Supplemental Figure 1. Title review protocol #### Supplemental Figure 2. Abstract protocol review # Supplemental Table 1. Delphi Consensus Scores^a | Variable | Score, Mean ± SD
Round 1, Scale 1–5 | Round 2, Scale 1–9 | |--|--|--------------------| | Population | | | | Middle school | 4.06 ± 0.57 | NA | | High school | 4.88 ± 0.34 | NA | | College | 4.46 ± 0.70 | 8.25 ± 0.83 | | Professional | 4.29 ± 0.57 | 7.65 ± 1.52 | | Sport | | | | Helmeted | 4.82 ± 0.34 | 8.86 ± 0.37 | | Nonhelmeted | 4.03 ± 0.64 | NA | | Collision | NA | 8.29 ± 0.37 | | Equipment laden | NA | 7.71 ± 1.26 | | Contact | NA | 6.86 ± 1.34 | | All organized sports | NA | 5.67 ± 1.17 | | Target audience | | | | Athletic trainers | 4.74 ± 0.27 | NA | | Team physicians | 4.71 ± 0.46 | NA | | Paramedics/emergency medical technicians | 4.59 ± 0.62 | NA | | Emergency department providers | 4.15 ± 0.97 | NA | | Leagues (club sports) | 3.75 ± 0.73 | NA | | Coaches | 3.56 ± 0.75 | NA | | Referees | NA | 6.84 | | Parents | NA | 5.10 | ^a 1 = *strong disagreement*, 9 = *strong agreement*. Abbreviation: NA, not applicable. ## Supplemental Table 2. Systematic Review Search Criteria and Results | Data Source | Search
Date | Studies
Identified | Includes Related Terms? | Full-
Text
Search? | Abstract
Available? | English
Language? | |---|----------------|-----------------------|-------------------------|--------------------------|------------------------|----------------------| | PubMed | 1/11/19 | 335 | N | N | Y | Y | | SPORTDiscus | 1/11/19 | 75 | N | N | Y | Y | | Cochrane | 12/21/18 | 53 | Y | Y | N | N | | CINAHL | 1/11/19 | 41 | Y | N | Y | Y | | Web of Science | 1/11/19 | 146 | N | N | N | Y | | Embase | 1/11/19 | 284 | N | N | Y | Y | | Scopus | 1/11/19 | 715 | Y | Y | N | Y | | Journal of | 1/14/19 | 68 | N | Y | N | N | | Athletic
Training | | | | | | | | American
Journal of
Sports Medicine | 1/14/19 | 55 | N | Y | N | N | Abbreviations: Y, yes; N, no. # Supplemental Table 3. Characteristics of Studies Included in Systematic Review (N = 49) | Characteristic | No. of Studies (%) | |--|--------------------| | Sport represented ^a | | | American tackle football | 38 (78) | | Ice hockey | 7 (14) | | Lacrosse | 5 (10) | | Downhill skiing | 1 (2) | | Body position | | | Supine | 41 (84) | | Prone | 2 (4) | | Seated | 1 (2) | | Participant type ^b | | | Healthy volunteer model | 35 (71) | | Cadaver | 8 (16) | | Manikin/dummy | 4 (8) | | Study design | | | Controlled laboratory crossover, not randomized | 34 (69) | | Controlled laboratory crossover, randomized | 10 (20) | | Systematic review | 2 (4) | | Randomized control trial | 1 (2) | | Cohort | 1 (2) | | 8.0-things Come attributed and are are those 1 are out | | ^a Some studies included more than 1 sport. ^b When applicable. ## The questions in Supplemental Tables 4–11 are reproduced in their original format. ## Supplemental Table 4. Summary of Findings for Question 2a, "Are Outcomes After CSI Likely to Be Better When Face Masks Are Removed Prior to Transport?" | Journal | Year | Authors | Study Design | Study
Population | Intervention or Exposure | Comparison Groups | Sport | Outcome | Outcome
Measurement
Type | Results | |---|------|----------------------------|---|---|---|---|--------------------------------|---|--|--| | Athletic
Training &
Sports
Health Care | 2015 | DuBose et al ²¹ | Controlled laboratory study | 5 cadavers
with C5-C6
instability; 2
ATs | Helmet removal | Face-mask removal and
then helmet removal vs
complete helmet
removal | American
tackle
football | Angular and translational displacement | Electromagnetic motion analysis | Removing the face mask before
helmet removal resulted in
significantly less flexion-extension,
axial rotation, and translational
displacement. | | Athletic
Training &
Sports
Health Care | 2015 | Endres et al ²⁴ | Randomized
nonblinded
crossover study | 4 healthy
models; 28
ATs | Helmet removal | Two helmet styles, with or without face mask attached | American
tackle
football | Head acceleration,
time to
completion,
perceived
difficulty | Accelerometer,
modified Borg CR-
10 scale | Removal of face mask before helmet reduced head acceleration but may increase time to completion. No significant differences were found in perceived difficulty. | | Journal of
Athletic
Training | 2015 | Swartz et al ²³ | Randomized
nonblinded
crossover study | 40 ATs | Airway access, chest
access technique (face
mask removal vs
helmet and shoulder-
pad removal) | ION 4D vs Riddell 360;
ION 4D and traditional
pads vs Riddell 360 and
Riddell Power with
RipKord shoulder pads ^a | American
tackle
football | Self-rated
difficulty, head
excursion, time to
task completion | 8-camera motion
caption, modified
Borg CR-10 scale | Face-mask removal time was longer for 360 than for ION; helmet removal led to greater motion; no difference in difficulty. Shoulder-pad removal time was shorter with Riddell; no differences in motion or difficulty. | | American
Journal of
Sports
Medicine | 2004 | Waninger ²² | Scoping review | 54 studies, including surveys and case reports | On-field and ED care of athletes with suspected CSI | NA | NA | NA | NA | Evidence remains moderately circumstantial and anecdotal. Keeping equipment in place has not been found to be detrimental. Adequate data on pediatric and female athletes and breadth of equipment designs were not available. | Abbreviations: AT, athletic trainer; CSI, cervical spine injury; ED, emergency department; NA, not applicable. ^a ION 4D; Schutt Sports, Litchfield, IL; Riddell 360 and Power; Des Plaines, IL. # Supplemental Table 5. Summary of Findings for Question 2b: "Are Outcomes After CSI Likely to Be Better When the Helmet/Shoulder Pads Are Removed Prior to Transport?" | Journal | Year | Authors | Study Design | Study Population | Intervention or Exposure | Comparison
Groups | Sport | Outcome | Outcome
Measurement
Type | Results | |---|------|--------------------------------|--|---|--|--|--------------------------------|---|--|--| | Spine | 2012 | Decoster et al ³⁶ | Crossover
study | 20 male participants; 3 ATs | Helmet removal | Helmet vs no helmet
or towel vs no
helmet with towel vs
no helmet with towel
after 20 min | American
tackle
football | Cobb angle measurements | Collimator x-ray
machine
(radiography) | No significant differences in cervical lordosis between full equipment and any helmet-removed conditions. Time since towel placement was not significant. Towel-support conditions had significantly less cervical lordosis than no towel. | | Athletic
Training &
Sports Health
Care | 2015 | Endres et al ²⁴ | Randomized
nonblinded
crossover
study | 4 healthy models;
28 ATs | Helmet removal | Two helmet styles, with and without face mask attached | American
tackle
football | Head acceleration,
time to completion,
perceived difficulty | Accelerometer,
modified Borg
CR-10 scale | Removal of face mask before helmet reduced head acceleration but may increase time to completion. No significant differences in perceived difficulty. | | Orthopaedic
Journal of
Sports Medicine | 2017 | Etier et al ²⁵ | Crossover study | 20 male participants
in 4 weight groups;
7 staff (2 ATs, 3
sports med ortho
fellows, 2 sports
med ortho
surgeons) | Immobilization
and equipment
removal | (1) Rigid spine
board vs full-body
vacuum splint; (2)
helmet and shoulder
pads vs no
equipment; (3)
weight group | American
tackle
football | Peak planar cervical
spine motion,
perception of comfort
and security | Electromagnetic motion analysis | Small but significant differences in cervical motion were noted between immobilization types under various test conditions. Body weight was associated with motion under a variety of test conditions. | | Annals of
Emergency
Medicine | 1998 | Gastel et al
³⁷ | Crossover study | 8 cadavers | Equipment removal | No equipment vs
helmet only vs
helmet and shoulder
pads vs shoulder
pads only; intact vs
injured spine | American
tackle
football | Angular displacement,
dorsal element
distraction, posterior
disc space height,
sagittal plane
translation at C5-C6 | Radiography | No significant difference in any parameter among the 4 equipment conditions before dislocation procedure. Postinjury, significant differences between the helmet-only condition and other equipment conditions. Differences between preinjury and postinjury were only significant for the helmet-only condition | | Journal of
Athletic
Training | 2010 | Higgins et
al ³⁸ | Crossover
study | 10 collegiate lacrosse athletes | Equipment removal | No equipment vs
shoulder pads only
vs shoulder pads and
helmet | Lacrosse | Space available for
the cord (SAC),
cervical-thoracic
angle (CTA) | Magnetic resonance imaging | No difference in SAC across the 3 groups. CTA was greater for shoulder pads than no equipment. No difference in CTA between the no-equipment and full-equipment conditions. | | American
Journal of
Sports Medicine | 2000 | LaPrade et al ⁴⁰ | Crossover
study | 10 male participants | Equipment removal | No equipment vs
helmet and shoulder
pads vs shoulder
pads only | Ice hockey | cervical kyphosis or
lordosis | Computerized tomography lateral scout scan | Removal of the helmet alone resulted in significantly greater cervical lordosis than either full equipment or no equipment. This lordosis was mainly at the C6-C7 level. | | Clinical Journal
of Sport
Medicine | 1998 | Metz et al ³¹ | Crossover study | 8 healthy male participants | Equipment removal | No equipment vs
helmet and shoulder
pads vs shoulder
pads only vs helmet
only | Ice hockey | Cobb angle | Radiography | No significant difference between no-
equipment and full-equipment
conditions. Cervical lordosis in the
shoulder-pads only condition was
significantly greater than either no or
full equipment. | |---|------|-----------------------------------|-----------------------------------|--|--|---|--------------------------------|---|---------------------------------|---| | Clinical Journal
of Sport
Medicine | 2008 | Mihalik et al ³⁰ | Crossover
study | 18 adult male hockey players | Prone log roll | Competition helmet vs no helmet vs properly fit helmet | Ice hockey | Head-to-thorax and
helmet-to-thorax
motion during prone
log roll. | Electromagnetic motion analysis | Increased cervical spine motion (head-to-thorax) occurred when helmet was not removed. No significant different in cervical spine motion between helmet fit types. | | Wilderness &
Environmental
Medicine | 2017 | Murray et al ²⁹ | Non-
randomized
crossover | 28 volunteer skiers | Helmet removal | Helmet vs helmet
with cervical collar
vs no helmet with
cervical collar | Downhill skiing | Change in cervical spine alignment, time to helmet removal and stabilization | Radiography | Compared with helmeted without a collar, placing a collar with or without removing the helmet resulted in significant changes in cervical extension. | | American
Journal of
Sports Medicine | 1996 | Palumbo et al ²⁸ | Controlled
laboratory
study | 15 cadavers | Equipment removal | No equipment vs
helmet only vs
shoulder pads only
vs helmet and
shoulder pads | American
tackle
football | Cervical lordosis, C5-C6 angular displacement, posterior element distraction, disc space height, sagittal plane translation | Radiography | Outcomes in full equipment did not differ significantly from outcomes in the no-equipment condition for both intact and destabilized spines. | | Spine | 2002 | Peris et al ²⁷ | Controlled
laboratory
study | 7 male participants;
4 research staff | NATA protocol
for removal of
equipment | Before removal vs
during elevation vs
after helmet removal
vs after shoulder pad
removal vs no
equipment | American
tackle
football | Angulation C2-C6,
disc height at C2-C3,
translation at C5-C6,
SAC | Digital
fluoroscopy | No significant change in disc height, translation, or SAC. No significant motion in angulation. | | Journal of
Athletic
Training | 2010 | Petschauer
et al ²⁶ | Crossover study | 18 collegiate men's lacrosse players | Helmet fit | Fitted helmet vs
improperly fitted
helmet vs no helmet | Lacrosse | Voluntary head range of motion | Electromagnetic motion analysis | Range of motion was greater with a helmet, but there was no significant difference between the types of helmet fits. | | American
Journal of
Sports Medicine | 2006 | Sherbondy
et al ³⁹ | Crossover
study | 16 NCAA Division
I male lacrosse
players | Equipment removal | Helmet and shoulder
pads vs shoulder
pads only vs no
equipment | Lacrosse | Cervical spine
alignment in sagittal
plane | CT scan | Significant difference in overall cervical spine alignment between full equipment and no equipment. Significant difference in C0-C2 alignment between full equipment and shoulder pads only. Significant difference in C2-C7 alignment between shoulder pads only and no equipment. | | Journal of
Athletic
Training | 1999 | Stephenson et al ³⁵ | Crossover
study | 13 male ice hockey players | Equipment removal | No equipment vs
helmet and shoulder
pads vs shoulder
pads only | Ice hockey | Sagittal cervical alignment | Radiography | Removing the helmet resulted in significantly different C0-C2 and C2-C7 angles compared with either full equipment or no equipment. | | American
Journal of
Sports Medicine | 1997 | Swenson et al ³⁴ | Crossover
study | 10 male participants | Equipment removal | No equipment vs
helmet and shoulder
pads vs shoulder
pads only | American
tackle
football | Sagittal cervical alignment | Radiography | No significant differences between
no-equipment and full-equipment
conditions. Removal of helmet alone
resulted in significantly increased
cervical lordosis. | |---|------|-----------------------------|--------------------|--|---|--|--------------------------------|---|----------------------------------|---| | Journal of
Athletic
Training | 2002 | Tierney et al ³² | Crossover study | 12 male participants | Equipment removal | 0, 2, and 4 cm
occiput elevation
without helmet and
shoulder pads vs
helmet and shoulder
pads | American
tackle
football | SAC, sagittal
diameter, CTA | Magnetic
resonance
imaging | SAC was significantly greater for the equipment condition and 0-cm elevation than for other conditions. There was no significant difference between 0-cm elevation and the equipment condition. | | American
Journal of
Sports Medicine | 2008 | Treme et al ³³ | Crossover study | 31 male athletes, aged 8–14 y | Equipment removal | No equipment vs
shoulder pads only
vs shoulder pads and
helmet | American
tackle
football | Cervical lordosis
based on Cobb angle,
subaxial angle | Radiography | Significantly greater cervical lordosis with shoulder pads only, compared with other conditions. No significant difference seen between the no-equipment and full-equipment conditions. | | American
Journal of
Sports Medicine | 2004 | Waninger ²² | Scoping
review | 54 studies, including surveys and case reports | On-field and ED care of athletes with suspected CSI | NA | NA | NA | NA | Evidence remains moderately circumstantial and anecdotal. Keeping equipment in place has not been found to be detrimental. Adequate data on pediatric and female athletes and breadth of equipment designs not available. | Abbreviations: AT, athletic trainer; CSI, cervical spine injury; CTA, cervical-thoracic angle; ED, emergency department; NA, not applicable; NATA, National Athletic Trainers' Association; NCAA, National Collegiate Athletic Association; ortho, orthopaedic; SAC, space available for the cord. # Supplemental Table 6. Summary of Findings for Question 3a: "What Criteria Should Be Considered When Deciding to Remove Face Masks With a Suspected CSI?" | Journal | Year | Authors | Study Design | Study Population | Intervention or Exposure | Comparison Groups | Sport | Outcome | Outcome
Measurement
Type | Results | |---|------|-------------------------------|--|---|---
--|--------------------------------|--|---|--| | Clinical
Journal of
Sport
Medicine | 2011 | Burkey et
al ⁴⁵ | Randomized
nonblinded
crossover
study | 42 resident physicians | Airway access and lighting conditions | Assisted intubation, laryngeal mask, standard intubation | American
tackle
football | Airway access,
time to airway
access | Not specified | No difference in difficulty under bright lights for any approach. 50-50 split opinion on standard or LMA being easiest. LMA was slightly faster, 23 vs $36 \text{ s } (P < .001)$. | | Journal of
Athletic
Training | 1995 | Ray et al ⁴⁴ | Partial
crossover | 12 NCAA Division
III football players | Airway access | Face mask removal via
manual screwdriver vs
power screwdriver vs
Trainer's Angel cutting
tool vs insertion of
pocket mask | American
tackle
football | Helmet motion | Optotrak 3020
optoelectronic
motion-analysis
system ^a | Trainer's Angel induced significantly more motion than other methods. Pocket mask required less time. | | Journal of
Athletic
Training | 2002 | Ray et al ⁴³ | Crossover
study | 12 NCAA Division
III football players;
2 senior athletic
training students | Airway access | Pocket mask via chin insertion vs pocket mask via eyehole insertion vs face-mask rotation using screwdriver | American
tackle
football | Cervical spine motion, time | Optoelectronic
motion analysis
system (Optotrak) | Face-mask rotation took significantly longer than pocket-mask insertion. There was no significant difference in cervical spine rotation across the 3 techniques. Eyehole insertion produced the least motion but not always to a significant degree. | | The Spine
Journal | 2014 | Swartz et
al ⁴² | Crossover study | 22 certified athletic trainers | Airway access | Face-mask removal vs
helmet removal with
and without bladder
deflation | American
tackle
football | Head motion,
removal time,
difficulty | 6-camera motion caption, modified Borg CR-10 scale | Face-mask removal resulted in less motion and shorter time than helmet removal. Riddell Revolution IQ helmet removal resulted in less frontal motion and quicker removal than Riddell VSR helmet removal. Deflation increased removal time but did not significantly alter motion or difficulty. | | Journal of
Athletic
Training | 2015 | Swartz et al ²³ | Randomized
nonblinded
crossover
study | 40 athletic trainers | Airway access,
chest-access
technique (face mask
removal vs helmet
and shoulder-pad
removal) | ION 4D vs Riddell 360;
ION 4D and traditional
pads vs Riddell 360 and
Riddell Power with
RipKord shoulder pads ^b | American
tackle
football | Self-rated
difficulty, head
excursion, time
to task
completion | 8-camera motion
capture, modified
Borg CR-10 scale | Face-mask removal time was longer for 360 vs ION; helmet removal led to greater motion; no difference in difficulty. Shoulder-pad removal time was shorter with Riddell; no differences in motion or difficulty. | | Clinical
Journal of
Sport
Medicine | 2010 | Toler et al ⁴¹ | Crossover study | 1 healthy model; 36 participants (18 certified athletic trainers, 18 noncertified athletic training students) | Airway access | Quick-release
mechanism vs cordless
screwdriver vs pocket
mask insertion;
certified AT vs
noncertified AT
students | American
tackle
football | Time to airway access, head movement | Electromagnetic motion capture | Pocket-mask insertion was fastest technique and involved less motion in the frontal plane. Results were similar regardless of certification. Motion differed between head measures and helmet measures. No significant differences between athletic trainers and students. | |--|------|---------------------------|-----------------|---|---|--|--------------------------------|--------------------------------------|--------------------------------|--| | American
Journal of
Sports
Medicine | 2004 | Waninger ²² | Scoping review | surveys and case | On-field and ED care of athletes with suspected CSI | NA | NA | NA | NA | Evidence remains moderately circumstantial and anecdotal. Keeping equipment in place has not been found to be detrimental. Adequate data on pediatric and female athletes and breadth of equipment designs not available. | Abbreviations: CSI, cervical spine injury; LMA, laryngeal mask airway; NA, not applicable; NCAA, National Collegiate Athletic Association. ^a ION 4D; Schutt Sports, Litchfield, IL; Riddell 360 and Power; Des Plaines, IL. ^b  Optotrak 3030; NDI, Waterloo, ON, Canada. # Supplemental Table 7. Summary of Findings for Question 3b: "What Criteria Should Be Considered When Deciding to Remove Helmet/Shoulder Pads With a Suspected CSI?" | Journal | Year | Authors | Study Design | Study Population | Intervention or Exposure | Comparison Groups | Sport | Outcome | Outcome
Measurement
Type | Results | |---|------|-----------------------------------|--|--|--------------------------------------|---|--------------------------------|---|---|---| | Journal of
Athletic
Training | 2013 | Bric et al ⁴⁷ | Controlled
laboratory
study | 1 healthy model; 40 ATs | Shoulder-pad removal technique | Traditional vs quick-
release design | American
tackle
football | Cervical spine motion, removal time, perceived difficulty | 3-dimensional motion capture | There were no significant differences in motion or perceived difficulty. Quick-release pads required significantly less time to remove. | | Orthopaedic
Journal of
Sports
Medicine | 2017 | Etier et al ²⁵ | Crossover
study | 20 male participants
in 4 weight groups;
7 staff (2 ATs, 3
sports med ortho
fellows, 2 sports
med ortho surgeons) | Immobilization and equipment removal | (1) Rigid spine board
vs full-body vacuum
splint; (2) helmet and
shoulder pads vs no
equipment; (3) weight
group | American
tackle
football | Peak planar cervical spine motion, perception of comfort and security | Electromagnetic motion analysis | Small but significant differences in cervical motion were noted between immobilization types under various test conditions. Body weight was associated with motion under a variety of test conditions. | | Athletic
Training &
Sports Health
Care | 2015 | Lenhardt et
al ⁴⁶ | Randomized
nonblinded
crossover
study | Unspecified models;
31 certified ATs, 1
senior student | Shoulder pad removal technique | Elevated torso with
traditional shoulder
pads vs flat torso with
traditional shoulder
pads vs Riddell
RipKord pad removal ^a | American
tackle
football | Head motion,
time to
removal,
perceived
difficulty | Electromagnetic
motion capture;
modified Borg CR-
10 scale | Riddell RipKord removal was faster
than other techniques, rated as less
difficult. No significant different was
noted in head motion across the
techniques. Reinforced training
improves speed and decreases range
of head motion. | | Clinical
Journal of
Sport
Medicine | 2008 | Mihalik et
al ³⁰ | Crossover
study | 18 adult male hockey players | Prone log roll | Competition helmet vs no helmet vs properly fit helmet | Ice hockey | Head-to-thorax
and helmet-to-
thorax motion
during prone
log roll | Electromagnetic motion analysis | Increased cervical spine motion (head to thorax) occurred when helmet was not removed. No significant different in cervical spine motion between helmet fit types. | | Journal of
Athletic
Training | 2010 | Petschauer
et al ²⁶ | Crossover
study | 18 collegiate men's lacrosse players | Helmet fit | Fitted helmet vs
improperly fitted
helmet vs no helmet | Lacrosse | Voluntary head range of motion | Electromagnetic motion analysis | Range of motion was greater with a helmet, but there was no significant difference between the types of
helmet fits. | | American
Journal of
Sports
Medicine | 2006 | Sherbondy
et al ³⁹ | Crossover | 16 NCAA Division I
male lacrosse
players | Equipment removal | Helmet and shoulder
pads vs shoulder pads
only vs no equipment | Lacrosse | Cervical spine
alignment in
sagittal plane | CT scan | Significant difference in overall cervical spine alignment between full equipment and no equipment. Significant difference in C0-C2 alignment between full equipment and shoulder pads only. Significant difference in C2-C7 alignment between shoulder pads only and no equipment. | | Journal of
Athletic
Training | 2015 | Swartz et al ²³ | Randomized
nonblinded
crossover
study | 40 ATs | Airway access, chest
access technique (face
mask removal vs
helmet and shoulder
pad removal) | ION 4D vs Riddell
360; ION 4D ^b and
traditional pads vs
Riddell 360 and
Riddell Power with
RipKord shoulder
pads | American
tackle
football | Self-rated
difficulty, head
excursion, time
to task
completion | 8-camera motion
capture, modified
Borg CR-10 scale | Face-mask removal time was longer
for 360 vs ION. Helmet removal led
to greater motion; no difference in
difficulty. Shoulder-pad removal time
was shorter with Riddell; no
differences in motion or difficulty. | |--|------|----------------------------|--|--|--|---|--------------------------------|--|--|--| | The Spine
Journal | 2014 | Swartz et al ⁴² | Crossover
study | 22 certified ATs | Airway access | Face mask removal vs
helmet removal with
and without bladder
deflation | American
tackle
football | Head motion,
removal time,
difficulty | 6-camera motion
capture, modified
Borg CR-10 scale | Face-mask removal resulted in less motion and shorter time than helmet removal. RIQ helmet removal resulted in less frontal motion and quicker removal than VSR helmet removal. Deflation increased removal time but did not significantly alter motion or difficulty. | | American
Journal of
Sports
Medicine | 2004 | Waninger ²² | Scoping
review | 54 studies, including surveys and case reports | On-field and ED care of athletes with suspected CSI | NA | NA | NA | NA | Evidence remains moderately circumstantial and anecdotal. Keeping equipment in place has not been found to be detrimental. Adequate data on pediatric and female athletes and breadth of equipment designs not available. | Abbreviations: AT, athletic trainer; CSI, cervical spine injury; ED, emergency department; NA, not applicable; NCAA, National Collegiate Athletic Association; RIQ, Riddell Revolution IQ. ^a Riddell 360 and Power; Des Plaines, IL. ^b ION 4D; Schutt Sports, Litchfield, IL. # Supplemental Table 8. Summary of Findings for Question 4: "What Method of Transfer and Spine-Motion Restriction is Associated With the Best Outcomes for Athletes With Suspected CSI, Both in Supine and Prone Position?" | Journal | Year | Authors | Study
Design | Study Population | Intervention or
Exposure | Comparison Groups | Sport | Outcome | Outcome
Measurement
Type | Results | |---|------|--------------------------------|-----------------------------------|---|--|--|--------------------------------|--|---------------------------------|--| | Journal of
Athletic
Training | 2013 | Conrad
et al ⁴⁸ | Crossover
study | 5 cadavers; 5 "rescuers" (2 ATs, 1 student, 2 spine surgeons) | Prone log roll
technique and
equipment removal | Log-roll pull vs log-roll
push wearing shoulder
pads and helmet vs collar
only vs no equipment | American
tackle
football | Dynamic angulation or translation motion in all 3 anatomic planes | Electromagnetic motion analysis | Log-roll push produced less lateral
bending motion than log-roll pull. No
other significant differences were
noted between methods or equipment
conditions across any of the 6 motion
measures. | | Orthopaedic
Journal of
Sports
Medicine | 2017 | Etier et al ²⁵ | Crossover
study | 20 male participants in
4 weight groups; 7 staff
(2 ATs, 3 sports med
ortho fellows, 2 sports
med ortho surgeons) | Immobilization
and equipment
removal | Rigid spine board vs full-body vacuum splint; helmet and shoulder pads vs no equipment; weight group | American
tackle
football | Peak planar
cervical spine
motion,
perception of
comfort and
security | Electromagnetic motion analysis | Small but significant differences in cervical motion were noted between immobilization types under various test conditions. Body weight was associated with motion under a variety of test conditions. | | Orthopaedic
Journal of
Sports
Medicine | 2015 | Prasarn
et al ⁴⁹ | Controlled
laboratory
study | 5 cadavers; unspecified
study staff (spine
surgeons, residents,
ATs) | Spine-board transfer technique | Log roll vs lift and slide vs 8-person lift | American
tackle
football | Relative angular and linear motion | Electromagnetic motion analysis | 8-person lift resulted in less motion in all planes compared with other techniques. Lift and slide was more stable than log roll. | | Journal of
Athletic
Training | 2000 | Ransone
et al ⁵⁰ | Crossover
study | 10 male former football players | Immobilization | Helmet and shoulder
pads vs helmet, shoulder
pads, and cervical
vacuum immobilizer | American
tackle
football | Voluntary
cervical spine
range of motion | Radiography | Vacuum immobilization significantly decreased range of motion. | Abbreviations: AT, athletic trainer; CSI, cervical spine injury. ## Supplemental Table 9. Summary of Findings for Question 5: "What Formal Training in the Emergency Care of an Athlete With an On-Field Suspected CSI Is Required and Recommended?" | Journal | Year | Authors | Study Design | Study Population | Intervention or
Exposure | Comparison Groups | Sport | Outcome | Outcome
Measurement Type | Results | |---|------|---------------------------------|---|--|---|---|--------------------------------|---|---|---| | Athletic
Training &
Sports
Health Care | 2015 | Lenhardt et
al ⁴⁶ | Randomized
nonblinded
crossover study | Unspecified
models; 31
certified athletic
trainers, 1 senior
student | Shoulder-pad
removal
technique | Elevated torso with
traditional shoulder pads
vs flat torso with
traditional shoulder pads
vs Riddell RipKord pad
removal ^a | American
tackle
football | Head motion,
time to removal,
perceived
difficulty | Electromagnetic
motion capture;
modified Borg CR-
10 scale | Riddell RipKord removal was faster
than other techniques, rated as less
difficult. No significant different in
head motion across the techniques.
Reinforced training improved speed
and decreased range of head motion. | | Spine | 2002 | Peris et al ²⁷ | Controlled
laboratory
study | 7 male participants; 4 research staff | NATA protocol
for removal of
equipment | Before removal vs during
elevation vs after helmet
removal vs after shoulder
pad removal vs no
equipment | American
tackle
football | Angulation C2-C6, disc height at C2-C3, translation at C5-C6, SAC | Digital fluoroscopy | No significant change in disc height, translation, or SAC. No significant motion in angulation. | | American
Journal of
Sports
Medicine | 2004 | Waninger ²² | Scoping review | 54 studies, including surveys and case reports | On-field and ED care of athletes with suspected CSI | NA NA | NA | NA | NA | Evidence remains moderately circumstantial and anecdotal. Keeping equipment in place has not been found to be detrimental. Adequate data on pediatric and female
athletes and breadth of equipment designs not available. | Abbreviations: CSI, cervical spine injury; ED, emergency department; NA, not applicable; NATA, National Athletic Trainers' Association. a Riddell RipKord; Des Plaines, IL. ## Supplemental Table 10. Summary of Findings for Question 7: "How Many Trained Personnel Does It Take to Remove a Face Mask/Helmet/Shoulder Pads on the Field?" | Journal | Year | Authors | Study | Study | Intervention or | Comparison Groups | Sport | Outcome | Outcome | Results | |---------|------|---------------------|-----------|---------------|-------------------|--------------------------|-----------------|--------------------|------------------|---| | | | | Design | Population | Exposure | | | | Measurement Type | | | Spine | 2009 | Horodyski | Crossover | 5 cadavers; | Shoulder pad | Flat-torso technique vs | American | Angular and linear | Electromagnetic | Elevated-torso technique involved less C5- | | | | et al ⁵¹ | study | unknown study | removal technique | elevated-torso | tackle football | displacement | motion analysis | C6 motion if instability was present. Similar | | | | | | staff | | technique | | | | results were found with intact spines. | # Supplemental Table 11. Questions, Conclusions, Recommendations, and Consensus Scores (1–9) | Question | Conclusions | Mean
± SD | Recommendations | Mean
± SD | |--|--|--------------|--|---| | 1: What facilities are associated with the best outcomes for an athlete with a suspected CSI? | Level I and II trauma centers are designated to provide acute, urgent care for the most seriously injured and potentially seriously injured patients. | 8.65 ± 0.70 | Procedure should be developed to ensure that an injured athlete with evidence of a spinal column injury is transported to a designated Level I or II trauma center as expeditiously and safely as possible. | 7.44 ±
1.17 | | 2a: Are outcomes after CSI likely to be better when face masks are removed prior to transport? | Removal of face masks in American tackle football with proper equipment by skilled personnel can be done with minimal motion of the cervical spine. | 8.44 ± 0.7) | Access to airway should be obtained prior to transport in athletes with suspected CSI. American tackle football face masks should be removed prior to transport in athletes with suspected CSI. Tools and trained personnel should be available for face-mask removal. | 8.59 ± 0.60
8.17 ± 1.17
8.22 ± 1.65 | | 2b: Are outcomes after CSI likely to be better when the helmet/shoulder pads are removed prior to transport? | Removal of helmets alone without removal of
shoulder pads may result in malalignment of the
cervical spine in American tackle football, men's
lacrosse, and ice hockey. | 8.00 ± 0.87 | The highest priority is maintaining cervical alignment. | 8.33 ±
1.29 | | | Removal of helmets and shoulder pads creates small, statistically significant amount of spinal movement in American tackle football, men's lacrosse, and ice hockey. | 7.89 ± 1.12 | Helmet and shoulder-pad removal should be left to the discretion of trained personnel at the scene. | 7.89 ±
1.17 | | | It is unknown what degree of cervical spine motion during equipment removal is clinically significant. | 8.37 ± 0.67 | When helmet and shoulder pads are to be removed, they should be removed
by trained personnel with competency in equipment removal while
minimizing cervical spine motion. | 8.33 ± 0.75 | | | Alignment of the cervical spine is statistically equivalent when the helmet and shoulder pads are on versus when the helmet and shoulder pads have been removed. | 7.94 ± 0.80 | If the athlete is found with the helmet off and shoulder pads in place, then the head should be supported to maintain cervical spine alignment. | 7.33 ± 2.11 | | 3a: What criteria should be considered when deciding to remove face masks with a suspected CSI? | None | | The highest priority is maintenance of circulation, airway, and breathing. | 8.79 ± 0.41 | | | | | Prior to transport, airway access should be ensured. | 7.79 ±
1.67 | | | | | Any athlete transported with a suspected CSI should have the face mask removed for airway access. The condition of the face mask, hardware, available equipment, and training of the available personnel should be considered prior to face-mask removal. Providers should have more than 1 method for face-mask removal available. | 7.16 ± 1.95 7.68 ± 1.08 8.11 ± 1.55 | | 3b: What criteria should be considered when deciding to remove helmet/shoulder pads with a suspected CSI? | The highest priority when considering helmet/
shoulder-pad removal is maintaining circulation,
airway, and breathing. | 8.56 ± 0.60 | The highest priority is maintenance of circulation, airway, and breathing. | 8.58 ± 0.67 | | | Athlete weight can be considered when deciding to remove helmet/shoulder pads | 7.40 ± 1.16 | Trained personnel should remove the helmet and shoulder pads from athletes with compromised circulation, airway, or breathing or decreased level of consciousness. | 8.11 ± 1.02 | | | Make and model of equipment can be considered when deciding to remove the helmet/shoulder pads. | 7.40 ± 1.16 | Athlete height and weight; make, model, and condition of equipment; and type of immobilization devices available should all be considerations when | 7.79 ±
1.06 | | | The type of immobilization device available and the | 7.26 ± | deciding whether to remove the helmet and shoulder pads prior to transport. | | |--|--|----------------------------|--|-----------------| | | sport involved can be considered when deciding to remove helmet/shoulder pads. | 1.21 | | | | 4: What method of transfer and spinal-motion restriction is associated with the best outcomes for athletes with suspected CSI, both in supine and prone position? | Log-roll–push techniques are superior to log-roll–pull techniques when turning injured athletes who are prone. | | The highest priority during any transfer technique is maintaining cervical spine alignment. | 8.40 ± 0.65 | | coi, com in supine una prone position. | Lift and slide with adequate personnel (8-person lift) results in less movement of the spine than log roll. | 8.05 ± 0.94
7.58 ± 0.88 | The medical professional in charge at the scene must apply clinical judgement to determine the best transfer technique. | 8.52 ± 0.59 | | | Full rigid spine board and full-body vacuum immobilization are equivalent in the degree of immobilization of the cervical spine. | | When feasible, a lift-and-slide technique (eg, 8-person lift) for supine athletes and log-roll—push technique for prone athletes should be implemented during transfer of athletes with suspected CSI. | 7.33 ± 0.99 | | | 1 | | In nonathletes, there are data to confirm that a scoop stretcher is an acceptable device to minimize spine motion for immobilization in the supine patient. | 7.76 ± 1.19 | | | | | The medical team should be proficient with multiple transfer techniques in order to provide the best on-scene care. | 8.10 ± 1.34 | | | | | The size of the athlete may be a factor in the selection of the appropriate spinal-motion restriction equipment (eg, standard vs oversized long spine board). | 7.81 ± 1.47 | | 5: What formal training in the emergency care of an athlete with an on-field suspected CSI is required and recommended? | Didactic, hands-on, practical, scenario-based training improves ability to care for a suspected spine-injured athlete. | 8.10 ± 1.02 | The highest priority is that all personnel on site are adequately trained and have rehearsed the techniques necessary to protect the spine of the spine-injured athlete. | 8.38 ± 0.79 | | | | | Training should be scenario based and practical, simulate emergency conditions, and encompass all members of the interdisciplinary health care | 8.52 ± 0.50 | | | | | team. Venue-specific training and rehearsal (including at practice facilities and game sites) should occur at least annually. | 8.19 ± 0.66 | | | | | Sports medicine teams should conduct a prepractice and pre-event review of emergency action plans (EAPs) including equipment, roles, and communication. | 8.14 ± 0.83 | | | | | Sports medicine teams should conduct a pre-event "medical time out." a | 8.33 ± 1.17 | | 6: When immobilizing the head and neck, is it better to leave the head in the position in which it is found or apply gentle axial distraction to align the head with the cervical spine? | There are no studies that address this question. | 7.65 ± 1.82 | The highest priority should be maintaining circulation, airway, and breathing while minimizing cervical spine motion with suspected CSI in such a way as to minimize further neurologic impairment. | 8.05 ± 0.80 | | | | |
Sufficient alignment should be achieved to maintain a patent airway. | 8.37 ± 0.58 | | | | | In an awake, responsive, and cooperative athlete, trained medical personnel should employ clinical judgment and discretion before working with the patient to gently actively or passively attain in-line cervical spine stabilization prior to transport. | 7.47 ± 1.09 | | | | | Active manipulation of the spine should be avoided if the athlete has impaired consciousness, unless deemed necessary by trained medical personnel to maintain circulation, airway, and breathing. | 7.10 ± 1.09 | | | | | Cervical spine realignment procedures should be abandoned and the neck
stabilized in the current position if there is increased pain, neurologic
deterioration, or resistance to movement. | 7.25 ± 1.48 | | There are no studies that address this question. | | face mask based on the type of face mask. | | |--|---|--|--| | | | maintain in-line stabilization while the second removes the face mask. | 0.77 | | There are no data to make a conclusion about the | $8.00 \pm$ | Trained medical personnel on site should employ clinical judgment and | $7.95 \pm$ | | number of people necessary to remove a helmet. | 0.73 | discretion in considering equipment design and determining the number of trained personnel necessary to safely remove the helmet/shoulder pads. | 1.00 | | There are insufficient data to determine the number of | $7.45 \pm$ | The number of trained personnel recommended to remove helmet/shoulder | $8.25 \pm$ | | personnel needed to remove shoulder pads. | 0.92 | pads depends upon the technique used, athlete size, and equipment present. | 0.77 | | | | There should be at least 2 trained personnel involved in removing the helmet: | $8.26 \pm$ | | | | one to maintain in-line stabilization while the second removes the helmet. | 0.71 | | | | • | | | | | remove shoulder pads. The torso-tilt method should not be used with suspected thoracic or lumbar injury. | 1.06 | | | | If using the flat-torso method, a minimum of 2 trained personnel are needed to | | | | | remove shoulder pads. | 1.05 | | CSI, it should stay in place during transport. | 8.21 ± 0.83 | | 1.02 | | • | | | $8.16 \pm$ | | 1 | | • | 0.81) | | | | 1 | 8.35 ± 0.65 | | 1 1 | 1.75 | | 0.65 | | for transport. | | | 7.35 ± | | Passad on the nonethlate data if a long spine board is | 8 20 ± | | 1.93
8.32 ± | | | | ii used, time on long board should be minimized. | 0.65 | | , | | Once a patient is safely positioned on an ambulance stretcher, transfer or | $7.90 \pm$ | | | | * * | 0.94 | | Device, vacuum immobilization, cervical collar, straps, head blocks, and tape. | | personnel are present to minimize unnecessary movement during the removal process. Spinal-motion restriction must be maintained. | | | 3 | There are no data to make a conclusion about the number of people necessary to remove a helmet. There are insufficient data to determine the number of personnel needed to remove shoulder pads. d If a cervical collar has been placed after a suspected CSI, it should stay in place during transport. The athlete-specific literature does not address this question. Based on the nonathlete data, in suspected CSI, spinal motion restriction equipment should be left in place for transport. Based on the nonathlete data, if a long spine board is used, time on the board should be minimized. Spinal-motion restriction equipment may include long spine board, scoop stretcher, Kendrick Extrication Device, vacuum immobilization, cervical collar, | There are no data to make a conclusion about the number of people necessary to remove a helmet. There are insufficient data to determine the number of personnel needed to remove shoulder pads. There are insufficient data to determine the number of personnel needed to remove shoulder pads. The are insufficient data to determine the number of personnel needed to remove shoulder pads. The athlete-specific literature does not address this question. Based on the nonathlete data, in suspected CSI, spinal motion restriction equipment should be left in place for transport. Based on the nonathlete data, if a long spine board is used, time on the board should be minimized. Spinal-motion restriction equipment may include long spine board, scoop stretcher, Kendrick Extrication Device, vacuum immobilization, cervical collar, | discretion in determining the number of people necessary to safely remove the face mask based on the type of face mask. Read to make a conclusion about the number of people necessary to remove a helmet. There are no data to make a conclusion about the number of people necessary to remove a helmet. There are insufficient data to determine the number of personnel needed to remove shoulder pads. There are insufficient data to determine the number of personnel needed to remove shoulder pads. There are insufficient data to determine the number of personnel needed to remove shoulder pads. There are insufficient data to determine the number of personnel needed to remove shoulder pads. The number of people necessary to safely remove the face mask. Trained medical personnel on site should employ clinical judgment and determining the number of trained medical personnel design and determining the number of maintain in-line stabilization while the second removes the face mask. Trained medical personnel on site should employ clinical judgment and discretion in considering equipment design and determining the number of maintain in-line stabilization while the second removes the face mask. Trained medical personnel on site should employ clinical judgment and determining the number of trained personnel reconstructed sign and determining the number of trained personnel reconstructed sign and determining the number of trained personnel reconstructed sign and determining the number of trained personnel reconstructed sign and determining the number of trained personnel reconstructed sign and determining the number of trained personnel reconstructed sign and determining the number of trained personnel reconstructed sign and determining the number of trained personnel reconstructed sign and determining the number of trained personnel reconstructed sign and elementshoulde pads. The number of trained personnel recommended to remove the
helmet/shoulder pads. The number of trained personnel involved in removing the flat rain | Abbreviation: CSI, cervical spine injury; ED, emergency department. a Courson R. National Athletic Trainers' Association official statement on athletic health care provider "time outs" before athletic events. http://www.nata.org/sites/default/files/TimeOut.pdf. Published August 2012.