TABLE 2. Detailed Summary of Clinical Studies Examining Whether Stretching Immediately Before Exercise Improves Performance

Study Acute	Population	Design	Intervention	
Stretching no effect Pyke ³⁴ (also reported in Table 3 for effects on running)	45 M 15–17 y, random sample from boys' high school	RCT-block design. Blocks based on baseline preintervention scores of outcomes	 (1) Strength: 75% effort for pushups, sit-ups, squats (2) Stretch: backward double arm circles, standing trunk turns, standing toe touches 	
Wiktorsson-Möller et al ³¹	8 M participating in moderate fitness programs. Age not reported	Nonrandomized cross-over (includes prepost) with 48 h between each sessions	 (1) Warm-up on bicycle for 15 min (2) Warm-up and massage (3) Massage (4) A Warm-up and PNF contract-relax stretch Stretch: isometric contraction for 4–6 s, then relax × 2 s, then passive pain-free stretch × 8 s. Six different movements: ankle dorsiflexion with knee straight and knee bent, hip abduction and extension and flexion, knee flexion. For this article, only stretch and warm-up and stretch alone are compared 	
Stretching detrimental <u>RCT cross-over design</u> Little and Williams ²⁹ (also reported in Table 3 for effects on running)	18 M professional soccer players	Nonrandomized cross-over (stretch, then no stretch, then dynamic), 3 conditions tested within 1 week but at least 1 day between tests	 All subjects warmed up, then stretched or no stretch, then higher intensity activity, then 2 min rest before testing session (1) Static stretch: right leg 30 s, left leg 30 s (2) No stretch: rest for 1 min (3) Dynamic stretch: right leg 1 s, left leg 1 s, for a total of 	
Fowles et al ¹²	8 M, 4 F College-age recreational athletes	RCT cross-over (includes pre-post) with ≥3 d between sessions	 30 stretches (60 s total time) Stretching included gastrocnemius, hamstring, quadriceps, hip flexors, gluteals, and hip adductors (1) Rest (2) Passive stretch of triceps surae by examiner without pain, restretched every 2 min. Thirteen total stretches for total of 33 min 	
Church et al ¹³	40 F, NCAA Division 1 tennis, rowing, volleyball, jumpers, throwers, sprinters	RCT cross-over (pre-post) with >24 h between sessions	 General warm-up 10 exercises for total of 5 min. Then tested, then: (1) None (2) Static stretching (3) PNF stretching (passive stretch-10s contraction, relax with passive stretch) ×3 Muscles stretched were mostly quads and hams. Details of position and duration for static stretch not given 	

TABLE 2. (continued) Detailed Summary of Clinical Studies Examining Whether Stretching Immediately Before Exercise Improves Performance

Outcome	Results		Comments	
Counter-movement vertical jump	For vertical jump differences, $P = 0.07$ Vertical jump (cm)		Jumping mats for jump —— The order of the sessions was not randomized. If there were a learning effect, one would expect the dynamic stretch	
	Static stretch	39.4 ± 4.5	superior to no stretch superior to static stretch. If there	
	No stretch	40.4 ± 4.9	were a fatigue effect, one would expect the opposite Stretches were only 30 s in this study. Other studies use 30	
	Dynamic stretch	40.2 ± 4.5	repeated for a total of 60 s	

Ball throwing (last of 3 trials) Jump height (last of 3 trials) Cycle speed (6 trials, best of last 3 trials)

strength at 30 and 180°/s

Hams and quads isometric strength, and isokinetic

Actual results for tests not given; only report *F*-test for overall effect as nonsignificant

ROM increased with stretch for all movements (e.g. hip flexion 9° for warm-up and stretch vs. 1° for warm-up alone)

Virtually identical strength in hams and quads when comparing warm-up and stretch to warm-up

alone			
	Warm-Up and Stretch	Warm-Up	
Hams			
30°/s	160 ± 4.8	161 ± 5.2	
180°/s	137 ± 4.7	137 ± 6.4	
Isomet	123 ± 5.1	126 ± 4.6	
Quad			
30°/s	215 ± 13.9	216 ± 14.5	
180°/s	148 ± 8.1	145 ± 6.6	

ROM not measured

- Because of multiple outcomes, author accepted only P < 0.01 as significant. There were no significant changes but actual results not given
- Order of interventions not randomized could result in learning effect. However, this would be expected to improve performance of stretch group, and this did not occur
- PNF contract-relax stretch actually increases warm-up of muscle. The extra warm-up with this type of stretch may minimize any detrimental effects of the actual stretch itself
- For note, massage resulted in a decreased force if done without a warm-up

Plantar flexion:

- Experiment 1: MVC, twitch interpolation and surface EMG at 10° dorsiflexion. Measured pre and post (0, 5, 10, 15, 30, 45, and 60 min)
- Experiment 2: MVC and EMG at 3 different angles. Hip and knee at 90° so mostly soleus. Measured pre and post (30 and 60 min only)

ROM

Vertical jump height using Just Jump system (subjects familiar with equipment) ROM increased by 6.5° immediately after stretch due to both stretch-relaxation and an increase in stretch tolerance

 266 ± 8.7

 257 ± 8.9

Isomet

- In experiment 1, MVC declined to 72% of prevalue immediately after stretch, and improved to 80% at 5 min, 87% at 15 min, and 91% at 60 min. There were no changes in the control group
- Experiment 2 had the same qualitative results at each joint angle, and the angle for maximum torque did not change with stretching
- EMG decreased with stretching.
- Twitch interpolation suggested a 16% decrease in motor unit activation immediately after stretching, and a 13% decrease 5 min poststretching
- ROM greatest poststatic stretch compared to post-PNF or no stretch

	Vertical Jump (cm)
Control	48.65 ± 8.09
Static stretch	48.06 ± 7.64
PNF stretch	47.18 ± 7.38

No warm-up before stretch

Two people excluded because EMG was active on stretch Calculations suggest that 57% of the immediate force decline with stretching was due to loss of motor unit activation. However, motor unit activation had only a minor role in force decline 15 min poststretching

Although authors measured pre-post, they only report the post values and not the change values. They do not report baseline scores for each of the groups either Only PNF results significant

Study Acute	Population	Design	Intervention
Stretching detrimental			
RCT cross-over design Nelson and Kokkonen ¹⁴	11 M 11 E college shared	DCT and a second with 24 h h stress of	
Nelson and Kokkonen ⁻⁺	11 M, 11 F, college physical education students with no stretching or weight lifting history	RCT cross-over with 24 h between sessions (pre-post only for ROM)	 (1) Quiet sitting (2) Ballistic stretch, 1 ×/s, for 15 s. Repeat ×3 with 15 s recovery. All stretches first completed unassisted (×3), and then repeated with assistance (×3) Muscle groups: hip, thigh and calf—sit and reach, lotus, standing calf, standing ½-lotus, standing quad/hip flexo
Kokkonen et al ¹⁵	15 M, 15 F, college-age, untrained physical education students with no stretching or weight lifting history	RCT cross-over with 24 hours between sessions (pre-post only for ROM)	 (1) Quiet sitting (2) Twenty min static stretch hip, thigh and calf. Each stretch held 15 s, 15 s recovery, repeated ×3. All stretches first completed unassisted (×3), and then repeated with assistance (×3) Muscle groups: hip, thigh and calf—sit and reach, lotus,
Cornwell et al ¹⁶	10 M, college-age, physically active but not in regular physical training	RCT cross-over with 24 hours between sessions (no pre-post)	 standing calf, standing ½-lotus, standing quad/hip flexor All subjects practiced techniques on day 1 to standardize starting positions and kinematics (1) Assisted static stretch: 10 s ×3. Stretches were supine with leg over side of table (quads), prone hip extension, and knee-to-chest (2) Control: quiet sitting ×10 min
Knudson et al ¹⁷	10 M, 10 F, university age, heterogenous activity from moderately active to	RCT cross-over with 1 wk between sessions	Cycle ×3 min, 3 practice jumps (1) Con: rest ×10 min (2) Stretch: stretch 3 × 15 s, standing quad, standing calf,
x	intercollegiate athletics		seated hams
Laur et al ¹⁸	16 M, 16 F, 18–35 yo, healthy	RCT, cross-over with 5–7 days between sessions	 On day 1, 1 RM tested, then 10 min rest, then protocol. Protocol: 5 min cycle warm-up, then: (1) Con: rest ×3 min (2) Stretch: supine assisted hams stretch, 20 s, repeat ×3 with 10 s rest between
Evetovich et al ¹⁹	10 M, 8 F, college age, recreational athletes (9 including weight training but not competitive)	RCT cross-over with 48 hours between sessions	 (1) Control: no activity (2) Stretch: static stretches 30-s hold, repeat ×4, 15 s rest between
			Muscles: standing biceps stretch, standing pectoralis major stretch, assisted abduction stretch
McNeal and Sands ^{10,11}	14 F, 7–9 y, competitive gymnasts	RCT, cross-over with 24 hours in between sessions	 Static stretch 30 s Control: routine warm-up without stretching Muscles: triceps surae, assisted supine hams stretch, sit-and-reach stretch
Young and Elliott ²⁰	14 M college-age jump sport athletes (football, field hockey, track and field)	RCT cross-over with 24 hours between sessions	 All warmed-up. Then rest ×4 min. Then: (1) Static stretch: 3 × 15 s, 20 s rest (2) PNF contract-relax: total 20 s (3) MVC: 5 s, 30 s rest, repeat ×3 (4) Control (tested after 4 min rest) Stretches included triceps surae, gluteal muscles, quads. Done to the onset of pain

TABLE 2. (continued) Detailed Summary of Clinical Studies Examining Whether Stretching Immediately Before Exercise Improves Performance

TABLE 2. (continued) Detailed Summary of Clinical Studies Examining Whether Stretching Immediately Before Exercise Improves Performance

Outcome		Results		Comments
 1 RM* for knee flexion and knee extension after intervention (i.e. not change pre-post) Standardized protocol used to increase weights for 1 RM; subjects blinded to weights 	Nine percent increase in sit and reach test Knee flexion: stretch trial had 1 RM 7.5% less than nonstretch trial Knee extension: stretch trial had 1 RM 5.6% less than nonstretch trial			All students believed stretching improved strength prior to study Used graded protocol for 1 RM. Therefore, it is theoretically possible that the outcome was fatigue rather than absolute force. However, the authors did use an accepted protocol for 1 RM measure
 RM for knee flexion and knee extension after intervention (i.e. not change pre-post) Standardized protocol used to increase weights for 1 RM; subjects blinded to weights 	Increase in ROM, 16% Decrease in flexion 1 RM, 7.3% and decrease in extension 1 RM, 8.1%			Used graded protocol for 1 RM. Therefore, it is theoretically possible that the outcome was fatigue rather than absolute force. However, the authors did use an accepted protocol for 1 RM measure
Static jump height and peak power from semisquat position with hands on hips CM jump + height and peak power with hands on hips Not clear if used mean or peak for jump heights	Static jump decreased by $4.4 \pm 1.3\%$ (1.0 ± 0.3 cm) and CM jump by $4.3 \pm 1.3\%$ (1.2 ± 0.4 cm) Peak power decreased by $3.2 \pm 0.9\%$ (111.7 ± 31.8 W) in static jump and by $2.2 \pm 0.9\%$ (86.7 ± 35.7 W) in CM jump			 ROM not measured Three jumps were performed, but unclear if mean or best was used in analysis. Both height and peak power were calculated from vertical velocity at take-off from force-time data Because jump kinematics standardized, cannot assess if stretching altered kinematics. This could either increase or decrease jumping performance
Mean of 3 trials CM jump velocity with hands on hips Mean of 3 trials jump kinematics with hands on hips	Stretch group decreased peak velocity by 3% ($P = 0.13$). 55% decreased velocity (-7.5%), 35% increased velocity (+2.4%), and 10% no change No change in kinematics			ROM not measured The lack of change in kinematics suggests that the results in Cornwell et al ¹⁶ were not due to the standardized jumping technique
# of repetitions at 60% 1 RM prone hams curl at 3s/rep.		Day 1	Day2	 Change in ROM not recorded 1 RM established at first testing session, then 10-min
RPE during repetitions	Males	145.00	15.2 . 2.0	break, but subject may have been affected
	Stretch day 1 Stretch day 2 Females Stretch day 1 Stretch day 2	14.5 ± 3.0 15.9 ± 3.1 15.4 ± 1.8 14.1 ± 1.9	17.3 ± 3.0 17.4 ± 2.9 16.9 ± 2.7 15.8 ± 4.3	Both groups increased the number of repetitions for second session.Both groups had similar reps for the first session. The results only say that there was a greater increase in the nonstretching group
Forearm flexion isokinetic torque at 30°/s and 270°/s with 2 min rest between. Best of 3 trials analyzed EMG-surface MMG ⁺	RPE not different Torque (Nm) slightly decreased with stretching at $30^{\circ}/s$ (49.5 ± 4.1 vs. 50.4 ± 4.1) and at 270°/s (20.9 ± 2.5 vs. 23.4 ± 2.5). The changes were significant when the 2 isokinetic velocities were combined No change in EMG MMG increased with stretch (decreased stiffness) at $30^{\circ}/s$ (93.5 ± 14.4 mV vs. 63.1 ± 10.6 mV) and 270°/s			ROM not measured
Drop jump height§	Jump height decreased	vs. 136.4 ± 31.7 mV) by 8.2% (from 0.268 ±	m to 0.246 m)	ROM not reported
Ground contact time	Air time decreased wi	-	0.47	Not clear if static stretch group also did routine
Air time Tested after warm-up	(estimated from figure) No change ground contact time			warm-up Two studies that appeared to use the same subjects (1 less ¹¹ with some overlap in outcomes (ground contact time)
Squat jump (1) Height (2) Force (3) Rate of force Drop jump height (hands on hips): subjects told to minimize ground contact time	MVC intervention group results not reported here as not pertinent to question Jump height = 36.6 ± 3.4 control; 35.0 ± 4.0 PNF, 35.9 ± 3.7 static Force = 1.69 ± 0.14 control; 1.64 ± 0.18 PNF; 1.63 ± 0.14 static Rate of force = 13.6 ± 3.6 control; 13.1 ± 3.6 PNF;			ROM not measured Although only the drop jump changes were significant, the stretching group did worse than the control group in all measures
	12.8 ± 3.3 static Drop jump = 188 ± 25 control; 182 ± 22 PNF; 175 ± 20 static			

TABLE 2. (continued) Detailed Summary of Clinical Studies Examining Whether Stretching Immediately Before Exercise Improves Performance

Study Acute	Population	Design	Intervention
Stretching detrimental			
<u>RCT cross-over design</u> Young and Behm ²¹	13 M and 4 F, age 26 ± 8.5 y with weight-training or power sport experience	RCT cross-over with 6–72 h between sessions	 All warmed-up. Then rest ×4 min. Then: (1) Control walk ×3 min, 5 squats, 5 heels raises (2) Jog ×4 min (3) Stretch: 30 s per stretch ×2 (4) Run and stretch: jog and then stretch using parameters of groups 2 and 3 (5) Run and stretch and jump: jog and stretch as in group 4, then 3 jumps 80% maximum effort, then 4 jumps 100% maximum effort Stretches included gastrocnemius and soleus wall stretches, assisted prone quads stretch, assisted prone hip
Pre-post design			extension stretch. Done to the onset of pain
Behm et al ²²	 12 M, university students, excluded individuals who could not recruit >80% of quads (based on ITT[∥]) 	Pre-post testing for all 12 subjects Nonrandomized cross-over trial for 6 subjects, with 1 wk between sessions	 Five-min cycle warm-up (1) Con: rest ×3 min (for cross-over) (2) Stretch all groups: 45 s, rest 15 s, repeat ×5 Muscle groups: standing quads, hurdler quads, kneeling hip extension, assisted prone quads
Nelson et al ²³	25 M, 30 F, college physical education students	Pre-post	Unassisted standing heel-buttock quad warm-up stretch, followed by assisted (1) standing heel-buttock quad stretch and (2) prone heel-buttock quad stretch. Each stretch static, held 30 s, rest ×20 s, repeat stretch
Nelson et al ²⁴	10 M, 5 W, college physical education students	Pre-post	Unassisted standing heel-buttock quad warm-up stretch, followed by assisted (1) standing heel-buttock quad stretch and (2) prone heel-buttock quad stretch. Each stretch static, held 30 s, rest ×20 s, repeat stretch
Cornwell et al ²⁵	10 M, age 22.5 ± 1.8 (SD) y	Pre-post	Two days for subjects to familiarize with testing procedures Static stretches of gastroc and soleus. 30 s hold, repeat \times 3
Avela et al ²⁶	20 M, 21–44 y	Quasi cross-over: pre-post with opposite leg as control	Stretched leg: dynamic stretch of triceps surae, knee 120°, ankle 90°, warmed with heat lamp. Stretch by 10°, hold 0.2 s, repeated ×60 min Control: no stretch

TABLE 2. (continued) Detailed Summary of Clinical Studies Examining Whether Stretching Immediately Before Exercise Improves Performance

Outcome	Results	Comments	
Concentric jump (1) Height (2) Peak force (3) Rate of force Drop jump (0.3 m) height (hands on hips): subjects told to minimize ground contact time EMG-surface	Jump height (cm) = 29.3 \pm 3.7 control; 28.3 \pm 3.5 stretch; 30.2 \pm 3.7 run; 29.2 \pm 3.2 run/stretch Peak Force (bw) = 1.80 \pm 0.29 control; 1.88 \pm 0.28 stretch; 1.73 \pm 0.25 run; 1.83 \pm 0.26 run/stretch Rate of force (kN/s) = 15.0 \pm 4.3 control; 17.8 \pm 7.1 stretch; 14.6 \pm 5.3 run; 15.4 \pm 4.1 run/stretch Drop jump (cm) = 26.5 \pm 5.5 control; 27.7 \pm 6.4 stretch; 25.7 \pm 5.9 run; 26.5 \pm 5.6 run/stretch There was no difference in contact time for drop jump EMG analysis suggests decreased activation with stretch/run compared to run alone for all tests	ROM not measured Run/stretch/jump group not reported in this review because not pertinent to this question. To test whether the effects of stretching are important even if you practice jumps after, the comparison has to be practice jumps versus stretching and practice jumps	
MVC knee extension (6–10 min after, sitting position). Knee at 90° flexion ITT EMG-surface	 There were no changes in any variable pre-post control Pre-post stretching: MVC decreased by 12.2% with stretching ITT inceased by 2.8% (5.7 ± 2.2 vs. 8.5 ± 6.0) EMG decreased by 20.2% for quads and 16.8% for hams Time to peak twitch decreased by 11.7% (146.0 ± 16.5 vs. 144.3 ± 16.4) 	ROM not measured Not clear how the 6/12 subjects were chosen for cross-over testing Tested 5–10 min after the stretch Tested in position of hip and knee at 90°, suggesting the muscle was stretched when generating force Decreased force may be neurally caused because of	
Isometric MVC knee extension at 90°, 108°, 126°, 144°, and 162° knee angle (180° = full extension). There was 2 min between tests at different angles Subjects made 4 maximal efforts at each angle, but not clear if mean or maximum was used	Tetanic evoked force was similar There was a 7% decrease in force at the knee angle = 162° only. Other knee angles had no decrease in force	 decrease in EMG, and increase in ITT ROM not reported. If the stretching program was not effective (unlikely), it is possible a more effective program would have decreased strength at other angles A decrease in force only at end ROM is consistent with studies showing a decrease in 1 RM, because completion of a 1 RM task requires force throughout. For example, all participants¹⁵ were able to initiate action but not complete it (i.e. weakness noted near extension) 	
Isokinetic MVC at 1.05 rad-s ⁻¹ , 1.57 rad-s ⁻¹ , 2.62 rad-s ⁻¹ , 3.67 rad-s ⁻¹ , and 4.71 rad-s ⁻¹ Test occurred within ROM from 110° to 0° (0° = full extension) Subjects made 4 maximal efforts at each angular velocity, but not clear if mean or maximum was	Decrease 7.2%, in isokinetic MVC at 1.05 rad-s ⁻¹ , and 4.5% decrease in isokinetic MVC at 1.57 rad-s ⁻¹ . No change at other speeds Nonsignificant change in the knee angle at which peak torque occurred at low speeds (i.e. peak torque after intervention occurred when quad more stretched)	Statistical significance was $P < 0.01$, but figure shows virtually identical results for pre-post stetching except at 162° flexion ROM not reported, so we are not sure how effective the stretch protocol was. If it was not effective (unlikely), it is possible a more effective program would have decreased strength at other angular velocities	
used Changes in: (1) Active stiffness (2) ROM (3) Vertical velocity (calculated using ground reaction forces) during static and CM jumps (4) Pure Achilles jump height (5) EMG during jumps	 Active stiffness decreased from 30.5 ± 1.4 to 29.7 ± 1.5 kN/m ROM increased by approximately 2.2° Vertical velocity: CM jump velocity decreased, but static jump height velocity did not change Pure Achilles jump height: CM jump height decreased by 7.9 ± 1.9%. Static jump height was identical pre-post EMG: CM jump EMG remained unchanged. Static jump 	IEMG decreased by 9.1% for static jump and was equal for CM jump even though effect on jump height was not present for static jump but was present for CM jump Stiffness measures and jump velocities were measured on separate days	
Change in MVC EMG-fine wire H-reflex, M-wave	EMG decreased by 9.1 ± 2.1% MVC decreased by 23.2 ± 19.7% EMG decreased by 19.9 ± 29.4% in gastroc and 16.5 ± 24.4% soleus Decreased H/M-reflex ratio by 43.8 ± 41.4 Total recovery by 15 min	ROM not measured Poststretch MVC measured under ischemia. However, this was the same for both stretched and nonstretched leg Decreased force not due to neuromuscular junction problem but could be due to excitation-contraction coupling Because there was no change in EMG of control leg, the inhibition of force muct originate as a peripheral	

inhibition of force must originate as a peripheral

mechanism

TABLE 2. (continued) Detailed Summary of Clinical Studies Examining Whether Stretching Immediately Before Exercise Improves Performance

Study Acute	Population	Design	Intervention
Cramer et al ²⁷	14 F, college age, active but not competitors	Quasi, cross-over: pre-post with opposite leg as control	Static stretch of dominant limb only to mild discomfort. 4 reps ×3 s/rep with 20 s rest between. 4 min rest between stretch and testing Standing quad stretch, assisted prone quad stretch, assisted standing hip flexor/quad stretch, assisted supine hip flexor/quad stretch

TABLE 2. (continued) Detailed Summary of Clinical Studies Examining Whether Stretching Immediately Before Exercise Improves Performance

Outcome		Results		Comments ROM not measured Five-min warm-up prior to testing
Five min warm-up prior to testing Concentric isokinetic peak torque at 60 and 240°/s		Pre	Post	
of stretched vs. unstretched limb				Stretched limb tested 4 min after stretching, and
Best of 3 trials used. 2 min rest between velocities	Stretch	174.7 ± 7.7	170.7 ± 8.2	nonstretched limb tested 16 min after stretching.
	No stretch	182.4 ± 7.9	174.1 ± 7.1	Decrease in unstretched limb suggests that the effect
	240°/s			 of stretching on performance are partly due to spinal or cerebral effects, and that they last at least 16 min
	Stretch	112.4 ± 5.1	109.3 ± 4.7	of cerebrai circets, and that they last at least 10 min
	No stretch	109.6 ± 5.0	106.9 ± 4.5	
	Peak torque decreased with stretching in both the stretched $(174.1 \pm 7.7 \text{ vs. Nm})$ and unstretched limb, with effects greater at			 t
	60°/s compared to 120°/s			
	not at 240°/s		r stretched limb at 60°/s but torque was greater at 60°/s	

*1RM indicates 1 repetition maximum, or the maximum weight a subject can lift once. There are standard protocols used to determine the 1RM.

†CM jump: a counter-movement jump is when a subject begins from a standing position, lowers the body by flexing the knees and hips, and then immediately propels the body upward. In general, CM jumps are greater than static jumps.

\$MMG indicates mechanomyography. This records muscle vibrations during activity, and a lower value may suggest increased stiffness during contraction.

\$Drop jump: the subject jumps down from a small height and immediately on landing goes into a crouch and jumps up. This is similar to the CM jump except one starts from jumping down instead of standing still.

^{II}ITT indicates interpolated twitch technique. In this technique, the muscle is electrically stimulated while a MVC is performed. If the muscle is not fully recruited by the individual, the electrical stimulation increases the force generated. Calculations are made to determine the percent of activation of muscle fibers.

F indicates females; M, males.