Partial complement factor H deficiency is associated with both C3 glomerulopathy and thrombotic microangiopathy

Katherine A. Vernon¹, Marieta M. Ruseva¹; H. Terence Cook¹, Marina Botto¹, Talat H. Malik¹, Matthew C. Pickering¹

Supplemental Figures 1 to 6

Supplemental Table 1

¹ Centre for Complement and Inflammation Research, Imperial College, London

Lane 5-7 = Alb-Cre mice

Lane $8 - H_2O$

Supplemental Figure 1: **PCR on cDNA generated from RNA from livers of hepatocyte-** *Cfh*^{-/-} (lanes 2-4) and Alb-Cre mice (lanes 5-7). The PCR used primers that flanked exons 2 and 3 and resulted in a 610-bp amplicon using cDNA from wild-type mice. Primer pair: 5'CTGTCAGCAAGAATTATTTGGC-3' and 5'-ACACATCGTGGCTTTTCATTGC-3'. After Cre recombinase-mediated excision of exons 2 and 3 the amplicon is reduced to 318bp. The smaller amplicon is seen in all hepatocyte-*Cfh*^{-/-} mice (lanes 2-4).

Alb-Cre

Cfh loxP/loxP

Alb-Cre

Alb-Cre

Cfh loxP/loxP

Alb-Cre

Cfh loxP/loxP

Alb-Cre

Cfh loxP/loxP

Alb-Cre

Cfh loxP/loxP

Alb-Cre

Alb-Cre

Cfh loxP/loxP

Alb-Cre

Cfh loxP/loxP

Alb-Cre

Cfh loxP/loxP

Alb-Cre

Alb-Cre

Cfh loxP/loxP

Alb-Cre

Alb-Cre

Cfh loxP/loxP

Alb-Cre

Cfh loxP/loxP

Alb-Cre

Alb-Cre

Alb-Cre

Cfh loxP/loxP

Alb-Cre

Cfh loxP/loxP

Alb-Cre

Alb-Cre

Supplemental Figure 2: **Haematocrit (A) and blood smear (B) in Alb-Cre,** *Cfh*^{loxP/loxP}, **hepatocyte-***Cfh*^{-/-} **and** *Cfh*^{-/-} **mice.** Horizontal bars denote median values. Representative images of blood smears in Alb-Cre, *Cfh*^{loxP/loxP}, hepatocyte-*Cfh*^{-/-} and *Cfh*^{-/-} mice.

Supplemental Figure 3: **Haematuria in wild-type**, $Cfh^{loxP/loxP}$ and hepatocyte- $Cfh^{-/-}$ mice at day 1 following NTS injection. Haematuria was already maximal by dipstick analysis within 24 hours of receiving NTS in hepatocyte- $Cfh^{-/-}$ mice. Haematuria grading: 0 = negative, 1 = trace, 2 = 1+, 3 = 2+ and 4 = 3+. P values calculated using Bonferroni multiple comparison test. Horizontal bars denote median values.

Supplemental Figure 4: (A) Glomerular mouse IgG immunofluorescence studies in wild-type, $Cfh^{loxP/loxP}$ and hepatocyte- $Cfh^{-/-}$ mice at day 3 following NTS injection. (B) Glomerular sheep IgG immunofluorescence studies in wild-type, $Cfh^{loxP/loxP}$ and hepatocyte- $Cfh^{-/-}$ mice at day 3 following NTS injection. P values calculated using Bonferroni multiple comparison test. Horizontal bars denote median values. AFU – arbitrary fluorescence units.

Supplemental Figure 5: Representative immunofluorescence staining images for C3, mouse IgG and sheep IgG in wild-type, *Cfh*^{loxP/loxP} and hepatocyte-*Cfh*--/- mice at day 3 following NTS injection. Glomerular C3 deposition was significantly greater in hepatocyte-*Cfh*--/- mice compared to wild-type animals.

Supplemental Figure 6: Immune response to sheep IgG in complete Freund's adjuvant in the absence of NTN in wild-type, *Cfh*^{loxP/loxP} and hepatocyte-*Cfh*^{-/-} mice. Sheep IgG in adjuvant was administered intra-peritoneally at day 0 and serum samples collected at days 2, 4 and 9. No significant differences in the mouse IgG anti-sheep IgG titres were seen between the groups at any of the time points.

SUPPLEMENTAL TABLE 1. SUMMARY OF SPONTANEOUS PARAMETERS IN THE DIFFERENT MOUSE STRAINS

Strain	Plasma FH % wild-type ¹	Plasma C3 μg/ml²	Haematocrit % ²	Serum urea mmol/l ²	Glomerular cellularity Grade 0 - 4 ^{2, 7}
Alb-Cre	93	171.5	39	8	0.5
	(71-137, n=6) ³	(158.8-273.1, n=8) ⁵	(35-41, n=8)	(6-19.7, n=8)	(0-1, n=8)
Cfh ^{loxP/loxP}	59.9	131.1	35	7.2	0
	$(37-103, n=8)^4$	(118.4-272.8, n=9)	(33-41, n=9)	(3.1-13.7, n=9)	(0-1, n=9)
hepatocyte-Cfh ^{-/-}	19	41.5	35.5	12	1
	(14-29, n=7)	(28.6-82.2, n=25) ⁶	(32-44, n=24)	(7.4-26.5, n=25)	(0-4, n=25)
Cfh ^{-/-}	not applicable	15.8	37	12.4	1
		(7.9-26.6, n=23)	(33-42, n=23)	(6-21.7, n=23)	(0-2, n=23)

Data are median with range and sample number in parenthesis;

P values derived from Bonferroni multiple comparison tests;

¹12 week old animals;

²9 month old animals (see supplemental figure 2A);

³P=0.032 vs. *Cfh*^{loxP/loxP} and P<0.0001 vs. hepatocyte-*Cfh*^{-/-} animals (see figure 1B);

⁴P=0.0016 vs. hepatocyte-*Cfh*^{-/-} animals (see figure 1B);

⁵P<0.05 vs. *Cfh*^{loxP/loxP} animals (see figure 2A);

⁶P<0.001 vs. *Cfh*^{-/-} and P<0.0001 vs. *Cfh*^{loxP/loxP} animals (see figure 2A);

⁷see figure 2C