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PART-1. Long-term nor-NOHA treatment in chronic-onset PKD mice (Fig. S8)

Briefly, the Pkd1 gene was inactivated in mice at P30 and microcyst formation was
observed in the kidneys at approximately P180. Chronic-onset PKD mice were treated with
nor-NOHA for 4 months during P180-P300; volume-matched normal saline solution (NS)
was administered to age/weight-matched PKD mice via intraperitoneal injection as a control.
Four months of nor-NOHA treatment significantly improved the general survival rates,
postponed cyst growth, lowered the Cls, protected renal functions, and inhibited cell
proliferation. Compared to short-term (P14—P32) nor-NOHA treatment in rapid-onset PKD
mice, 4 months of treatment significantly inhibited the production of L-lactic acid and
downregulated the expression of ARG in chronic-onset polycystic kidneys. Downregulation
of ARGI and inactivation of arginase activity significantly inhibited the arginine-polyamine

metabolic pathway and promoted nitric oxide (NO) generation in polycystic kidney tissue.



PART-2. ARG1 stimulates CLEC proliferation as a free cytokine (Fig. S9)
Significantly higher levels of ARG1 were detected in DMEM from L-LA-induced

RAW?264.7 cells and urine samples from ADPKD patients compared to respective controls.
Further, ARG1 significantly increased the populations of CLECs in the S stage and promoted
the incorporation of EAU into their DNA. The expression of phosphorylated-ERK 1/2 was
significantly upregulated in ARG1-treated CLECs; therefore, the pro-proliferative function of
ARGT1 in CLECs might be achieved by activating the ERK pathway. Because nor-NOHA
failed to offset the effects of ARG1 on CLECs, ARG1 might influence CLEC proliferation

via a pathway independent of arginine-polyamine metabolism.



Supplement Figures

Fig. S1. Renal function in rapid-onset PKD mice
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Renal function deteriorated progressively with postnatal age. *p < 0.05 vs. age-matched WT

littermates. Data are presented as means + SDs, with 5-6 PKD and age-matched WT mice at

different postnatal ages.



Fig. S2. Apoptotic cells in polycystic kidneys
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TUNEL-labeled nuclei (green) were counted in polycystic kidneys at different postnatal ages,
400x. DAPI (blue) was used to illuminate the nuclei. *p < 0.05 v. age-matched polycystic
kidneys. Data are presented as means + SDs, with five PKD mice each at P22, P26, P26, P28,

and P30.



Fig. S3. Activation of arginine-polyamine metabolism in polycystic kidneys
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(A) mRNA expression profiles of genes encoding proteins involved in the arginine-

polyamine metabolic pathway: 1, P22 polycystic kidneys; 2, P22 WT kidneys; 3, P30



polycystic kidneys; 4, P30 WT kidneys. (B-D) Tissue localization of ARG1, ODC1, and
SMOX in polycystic kidney sections by IHC or fluorescence-IHC. (B) ARG1 (red) was
located in the renal interstitium, 400x. DAPI (blue) was used to illuminate the nuclei. (C)
WGA (green), ODCI1 (red), and DAPI (blue) were co-stained in polycystic kidney sections at
P22 and P30, 400%. Autofluorescence (WGA, green) was used to illuminate the tubular
structures. Most ODC1-stained cells were located in the renal interstitium. (D) WGA (green),
SMOX (red), and DAPI (blue) were co-stained in polycystic kidney sections at P22 and P30,
400x. (E, F) mRNA and protein expression in polycystic kidneys compared to WT kidneys at
P22 and P30, respectively. (G) L-arginine, L-ornithine, putrescine, and spermidine levels in
polycystic kidneys compared to WT kidneys at P22 and P30, respectively; the mean value of
each metabolite is labeled. *p < 0.05 vs. P22 polycystic kidneys; #p < 0.05 vs. P22 WT
kidneys; ¥Yp < 0.05 vs. P30 polycystic kidneys. Data are presented as means + SDs, with five

or six PKD and WT mice at P22 and P30, respectively.



Fig. S4. Summary of 204 differentially expressed genes (DEGs)
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In all, 204 DEGs are summarized. Their expressions were compared among P22 polycystic,
P22 WT, P30 polycystic, and P30 WT kidneys. Data are presented as means + SDs, with

three PKD and WT mice at P22 and P30, respectively. Argl is shown with a red arrow.
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Fig. S5. Proliferating ARG1 (+) macrophages in polycystic kidneys

P22

P24

P26

P28

P30

Ki67(+) ARG1(+)
u

P22 P24 P26 P28 P30

11



Co-staining with ARGI (red), Ki-67 (green), and DAPI (blue) in polycystic kidneys at
postnatal ages P22—P30, 400x. *p < 0.05 vs. P22 polycystic kidneys; #p < 0.05 vs. P24
polycystic kidneys; ¥p < 0.05 vs. P26 polycystic kidneys; ®p < 0.05 vs. P28 polycystic

kidneys. Data are presented as means + SDs, with five or six mice at different postnatal ages.
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Fig. S6. Transition of macrophage populations in polycystic kidneys
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F4/80 (green), NOS2 (blue), and ARG1 (red) were co-localized in polycystic kidneys at P22,
P24, P26, P28, and P30, 400x. Data are presented as means + SDs, with 5-6 PKD mice at

different postnatal ages.
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Fig. S7. Nor-HOHA treatment in rapid-onset PKD mice
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(A, B) ARG (+) macrophage counts in polycystic kidneys were compared among PKD mice
treated with different doses of nor-NOHA, 200x. (C) Nor-NOHA remarkably inhibited
polyamine synthesis in polycystic kidneys. *p < 0.05 vs. 10 mg/kg nor-NOHA-treated PKD

mice; #p < 0.05 vs. 20 mg/kg nor-NOHA-treated PKD mice; ¥Yp < 0.05 vs. NS-treated PKD
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mice. Data are presented as means + SDs, with 4—6 mice receiving different doses of nor-

NOHA.
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Fig. S8. Nor-NOHA treatment in chronic-onset PKD mice
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(A) Generation of chronic-onset PKD mice and providing 4-month nor-NOHA intervention
in the model. Sixteen PKD mice at P180 were randomized into two groups: one group

received nor-NOHA 20 mg/kg, qd., i.p. and the other group received normal saline (NS) 1.5
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ul/g, qd., i.p. All mice were sacrificed at P300. (B—F) Comparison of the general survival
rates (B), gross kidney appearance (C), cystic indices (D, E), and renal functions (F) among
nor-NOHA-treated PKD mice, NS-treated PKD mice, and NS-treated WT mice. *p < 0.05 vs.
nor-NOHA-treated PKD mice; #p < 0.05 vs. NS-treated PKD mice. (G) The renal
proliferation rates were compared among three groups using Ki-67 IHC staining, 400x. *p <
0.05 vs. nor-NOHA-treated PKD mice; #p < 0.05 vs. NS-treated PKD mice. (H-J) The
expression of ARG1 (H, I) and L-lactic acid (J) in kidney tissues was detected in nor-NOHA -
treated PKD mice, NS-treated PKD mice, nor-NOHA -treated WT mice, and NS-treated WT
mice. *p <0.05 vs. NS-treated WT mice; #p < 0.05 vs. nor-NOHA-treated WT mice; ¥p <
0.05 vs. NS-treated PKD mice. (K, L) Arginine-polyamine metabolites (K) and nitric oxide
(L) in kidney tissues were assayed and compared among nor-NOHA-treated PKD mice, NS-
treated PKD mice, and NS-treated WT mice. Arg, arginine; Orn, ornithine; Put, putrescine; 4-
Amino, 4-aminobutyraldehyde; NO, nitric oxide. *p < 0.05 vs. NS-treated WT mice; #p <
0.05 vs. NS-treated PKD mice. Data are presented as means + SDs, with 4-8 PKD mice or

age-matched WT mice.
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Fig. S9. Pro-proliferative function of ARG1 as a free cytokine
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(A) The levels of ARG1 were assayed in DMEM from L-LA-treated RAW264.7 cells,
IL4/1L-13-treated RAW264.7 cells, and control cells. *p < 0.05 vs. control; #p < 0.05 vs.
IL4/1L13-treated RAW264.7 cells. (B) ARG1 secretion in urine specimens was compared
between ADPKD patients and healthy volunteers. (C) Cell cycle analyses of ARG1-treated
and ARG1 + nor-NOHA-treated CLECs was performed using a flow cytometer. (D) 5-
Ethynyl-2’-deoxyuridine (EdU, red) nuclei staining was used to compare the proliferation
rates of CLECs, 200x. All nuclei were stained with DAPI (blue). (E) The expression of
phosphorylated-ERK 1/2 was compared among ARG1-treated CLECs, ARG1 + nor-NOHA-
treated CLECs, and control. *p < 0.05 vs. ARG1-treated CLECs; #p < 0.05 vs. control. Data

are presented as means + SDs, with four cell specimens from different treatments.
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