ-mangostin 

also produces significant liver fibrosis reversal in LX-2 cells, which involves SIRT3-

HMGB1 signaling axis 157. 

3.8 Ursolic acid 

In primary or immortalized rat HSCs, ursolic acid reduces proliferation and migration, 

promotes apoptosis, and downregulates the expressions of fibrogenesis markers α-SMA, 

COL1 and TIMP-1. The anti-fibrosis mechanism of ursolic acid in HSCs may be closely 

related to the inhibitions of ERK, PI3K/Akt, p38-MAPK, Hedgehog, NOX4/ROS and 

RhoA/ROCK1 signaling pathways 158-161. Ursolic acid also induces the proliferation of 

rat primary hepatocytes, and prevented activation of rat primary Kupffer cells by 



NOX4/ROS pathways 162-164. In addition, ursolic acid could inhibit HCV replication or 

HBV-mediated autophagy in HCV or HBV-containing cells, exhibiting its protective 

effects against HCV or HBV-induced hepatitis 165, 166. 

3.9 Vitamin C 

Vitamin C inhibits the proliferation of LX-2 cells, and reduces COL1A1 expression in 

H2O2-induced stimulated human LX-2 cells and rat primary HSCs 167. Vitamin C could 

also inhibit cypermethrin-induced cytotoxicity of rat primary hepatocyte, and the 

mechanism involves its antioxidation 168. However, vitamin C promotes COL1 

excretion and extracellular hydroxyproline level in TGF-β-stimulated human HSCs, 

which could be blocked by suppressing hydroxylase 169.  

3.10 Yangonin 

In human liver cell line L02 cells or mice primary and AML-12 cells, yangonin reverses 

irritants-induced hepatocyte injury and senescence by activating FXR or meditating 

hepatic transporters 170-173. 
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Supplementary Table 

 

Table S1 Summary of edible plant-derived natural compounds with anti-liver fibrosis 

effects in hepatic stellate cells (HSCs) and liver-resident cells models  

 
Compounds Models Effects/Mechanisms References 

S-Allylcysteine Hepatocytes: BRL‐3A ↓ apoptosis, ER stress, p-eIF2α, CHOP, Bax, caspase 3; ↑ Bcl‐2 120, 121 

Betaine 
Hepatocytes: Rat primary ↓ S-adenosylhomocysteine; ↑ HO-1 132, 133 

Macrophage cells: RAW264.7 ↓ GCLM, NO, TNF-α, iNOS; ↑ GS, GCLC 134 

Caffeine 

Human HSCs: LX2 cells ↓ proliferation, adhesion, COL1, LC3II, α-SMA, FAK; ↑ apoptosis, IRE1-α, CHOP, p62 137, 138 

Rat HSCs: Primary, HSC-T6 ↓ proliferation, COL1, COL3, A2AR, pERK1/2, p38, pCREB 139, 140 

Mouse HSCs: Primary ↓ α-SMA, pAkt1 141, 142 

Hepatocytes: Rat primary ↓ CTGF, Smad2/3; ↑ PPARγ 144 

Kupffer cells: Mice primary ↓ ROS, TNF-α 143 

Capsaicin 

Mouse HSCs: GRX ↓ proliferation, COL1, COX-2, TGF-β1; ↑ PPARγ  1 

Rat HSCs:  HSC-T6  ↓ proliferation, α-SMA, COL1, ROS, TIMP-1, TGF-β1, Bcl-2, N-cadherin, macrophage 

activation, M1 polarization, Notch1; ↑ Bax, caspase-3, PPARγ, E-cadherin 

2, 4, 139 

Chlorogenic Acid 

Rat HSCs: HSC-T6 ↓ viability, COL1, COL3, TIMP-1, NOX subunit, ROS, p-p38/p38, pERK/ERK  5 

Human HSCs: LX2 cells ↓ α-SMA, TIMP-1, TGF-β1, miR-21, CTGF, pSmad1, pSmad2/3; ↑ Smad7 6-8 

Hepatocytes: Rat primary, AML12 ↓ Drp1, GRP78, CHOP, GRP94, oxidative stress; ↑ SIRT1, mitofusin 2 9, 10 

Endothelial cells: Primary human LSECs ↓ ECM production; ↑ mitochondrial biogenesis 8 

Macrophage cells: RAW264.7, Ana-1 ↓ NO, TNF-α, iNOS, IL-1β, IL-6, STAT6, M2 phenotypic differentiation; ↑ STAT1, M1 

phenotypic differentiation 

11, 12 

Curcumin 

Human HSCs: LX2 cells ↓ PPARα; ↑ C/EBPα, PPARγ, RXRα, RARβ, Nrf2 30 

Rat HSCs: Primary, HSC-T6 ↓ proliferation, migration, α-SMA, MMP-2, MMP-9, TNF-α, IL-1β, TGF-β1, TLR2, TLR4, 

CXCR4, RhoA, MyD88, NFκB, p38, MAT2B, LOX-1, wnt3a, β-catenin, hedgehog, DLK1, 

Cyclin D1, CTGF; ↑ apoptosis, PPARγ, p53, C/EBPα, PGC1α, pAMPK, LXRα, SOD2, 

CBR1, Bax 

16-29 

Mouse HSCs: Primary  ↓ COL1, COL3, fibronectin, TGF-β1, ROS, MAT2A, HIF-1α; ↑ Plin5, PPARγ, AMPK 15, 31, 32 

Hepatocytes: BNL CL.2 cells ↓ α-SMA, fibronectin, TGF-β, EMT, Smad2, Smad3, ROS, mTOR; ↑ LC3, Beclin-1, ATG7, 

PPARα, AMPK 

33 

Biliary epithelial cells: HIBECs ↓ EMT, Smad2/3, hedgehog; ↑ Smad7, CD109 34 

Macrophage cells: RAW264.7 ↓ CCL7, MCP-1, CD86, iNOS, pERK1/2, p-p38, CD11b+ monocyte migration 35 

Ellagic Acid 
Rat HSCs: Primary  ↓ activation 37 

Hepatocytes: Chang cell line ↓ ROS 38 

Epigallocatechin-

3-Gallate 

Human HSCs: LI90, TWNT-4, LX-2  ↓ proliferation, α-SMA, COL1A1, COL1A4, MMP-2, MMP-9, TIMP1, TGF-β1, pAkt, 

pMEK, PDGFR, Rho, FAK, pERK1/2, pJNK, p-p38, pSmad2/3; ↑ apoptosis 

42-44, 48, 

49 

Rat HSCs: Primary ↓ migration, invasion, α-SMA, TGF-β1, ROS, MMP-2, MT1-MMP, CTGF, PDGFR; ↑ GSH 45-47 

Mouse HSCs: Primary ↓ COL1, α-SMA, fibronectin, TIMP-1 50 

Hepatocytes: Rat, Mouse primary ↓ MDA, ROS, IL-6, JAK1, JAK2, p-STAT3, BNIP3, ACC1, FAS, SREBP1, PPARα, SCD1, 

FGF21; ↑ GSH, AKT, GSK, FGFR2, FGFR3,  

51-54 

Immune cells: Primary Kupffer cells, 

lymphocyte 

↓ TLR2, infiltrating macrophages; ↑ TLR3, IL-10, M2 polarization 55, 56 

Genistein 
Rat HSCs: Primary, HSC-T6, LX-2 ↓ proliferation, α-SMA, c-Jun, cyclin D1, pSmad3, Akt, p38; ↑ SIRT1 84-86 

Hepatocytes: Human primary, BRL  ↓ SREBP-1c; ↑ PPARα, AMPK 82, 83 

Hesperidin 
Hepatocytes: L02 cells ↓ ROS, ERK, MAPK; ↑ Nrf2, HO-1 88 

Macrophage cells: THP-1 cells ↓ ER stress, ATF6, ATF4, p-PERK, p-IRE1α, IL-1β, IL-6, TNF-α, GRP94 87 

Hesperetin 
Rat HSCs: HSC-T6  ↓ proliferation, COL1, α-SMA; ↑ apoptosis 89 

Hepatocytes: Rat primary, AML12  ↓ apoptosis, ROS, ER stress; ↑ GRP78, HO-1 90, 91 

Lipoic Acid 

Hepatocytes: Human, Rat primary ↓ ER stress, FFA oxidation, IL-1β, iNOS; ↑ CHOP, Nrf2, insulin receptor, PI3K, Akt 122-125 

Macrophage cells: RAW 264.7, primary 

rat Kupffer cells 

↓ NO, TNF-α, NFκB, activator protein-1 126 



Lycopene 

Mouse HSCs: GRX cells ↓ proliferation; ↑ RXR-α, RXR-β, PPARγ 152 

Rat HSCs: RI-T cells ↓ α-SMA, TGF-β1, COL1A1 151 

Hepatocytes: Rat primary, AML12  ↓ MDA, TNF-α, IL-6, LDH, TBARS, DNA damage; ↑ Nrf2, HO-1, GSH 148-150 

Macrophage cells: RAW 264.7  ↑ pSTAT6, pAkt, M2 polarization 147 

α-Mangostin 
Human HSCs: LX2 cells ↓ COL1A1, α-SMA, TGF-β, TIMP1, TIMP3, pERK1/2, ROS, pAkt, PAI1, pSmad3; ↑ GPX 155, 156 

Hepatocytes: L02 cells ↑ SIRT1, LKB1, AMPK, ACC 153, 154 

γ-Mangostin 
Human HSCs: LX2 cells ↓ COL1, α-SMA, NOX, HMGB1, PI3K/Akt, p38-MAPK; ↑ SIRT3 157 

Hepatocytes: L02 cells ↑ SIRT1, LKB1, AMPK, ACC 153 

Naringenin 

Rat HSCs: HSC-T6 ↓ viability, COL1A1, fibronectin, pSmad3, Smad3, PAI-1; ↑ uptake  96, 97 

Hepatocytes: Mouse primary ↓ NLRP3, IL‐1β 95 

Macrophage cells: RAW 264, primary 

Kupffer cells 

↓ infiltration, NLRP3, IL‐1β 94, 95 

Naringin Hepatocytes: Rat, Mouse primary  ↓ DNA fragmentation, apoptosis; ↑ AMPKα, IRS1 92, 93 

Quercetin 

Rat HSCs: Primary  ↓ proliferation, α-SMA, Bcl-2; ↑ apoptosis, Bax, cleaved-caspase-9, cleaved-caspase-3, 

cleaved-PARP-1, calnexin, CHOP, cleaved-ATF6, pPERK, pIRE1   

103, 104 

Hepatocytes: Rat primary, BRL-3A, HL-

7702, L02 cells 

↓ Nrf2, NQO1, ER stress, ROS, NADPH oxidase, HMGB1, NLRP3 inflammasome; ↑ Keap1, 

SIRT, PGC1α 

105-111 

Macrophage cells: RAW264.7, human 

THP-1, MΦs 

↓ migration, MCP-1, TNF-α, NOS2, IL-6, IL-8, IL-1β, COX-2, JNK, c-Jun, IκBα, ICAM-1, 

M1 polarization; ↑ HO-1, M2 phenotype 

112-115 

Resveratrol 

Mouse HSCs: GRX cells ↓ migration, α-SMA, COL1, IL-6; ↑ apoptosis, PPARγ/SIRT1 ratio, GFAP, IL-10 61-63 

Rat HSCs: HSC-T6  ↓ TLR4, MyD88, NFκB in the nucleus, pAkt, pPI3K; ↑ NFκB in the cytosol, LXRβ 64 

Human HSCs: LX-2 cells ↓ proliferation, α-SMA, COL1A1, NFκB, pAkt, Bcl-2, YAP, TAZ; ↑ apoptosis, Bax, IκBα     65, 66 

Hepatocytes: Rat primary, Mouse 

primary, Chang cell line 

↓ apoptosis, miR-190a-5p, iNOS, caspase-12, PDE; ↑ HGF, Nrf2, catalase, SOD, GPX, 

NQO1, GST, Bax, SIRT1 

67-71 

Sinapic Acid Hepatocytes: AML-12 cells ↓ BRD4 76 

Syringic Acid Rat HSCs: Primary  ↓ COL1A1, α-SMA 77 

Sulforaphane 

Human HSCs: hTERT, LX2 cells ↓ proliferation, fibronectin, α-SMA, TIMP-1, PAI-1, Nrf2-mediated TGF-β/Smad, IL-6, 

miRNA-423-5p, NOX1, NOX4, NFκB; ↑ HMOX1, NQO1, GSTM3 

127-129 

Hepatocytes: HHL5 cells ↓ ER stress, GRP78, PERK, ROS; ↑ Nrf2, NQO1 130 

Ursolic Acid 

Rat HSCs: Primary, HSC-T6 ↓ proliferation, migration, COL1, α-SMA, TIMP-1, ROS, NOX, NOX subunits, pERK1, 

pERK2, p38-MAPK, pAkt, PI3K/Akt, RhoA, Rock1, Hedgehog; ↑ MMP-1, apoptosis  

158-161 

Hepatocytes: Rat primary ↓ MDA, LPO, ROS, NOX, NOX subunits, Rac1 162-164 

Kupffer cell: Rat primary ↓ ROS, NOX, NOX subunits, Rac1 162 

Vanillic Acid Rat HSCs: Primary  ↓ COL1A1, α-SMA   77 

Vitamin C  

Human HSCs: Primary, LX2 cells ↓ COL1A1 (stimulated with H2O2); ↑ COL1A1, HYP (stimulated with TGF-β1) 167, 169 

Rat HSCs: Primary ↓ COL1A1 (stimulated with H2O2) 167 

Hepatocytes: Rat primary ↓ GGT; ↑ GSH 168 

Vitamin E  

Rat HSCs: Primary ↓ proliferation 79 

Hepatocytes: Mouse, Sheep primary, L02 

cells 

↓ ROS, apoptosis, pyroptosis, lipid accumulation; ↑ viability, Nrf2 78, 80, 81 

Yangonin 
Hepatocytes: Mouse primary, L02, AML-

12 cells 

↓ injury and senescence, miR-194, NFκB, NTCP; ↑ FXR, BSEP 170-173 

↓, represents downregulation or decrease compared with that before drug treatment; ↑, represents upregulation or increase compared with that before drug treatment. 

A2AR, adenosine A2A receptor; ACC, acetyl-CoA carboxylase-1; ATF, activating transcription factor; ATG, autophagy-related protein; Bax, Bcl-2 associated X protein; Bcl-2, 

B-cell leukemia/lymphoma-2; BRD4, bromodomain-containing protein 4; BSEP, bile salt export pump; CBR, cannabinoid receptor; CHOP, C/EBP homologous protein; COL, 

collagen; C/EBPα, CCAAT enhancer binding protein alpha; CREB, cAMP-response element binding protein; DLK1, delta-like homolog 1; Drp1, dynamin-related protein 1; 

EMT, epithelial-mesenchymal transition; eIF2α, eukaryotic translation initiation factor 2alpha; ER, endoplasmic reticulum; FAK, focal adhesion kinase; FFA, free fatty acid; 

GCLC, glutamate-cysteine ligase catalytic subunit; GCLM, glutamate cysteine ligase modifier; GFAP, glial fibrillary acidic protein; GPX, glutathione peroxidase enzyme; 

GSTM3, glutathione S-transferase Mu 3; HMGB1, high mobility group box 1; HMOX1, heme oxygenase 1; ICAM-1, intercellular cell adhesion molecule-1; IRE1, inositol-

requiring enzyme; IRE1α, inositol-requiring enzyme 1alpha; IRS1, insulin receptor substrate 1; LC3II, microtubule-associated protein light chain 3 II; LKB1, liver kinase B1; 

LSECs, sinusoidal endothelial cells; LXR, liver X receptor; MAT2, methionine adenosyltransferase 2; NLRP3, nucleotide-binding oligomerization domain, leucine rich repeat 

and pyrin domain containing 3; NOX, nicotinamide adenine dinucleotide phosphate-oxidase; NQO1, quinone oxidoreductase-1; Nrf2, NF-E2-related factor 2; NTCP, sodium 



taurocholate cotransporting polypeptide; PAI-1, plasminogen activator inhibitor-1; PDGF, platelet-derived growth factor; PGC1, peroxisome proliferator-activated receptor 

gamma coactivator 1; PI3K, phosphatidylinositol 3-kinase; PPAR, peroxisome proliferator-activated receptor; Rac1, Ras-related C3 botulinum toxin substrate 1; RhoA, Ras 

homolog gene family, member A; ROCK1, Rho kinase receptor 1; ROS, reactive oxygen species; RXR, retinoid X receptor; SIRT, silent information regulator; TAZ, 

transcriptional cofactor with PDZ-binding motif; YAP, Yes-associated protein.  



Table S2 Summary of toxicity assessments of edible plant-derived natural compounds 

with anti-liver fibrosis effects  

 

Compounds Description References 

S-Allylcysteine 
Minor acute/sub-acute toxicity in mice (LD50 > 54.7 mM/kg, p.o.) and rats (LD50 > 20 mM/kg, i.p.); non-toxicity in 

normal human epithelial cell (TC50 = 2508-3102 μM) 
174, 175 

Betaine No sub-acute and sub-chronic toxicity after intakes of 1, 2 and 5% of betaine for 90 consecutive days in rats 176 

Caffeine Minor acute toxicity in rats (LD50 = 367 mg/kg, p.o.); no observed adverse effect in healthy adults (400 mg/day) 177, 178 

Capsaicin 

High toxicity in mice (LD50 = 0.56-512 mg/kg, based on administration route); high toxicity in marine invertebrates 

(LC50 = 1252-5248 μg/L); acute toxicity as dietary supplement in man rarely occurs; cardiac functions and 

neuromuscular coordination do not change at therapeutic doses in mice 

179-181 

Chlorogenic Acid Low cytotoxicity at 50 μg/μL 182 

Cucurbitacin B High acute toxicity in mice (death at 2 mg/kg); high cytotoxicity (IC50 = 0.04-0.13 µM) 183, 184 

Curcumin 

No Observed acute and sub-chronic toxicity at 2000 mg/kg or 720 mg/kg/day for 15 days or 90 days in rats (a solid 

lipid curcumin particle, p.o.); No observed adverse effect at 0.27 and 0.54 g/kg/day in mice and hamsters (curcumin-

loaded nanocomplexes); minor toxicity in normal human epithelial cell (TC50 = 3.8-13.6 μM)  

175, 185, 186 

Ellagic Acid 
No observed adverse effect at 5% (3011 mg/kg/day) for 90 days in male rats, and no observed adverse effect at 5% 

(3254 mg/kg/day) for 90 days in female rats 
187 

Epigallocatechin-

3-Gallate 
No acute toxicity at 2000 mg/kg, and no sub-acute toxicity at 10 mg/kg/day for 28 days in rats 

188 

Ergothioneine No adverse effect at 1600 mg/kg/day for 90 days in rats; no cytotoxicity or mutagenicity at 5000 μg/plate 189, 190 

Genistein No adverse effect at 50 mg/kg/day for 4 weeks, 13 weeks and 52 weeks in rats 191 

Hesperidin 
No acute toxicity in rats (LD50 = 4837.5 mg/kg); low observed adverse effect at 1000 mg/kg for 13 weeks in rats; no 

cytotoxicity at 100 μM 
192, 193 

Hesperetin No cytotoxicity at 100 μM 193 

Lipoic Acid No acute toxicity in rats (LD50 > 2000 mg/kg); no observed adverse effect at 61.9 mg/kg for 4 weeks in rats 194 

Lycopene No observed adverse effect at 500 mg/kg/day for 14 weeks or 1000 mg/kg/day for 4 weeks in rats  195 

α-Mangostin 
Minor acute toxicity in mice (LD50 = 150 mg/kg); minor toxicity to zebrafish embryos (LC50 = 5.75 μM); no cytotoxicity 

at 16 μg/mL 
196-198 

γ-Mangostin No cytotoxicity at 12.5 μg/mL 199 

Naringenin No acute toxicity in rats (LD50 > 5000 mg/kg); no observed adverse effect at 150 to 900 mg in healthy adults  200, 201 

Naringin 
No acute toxicity in rats (LD50 > 16g /kg, p.o.); no observed adverse effect at 1250 mg/kg/day (p.o.) for 13 weeks or 6 

months in rats; no observed adverse effect at 500 mg/kg/day (p.o.) for 3 and 6 consecutive months in Beagle dogs 
202-204 

Quercetin No observed adverse effect at 2000 mg/day for 1 week in patients with chronic obstructive pulmonary disease 205 

Resveratrol No toxicity and mortality at 100 mg/day (p.o.) for 28 days in rats 206 

Sinapic Acid No toxicity at dietary levels, but amino acid digestibility is affected at higher levels in chickens  207 

Syringic Acid No major adverse effect at 1000 mg/kg/day (p.o.) for 14 days in rats; low cytotoxicity at 50 μg/μL 182, 208 

Sulforaphane No toxicity at 15 mg/kg/day (p.o.) for 14 days in rats 209 

Ursolic Acid No acute toxicity at 50-200 mg/kg (i.p.) in mice  210 

Vanillic Acid No adverse effect at 1000 mg/kg/day (p.o.) for 2 weeks in rats; low cytotoxicity at 50 μg/μL 182, 211 

Vitamin C  No toxicity at 2000 mg in adults; safety at a single oral dose of 5-10 g in healthy adults 212, 213 

Vitamin E No toxicity at 1000 mg in adults 212 

Yangonin 
No mutagenic responses; no cytotoxicity at 10 μg/mL, but cytotoxicity can be observed at 20 μg/mL in mouse 

lymphoma cells 
214 

LD50, median lethal dose; LC50, median lethal concentration; TC50, half-maximal toxic concentration  

 

 


