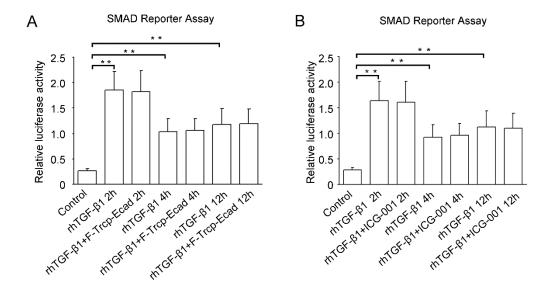
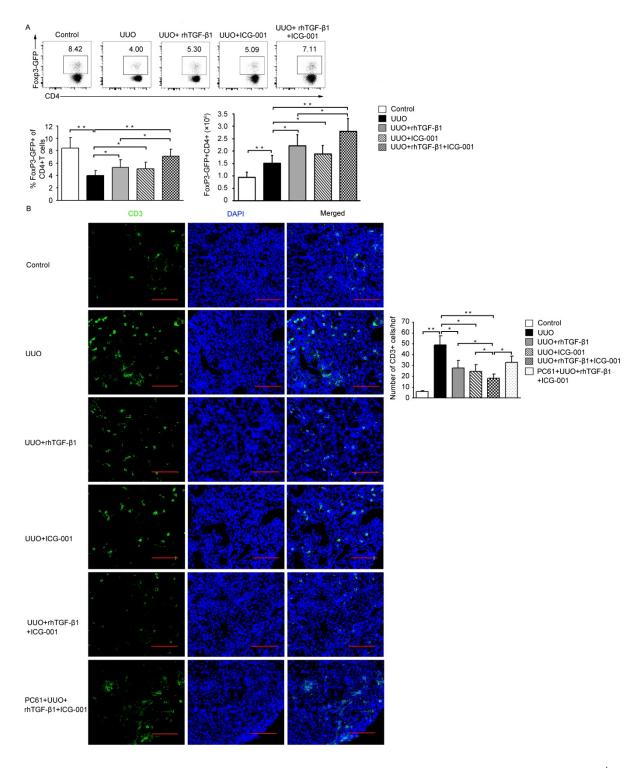
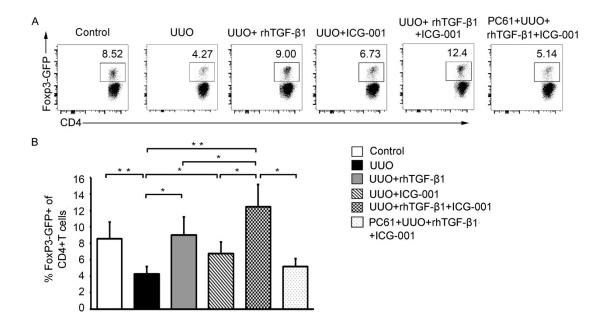

Supplemental data


Redirecting TGF-β signaling via β-catenin/Foxo prevents kidney fibrosis

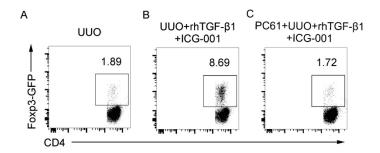
Xi Qiao,^{1,2} Padmashree Rao,¹ Yun Zhang,^{1,3} Lixin Liu,^{1,3} Min Pang,^{1,4} Hailong Wang^{1,5}, Min Hu,¹ Xinrui Tian, ^{1,6} Jianlin Zhang, ^{1,5} Ye Zhao,¹ Xin Maggie Wang,⁷ Chengshi Wang,¹ Hong Yu,⁸ Fei Guo,¹ Qi Cao,¹ Yiping Wang,¹ Yuan Min Wang,⁹ Geoff Yu Zhang,⁹ Vincent W Lee,¹ Stephen I Alexander,⁹ Guoping Zheng¹, David CH Harris¹


Supplemental Figures

Supplemental Figure 1. Representative histogram analyses of Foxp3 in iTregs arising from EL4 cells treated with rhTGF-β1 with and without Foxo inhibitor (Foxoi) AS1842856 (25 nM). MFI: mean fluorescence intensity.



Supplemental Figure 2. SMAD reporter activity in rhTGF- β 1-treated EL4 cells is not changed by β -catenin. (A) The SMAD reporter (relative luciferase activity) assay in control EL4 cells, and EL4 cells treated with rhTGF- β 1 or rhTGF- β 1 with F-TrCP-Ecad-transfection. (B) The SMAD reporter assay in EL4 cells in control EL4 cells, and EL4 cells treated with rhTGF- β 0 or rhTGF- β 1 and ICG-001. Bars represent mean \pm SEM of triplicate determinations. Statistical significance was determined by one way ANOVA, followed by Tukey's post-hoc test. ** P<0.01.



Supplemental Figure 43. Shift of β-catenin from TCF to Foxo reduces kidney CD3⁺ T cell infiltration in UUO mice by TGF-β-induced Tregs. (A) Representative flow cytometry plots (gating on CD3⁺ CD4⁺ cells) and bar graph showing the percentage and the absolute number of Tregs in the spleen at day 3 after UUO (one of five experiments is shown). A pool of splenocytes from 1 spleen was analyzed in each group. (B) Representative immunofluorescence staining and quantitation of CD3+ T cell infiltration in kidneys. Original magnification, \times 40 (n=6/group). Statistical significance was determined by one way

ANOVA, followed by Tukey's post-hoc test. All data are expressed as the mean \pm SEM. * P < 0.05, **P< 0.01. Scale bars: 100 µm.

Supplemental Figure 54. Shift of β-catenin from TCF to Foxo increases Tregs in spleen of UUO mice. Representative flow cytometry plots (gating on CD3⁺ CD4⁺ cells) (A) and bar graphs (B) showing the percentage of Tregs in spleen at day 7 after UUO (one of five experiments is shown). A pool of splenocytes from 1 spleen was analyzed in each group. Statistical significance was determined by one way ANOVA, followed by Tukey's post-hoc test. All data are expressed as the mean \pm SEM. * P < 0.05, **P < 0.01.

Supplemental Figure 35. Representative flow cytometry plots (gating on CD3⁺ CD4⁺ cells) of CD4⁺Foxp3-GFP⁺ Tregs in the spleen of untreated **(A)**, control isotype IgG-injected **(B)** and PC61 injected **(C)** UUO mice treated with or without rhTGF-β1 and ICG-001.