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SUPPLEMENTARY METHODS

Glomerular feature extraction

Feature extraction is a very important componenin@fge classification, and the two main pathwaysféature
generation are human-defined (hand-crafted) or coatipnally defined (via feature learning). Deeprléng is a
highly successful feature learning protocol whieests features that maximize classification aaurélowever,
such features are poorly interpretable by humams tlzeir acceptability for clinical use is typigallictated by their
intelligibility.* This is true because without intelligibility it iot knowable whether a model is making a decision
because it has learned the proper problem repeagambr if it is simply exploiting artifacts of ¢hdata. To combine
the strengths of both paradigms, we designed a-biaited set of features which target the pathallgirogression
of glomerular structure in DN, and allowed a neuralwork to learn a non-linear representation eséhfeatures
which determines the final diagnosis. A full list éxact feature names, precisely defined, in aaclditvith their
weighted importance to our neural network decisivos the Tervaert patient-level holdout analysisivailable in
supplementary Table 1 at the end of this document.

All glomerular feature extraction was done in MATBAMathWorks, Natick, MA). Textural features were
guantified once each for the classes of nuclei, RA®d lumina. The pixels contained in each difie@@mponent
segmentation were transformed from RGB to graysdhlen converted to a respective gray-level co-oetuee
matrix. Entropy, energy, correlation, and homoggneere extracted from the respective matfces

Morphological features were calculated per indigidabject (such as each nucleus) within each coemton
These features included the mean, median, and robdebject area, and average convexity for iderdifie
compartmental objects. Summary statistics werepeted along the glomerulus dimension (e.g., if @rgdrulus
contained 20 nuclei, the area of each nucleus veasuned, and the mean, median, and mode of thectegpset of
20 nuclei was computed).

Compartmental containment features defined the amofione component object contained within the
boundaries of another. For example, one measuremight be the measured amount of nuclear areaicetavithin
a detected glomerular lobule (a PAS+ object). Sjpadly, it is a ratio, where one part is the conwaea of the
containing component object, and the other pafttésarea of the contained component. This featare aalculated
for every object in the PAS+ component and lumamahponent. However, it is not logical for nucleicmntain any
other structures, so, a different form of containmgas measured. Specifically, we measured the atafpixels
just outside the nuclear boundary which were di@ssas either luminal or PAS+, and took this antcamd divided
it by the total nuclear perimeter.

Inter-compartmental distance features were congbrifeaveraged distances between compartments and
other identical glomerular compartments, or glortsriandmarks. Glomerular landmarks included théreged
glomerular centroid and the estimated glomerulamiary points. The following distances were cal@dégor each
object of each glomerulus: 1) the pairwise distaipeveen that object’s centroid and identicallyelald object’s
centroids, 2) the pairwise distance of object agds from glomerular boundary, and 3) the pairwistance between
object centroids and the glomerular centroid. Ftbese lists of distances, averages, minimums, andmums were
taken to create features.

Intra-compartmental distance features were quadtifin distance transforms of component segmengation
They were another measurement on the morphologadi component. In particular, they were origindkgigned
to target glomerular thickening in PAS+, but alse a general morphological feature for other stmgg. For each
component, in addition to the whole glomerulustiedas one component, the distance transform wasured. The
PAS+ distance transform was performed on B#S+ precursor mask, because it more accurately reflected
mesangium than the final mask, and we wanted tigieseature which was targeting mesangial exjparess directly
as we could. Luminal distance transform was peréatran the final luminal component mask, as wastiedear
distance transform. The glomerular distance transfwas measured on the whole glomerular region, \aasl
inverted, so that there was minimum value at thédfei and maximum value at the glomerular edge. iais done
so that the classification algorithm had a seeatires that described potential spatial locatiforination associated
with each glomerular region. Histogram values vwemeputed on each distance transform to creatertheféatures,
and the specific ranges of the histogram binningedded on the component of interest. For the PASaponent,
the bins went from to 80 by steps o, with a wide final right bin edge @boa We denote this a4:2:80,2000. For

the luminal component, the bins were specifiedLas 60,2000] For the nuclear componerit,;:1: 20,2000] For the

glomerular component, we first inverted the transfeo that each pixel of the distance transform dessribing the
distance to the glomerular centroid. Then, on toisiponent, the bins were specified[2s25:600,20000. These

values were specifically selected to reflect tHerange of values present in the distance trams$pand they would
only be valid for other experiments if the imagsadletion was identical,q.25um per pixel). For the PAS+ distance



transform only, we hand crafted some additionatuiess, by thresholding the distance transform ntagpacific
values (10 and 20), creating binary objects of ¢heslue ranges, and measuring morphological statieh them
(such as sum total, max, mean, and median of ban&gs).

Watershed splitting

The DeeplLab V2 network is a semantic segmentattwark, which means classification is done at tixeldevel.
When pixels of two distinct objects with identicdhss are located next to each other in an imagsh (as nuclei, or
glomeruli), the network may fail to identify theroplete boundary between them, or worse, there riaally be no
boundary between them. Therefore, we needed tb cpbtered nuclei which were output by the Deephédb
network. To do this, we used a distance transfoasei> marker controlled watershéd. Watershed has always
been a go-to method for nuclear splitting, andHaabsignificant success in histopathology as fellour application
of marker-controlled watershed, markers were eséthasing an extended maximum transform. For thissform,
the H-transform value was specified as 5% of theimam value contained in a Gaussian-smootbel, 5x 5)

distance transform performed on the entire glonagrithage. Gaussian smoothing was performed to $miet
distance transform values which resulted in impdodetection of unique peak regions. Next, regiangaining only

one detected peak (single nuclei) were removed fitaenanalysis, to reduce the amount of over-segatiens
performed by the watershed algorithm. A distanamsform of the remaining nuclei was taken. Theetkel by
influence zonéswas calculated as the watershed ridgelines ofdibtance transform, and was imposed as a minima
on the distance transform, along with the estimateaks from before. The resultant watershed-spiiden were
recombined with the single nuclei, and morpholodyoapened with a disk of 1 pixel for smoothingftem the final
detection image. Small regions less than 10 piredsea were also removed.

STZ mouse model generation and analysis

We chose to use a standard streptozocin (STZetleabuse modeto develop murine renal tissue which reflected
DN. C57BL/6J background mice (7 weeks old) weredted with STZ (50 mg/kg) for five consecutive dalkey
develop a mild form of diabetes mellitus type Idafter 25 weeks, mild-moderate DN. This straimmfuse was
selected because they have kidneys which areassist the cytotoxic effects of STZ, allowing folore accurate
depiction of DN related damag&sFurther, this strain of mice does not typicalljogmess to severe disease
phenotypes, a property we desired because we wanteddel which resembled the mild changes in dautypan
disease stages where data is most scarce. Miceavseerificed 15, 20, or 25 weeks after STZ trestinfn =5 at
each time point). Mice treated with STZ vehicle evesed as controh & 3, 3, and 4, for mice sacrificed 15, 20, and
25 weeks after the STZ vehicle injection, respetyiv After the experiment was performed, the afsmeere divided
into three groups based on their fasting blood @gedevels, namely, control, mild DM, and modeifak¢. Control
mice were those who did not receive STZ treatmiiid DM mice were mice that showed elevated fastihgod
glucose >200 mg/dL which was not persistent whestkd weekly 10 weeks post injection. Moderate DiMem
were mice that showed elevated fasting blood gleice200 mg/dL persistently when checked weekly isigrt0
weeks post injection. Tissue sections were cut ph2thickness, stained with periodic acid-SchifA@} using
hematoxylin counterstain, and brightfield imaged &5 pm/pixel resolution using a whole slide seanperid®,
Leica). All data was sourced and prepared withanl#boratory of co-author Dr. Yacoub.

In regards to computation, a similar protocol wesdias in the human analysis. Murine glomeruli wetected
using our HAIL pipeline, and small errors in detectwere corrected before feature extraction. Despir human
nuclear detection network having never been tragpetifically on murine nuclei, the network waseatd detect
murine nuclei with surprisingly low error (supplentary Fig. 1). To detect PAS+ regions for mudf#&+ precursor
masks, we used adaptive thresholding of the PA&#h sieconvolution output. This was necessary becausine
glomeruli are not as large as human ones, and theie was significantly less stained material,cviieduced the
effectiveness of the HSV transform method we usedhfiman analysis. A reduced set of histogram wins used to
measure distance transform features (becausestamdés are smaller). The bin edges for the PASdipkl, nuclear,
and glomerular compartments werg:1:40,200], [1:1:40,200], [1:1:20,200]2F10:300,2000]respectively. All

remaining analysis was identical to the human it

SUPPLEMENTARY RESULTS

Classification of murine STZ structure

To test the power of our computational method beyairictly defined image classes, we applied ouhowto murine
glomeruli from a mouse model of STZ-induced diabetellitus. In total, we classified=25mouse kidneys by their
DM severity, according to the classes control, raldd moderate as defined in supplementary mettiodgneral,
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our method required little modification to be apglito murine

glomeruli. For PAS+ detection, we used color deotution instead

of the HSV method used for human analysis. This dies to less

PAS+ stain in murine structures, resulting in lssguration and

darkness of stain. Interestingly, our nuclear segat®n network was
capable of accurately identifying mouse nuclei withhaving been

trained on any murine nuclei. This was likely pbksfor two reasons,
the first of which is that the smallest human niucleerlapped in size
with mouse nuclei. Secondly, nuclei in mouse tissaetions had

significantly reduced variability in presentatidrhis was because it is
possible to maximally control mouse tissue imageppration, by

discarding red blood cells via perfusion beforeraoting mouse

kidneys, controlling section thickness to be 2 ang using the same
core lab for tissue staining. Glomerular compormaaps for several

murine glomeruli are shown in supplementary Fig. 1.

As in our main manuscript, we tested classificatid mouse
tissues using a baseline classifier selecting aglasdomly based on
the label distributions and our RNN using mouseléwldout as well
as section-level holdout. Each of the 25 mice hadtal of three
sections cut, yielding a total of 75 WSI. The oglgssifier which
achieved a significant level of agreement was tRN&lRlassifier with
split section holdout (supplementary Table 2). Hesvethis task was
much harder, as the classifiers were attemptirngedict the level of
diabetes rather than the amount of renal structianaage. The hardest
class to identify was the moderate DM class, astmaobserved in
supplementary Table 3.

Supplementary  Figure 1.  Glomerular
component maps for murine glomeruli. A, B)
Control murine glomeruli. C, D) Diabetic murine
glomeruli. Scale bars indicate 100 pm.

Supplementary Table 2. Linear weighted Cohen’s kapp and confidence limits for mouse
experiments.

Comparison Case number Observed kappa Lower 0.95nit  Upper 0.95 limit
Mouse-level holdout 25 0.13 0.04 0.21
Section-level holdout 75 0.62 0.58 0.66
Baseline classifier 25 <0 n/a n/a

Supplementary Table 3. Conditional probabilities f@ class assignment in mouse experiments given
the ground truth class assignment

Comparison Case distribution  Control Mild Moderate

Mouse level holdout 10/8/7 0.41,[0.31,0.51] 043, 0.66] 0.09,[0.03, 0.18]
Section level holdout 30/24/21 0.82, [0.78, 0.86].83[0.78, 0.87] 0.42, [0.36, 0.49]
Baseline 10/8/7 0.38,[0.28,0.48] 0.31,[0.213D.40.34,[0.23, 0.47]

Glomerular component analysis and motivations

Several glomerular compartments can be difficultistinguish from each other given that the onlstdibgical
markers are PAS and hematoxylin. What is even rdifieult is finitely selecting compartment bounéss which
can be identified in all disease phenotypes. Omd sxample might be the decoupling of glomerulaselbaent
membrane from mesangium, a task which can eveiiffimiti in some samples via manual discriminatibtowever,
we wondered whether this sort of precision was lalsly necessary for computational estimation skdse class.



Therefore, we explored simplification of the glomler structure into three components. The idemiiftn of the
three components can be distilled into three cosga@ steps: 1) predict nuclear locations with teephab V2
network, 2) identify sparse locations of PAS+ objeand luminal objects using image thresholding, 2nuse naive
Bayesian classification to refine the thresholdiesgult in step 2. We chose to use a neural nettoidentify nuclei
while using an unsupervised approach to identifyrdmaining glomerular components because of fifereince in
difficulty in detection and annotation of differeglomerular compartments. At first, we wanted te as unsupervised
technique for all compartments, however, it soocabee clear that human nuclear diversity in diseasese is far
too variable for typical techniques such as cokecahvolutiod® to achieve high accuracy. Conveniently, however,
glomerular nuclear annotations, though tedioustpuiie, can easily be distinguished by untrainezlieymost cases,
and typically do not require domain experts fornidfecation. On the other hand, other structuraghsas the
mesangium and membranous layers, can be veryuific distinguish from each other by eye becahsestain does
not provide high contrast between these bounddfiedher, these structures have more ambiguoug N in
images than nuclei, requiring an expert eye. Tldkes annotation of these compartments on PAS-sthistlogical
images very difficult, but identifying them as oocentiguous component is much easier. For a simdason, we
grouped capillary lumina into the same class aBth@man space because they are both similar irr potdile, but
the separation of them based on morphological ptigsebecomes increasingly difficult depending ba tisease
state and section cut direction. In less severaqtypes (Fig. 3A, 3C, 3D) it can be very obviousahtregions are
capillary lumina and which are Bowman regions, hesve it is much more ambiguous in more severe disea
phenotypes (Fig. 3B, 3D, 3F). This decision isHartobfuscated by tangentially cut white regionsciitan be out-
of-plane Bowman space folds, capillary lumen, opgngaps embedded in fibrotic structures.

Feature relevance

Supplementary Fig. 2 demonstrates a graphical efethe raw values provided in supplementary Tab(éeature

ranking according to Tervaert classification). \&dgreater than zero indicate that the respeatife index (seen
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Supplementary Figure 2. Deviation of network preditions as a function of dropped featuresTicks along the x- features which
axis represent the feature indices of each resedtopped feature according to supplementary Thfleks along
the y-axis represent the raw amount the networdligiien was deviated towards or away from the airdiagnoses, nave large
as compared to having no features dropped (seé,BEqgain manuscript). A notable feature is thateheme several negative
features which strongly influence the network’sigien in a positive way (help the network get therect diagnosis), magnitudes). It is
but none that influence the network’s decision inegative direction with the same magnitude (deti@en the .
networks ability to get the correct diagnosis). also illustrated that

the network was

significantly more
dependent on color features (features indices ZP%-than any other feature class.



Complexity analysis
Supplementary Fig. 3Ahows a plot of the time

and memory for the full algorithm on the large: ""\
human WSI, containing ~3.5 billion pixels an : <
containing a total of 63 glomeruli. Fig. 3B show . ' ,'
time versus memory for a mouse kidney sectic = i
containing ~438M pixels and 83 glomeruli. Fic = ﬂﬁtsm Li
3C shows time versus memory for the smalle & i {
human biopsy, containing ~470M pixels and 2 = I § f
glomeruli. Red crosshairs indicate maximui § | | T
memory usage. Plots were generated using = | R —_
memory profiler python module. 0 ’ £r
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Supplementary Figure 3. Memory as a function of rurtime

for application of our algorithm in select casesA) Largest
human biopsy. B) Mouse whole-kidney section. C) st
human biopsy.



Supplementary Table 1. Feature list and associatatetwork impact scores. The standardized column
indicates values adjusted to have zero mean and tistandard deviation, the normalized column indicags
values adjusted to be within the range 0 and 1. Abbviations: M — morphological, C — containment, T —
texture, Inter-C — inter-compartmental distance, Irtra-C — intra-compartmental distance.

Index Type Name Raw Standardized Normalized
1 i M i Mean PAS+ object solidity i 0.00033 i -0.055 | 0.16
2 i c i Mean lumina region contained in PAS+ obje?tO 00049 i .0.014 i 0.17

' . boundaries ' '

| | | |
3 ' |'Mean nuclear region contained in PAS+ objdcb 00034 | -0.054 ' 016

I | boundaries I I
4 i M i Sum total PAS+ objects' areas i 0.00006§ -0.12 i 16 0.
5 i M i Mean of PAS+ objects' areas i 0.00064i 0.025 i 0.17
6 i M i Median of PAS+ objects' areas i 0.00025' -0.077 i 16 0.
7 i T i PAS+ textural contrast i -0.0013 i -0.48 i 0.13
8 i T i PAS+ textural correlation i 0.0091 i 2.2 i 0.37
9 i T i PAS+ textural energy i -0.0028 i -0.86 i 0.09
10 i T i PAS+ textural homogeneity i 0.0037 i 0.81 i 0.24
11 ' M ' Mean luminal object solidity : 0.00033 :  -0.055 C1@.
12 i C i lI;/Iean PAS+ region contained in luminal objecto 0039 i 19 i 0.062

! ! boundaries ! !
13 ! C ! Me_an nuclear region contained in luminal ! 0.0011 ! 0.15 ! 0.18

| | object boundaries | | |
14 i M i Sum total luminal objects' areas i 0.00013i -0.11 i 0.16
15 i M i Mean of luminal objects' areas i -0.0031 i -0.95 i .08R
16 i M i Median of luminal objects' areas i 0.0013 i 0.21 i 190
17 o T i Luminal textural contrast v -0.0014 «+ -0.49 ' 0.12
18 ! T ! Luminal textural correlation ! -0.0016 ! -0.55 ! D.1
19 ! T ! Luminal textural energy ! 0.001 ! 0.13 ! 0.18
20 ! T ! Luminal textural homogeneity ! -0.0065 ! -1.8 ! 0

| | | |
21 1 C , Mean ratio of PAS+ pixels lying just outS|de _0 0036 ' -11 ' 007

I | nuclear perimeter to length of perimeter I I
22 We | Mean ratio of luminal pixels lying just out5|deI 000013 | -017 | 015

' 1 nuclear perimeter to length of perimeter ' '
23 ! M ! Mean nuclear perimeter ! -0. 00047! -0.26 ! 0.14
24 M ! Sum total nuclear area ! 0000558 028 ! 014
25 ! M ! Mean nuclear areas ! 0.0042 ! 0.95 ! 0.26
26 I'm | Mode nuclear areas I _0.00049! 027 ! o014
27 ! T ! Nuclear textural contrast ! 0.0012 ! 0.16 ! 0.18
28 ! T ! Nuclear textural correlation ! -0.0053 ! -1.5 ! @os
29 T | Nuclear textural energy I .0.0018 | -0.62 I 011
30 IT | Nuclear textural homogeneity I -0.000041 -0.15 | .160
31 ! Inter-C ! Mean distance of luminal object centroids frdm0 004 ! 12 ! 0.06

| | ﬁ]/llomerl:clar Cent(;pld il o | | |
32 | Inter-C | ean of mean distances of luminal object I 0.00017 | -0.19 | 0.5

. , centroids from glomerular boundary . .
33 ! Inter-C ! Mean of maximum distances of luminal Obje¢to 00032 ! -0.058 ! 0.16

I I I I

centroids from glomerular boundary



34

35

36

37

38

39

40

41

42

43

44

45

46

a7

48

49

50

51

52
53
54
55

56

57

58

59

60

61

62

Inter-C

Inter-C

Inter-C

Inter-C

Inter-C

Inter-C

Inter-C

Inter-C

Inter-C

Inter-C

Inter-C
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Inter-C

Inter-C

Inter-C

Inter-C

Inter-C
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M
M
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M/Intra-C

M/Intra-C

M/Intra-C

M/Intra-C

M/Intra-C

M/Intra-C

M/Intra-C

centroids from glomerular boundary
centroids from themselves
centroids from themselves
centroids from themselves

glomerular centroid
Mean of mean distances of PAS+ object
centroids from glomerular boundary

centroids from glomerular boundary

centroids from glomerular boundary
Mean of mean distances of PAS+ object
centroids from themselves

I centroids from themselves
centroids from themselves
glomerular centroid

centroids from glomerular boundary
centroids from glomerular boundary
centroids from glomerular boundary
centroids from themselves
centroids from themselves

centroids from themselves
Total glomerular area

Total PAS+ object number
Total luminal object number

Total nucleus number

Sum of PAS+ distance transform values
0<d<=10

Sum of PAS+ distance transform values
10<d<=20

Sum of PAS+ distance transform values
20<d<=1000

Maximum PAS+ distance transform value
10<d<=20

Number of connected objects with PAS+
1 distance transform value 0<d<=10

| Number of connected objects with PAS+
| distance transform value 10<d<=20

i Mean of PAS+ distance transform values
1 0<d<=10

Mean of mean distances of luminal object

Mean of mean distances of nuclear object

Mean of mean distances of nuclear object

i Mean of minimum distances of luminal objeqt -0.00066

Mean of maximum distances of luminal objeq.t
Mean of minimum distances of luminal objec&

Mean distance of PAS+ object centroids from

Mean of maximum distances of PAS+ object|

Mean of minimum distances of PAS+ ObJECt!

Mean of maximum distances of PAS+ objecti

Mean of minimum distances of PAS+ object| 0.00092

Mean distance of nuclear object centroids frdrB 0014

Mean of maximum distances of nuclear objegl:t

Mean of minimum distances of nuclear objeqt

Mean of maximum distances of nuclear Obje},to 00087

Mean of minimum distances of nuclear objedt

1 0.0031

' 0.0048

0.0008

0.00084

-0.0013

-0.00091

-0.0033

0.00016

-0.0016

-0.0052

, -0.004

-0.0032

-0.0015

O 0019

-0.0009

-0.00048
-0.0029
0.0012
-0.00033

0.00059

0.0015

0.0015

0.000062

0.0041

0.0015

-0.31

0.66

0.077

-0.48

-0.38

1.1

-0.99

-0.099

-0.55

-1.5

0.098

0.23

-0.97

-0.54

0.36

0.086

-0.38

-0.27
-0.9
0.16
-0.23

0.013

0.26

0.26

-0.13

0.92

0.24

0.066

0.14

0.23

0.18

0.13

0.13

0.27

0.078

0.16

0.12

0.032

0.18

0.19

0.061

0.08

0.12

0.2

0.18

0.13

0.14
0.086
0.18
0.15

0.17

0.19

0.19

0.16

0.25

0.19

0.18
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| Mean of PAS+ distance transform values

-0.00099

|
10<d<=20 i
Median of PAS+ distance transform values ,
0<d<=10 ! 0.0042
Median of PAS+ distance transform values |
10<d<=20 i -0.00014
Mean area of objects with PAS+ distance 0.0038
transform value 0<d<=10 P
Median area of objects with PAS+ distance |
transform value 0<d<=10 , 0-00054
Maximum area of objects with PAS+ distanc!a 0.0017
transform value 0<d<=10 ! '
Mean area of objects with PAS+ distance | 0.0027
transform value 10<d<=20 i '
Median area of objects with PAS+ distance , 0.0008
transform value 10<d<=20 I
Count of pixels with PAS+ distance transfornp 0.0041
value 1<d<=3 '
Count of pixels with PAS+ distance transfornh -0.0031
I value 3<d<=5
Count of pixels with PAS+ distance transfornp
value 5<d<=7 -0.00016
Count of pixels with PAS+ distance transforn.ll 0.0012
value 7<d<=9
Count of pixels with PAS+ distance transfornp
value 9<d<=11 -0.00052
Count of pixels with PAS+ distance transforn.'1 -0.00051
value 11<d<=13
Count of pixels with PAS+ distance transfornp
value 13<d<=15 0.00025
Count of pixels with PAS+ distance transfornh -0.0014
value 15<d<=17
Count of pixels with PAS+ distance transfornp
value 17<d<=19 0.00029
Count of pixels with PAS+ distance transforrfw 0.0033
value 19<d<=21
Count of pixels with PAS+ distance transfornp 0.0025
value 21<d<=23
Count of pixels with PAS+ distance transforn.l] 0.0035
value 23<d<=25
Count of pixels with PAS+ distance transfornp 0.0022
value 25<d<=27
Count of pixels with PAS+ distance transforn,ll -0.00044
value 27<d<=29
Count of pixels with PAS+ distance transform 0.0028
value 29<d<=31
Count of pixels with PAS+ distance transforn,ll 0.0025
value 31<d<=33
Count of pixels with PAS+ distance transfornp
value 33<d<=35 0.000045
Count of pixels with PAS+ distance transfornh 0.0014
value 35<d<=37
Count of pixels with PAS+ distance transfornp 0.0022
value 37<d<=39
Count of pixels with PAS+ distance transfornh 0.0004

value 39<d<=41
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0.95

-0.18

0.85

0.00033

0.3

0.55

0.067

0.94

-0.95
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-0.51
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-0.26

0.59
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-0.13
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0.13

0.26

0.15

0.25

0.17

0.2

0.22

0.18

0.26

0.082

0.15

0.18

0.14

0.14

0.16

0.12

0.16

0.23

0.22

0.24

0.21

0.15

0.22

0.22

0.16

0.19

0.21

0.17



91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

Intra-C

Intra-C

Intra-C

Intra-C

Intra-C

Intra-C

Intra-C

Intra-C

Intra-C

Intra-C

Intra-C

Intra-C

Intra-C

Intra-C

Intra-C

Intra-C

Intra-C

Intra-C

Intra-C

Intra-C

Intra-C

Intra-C

Intra-C

Intra-C

Intra-C

Intra-C

Intra-C

Intra-C

| Count of pixels with PAS+ distance transform
value 41<d<=43

Count of pixels with PAS+ distance transforn.'1
value 43<d<=45

Count of pixels with PAS+ distance transfornp
value 45<d<=47

Count of pixels with PAS+ distance transforn.'1
value 47<d<=49

Count of pixels with PAS+ distance transform
value 49<d<=51

Count of pixels with PAS+ distance transforn.'1
value 51<d<=53

Count of pixels with PAS+ distance transform
value 53<d<=55

Count of pixels with PAS+ distance transforn.'1
value 55<d<=57

Count of pixels with PAS+ distance transfornp
value 57<d<=59

Count of pixels with PAS+ distance transfornh
I value 59<d<=61

Count of pixels with PAS+ distance transfornp
value 61<d<=63

Count of pixels with PAS+ distance transforn.ll
value 63<d<=65

Count of pixels with PAS+ distance transfornp
value 65<d<=67

Count of pixels with PAS+ distance transforn.'1
value 67<d<=69

Count of pixels with PAS+ distance transfornp
value 69<d<=71

Count of pixels with PAS+ distance transfornh
value 71<d<=73

Count of pixels with PAS+ distance transfornp
value 73<d<=75

Count of pixels with PAS+ distance transforrfw
value 75<d<=77

Count of pixels with PAS+ distance transfornp
value 77<d<=79

Count of pixels with PAS+ distance transforn.l] 0.0004
value 79<d<=2000

Count of pixels with luminal distance transfor

value 1<d<=2 I”b 0026
Count of pixels with luminal distance transf0|J
value 2<d<=3

Count of pixels with luminal distance transfoqm
value 3<d<=4

Count of pixels with luminal distance transf0|J _0 0015
value 4<d<=5

Count of pixels with luminal distance transfor,m
value 5<d<=6

Count of pixels with luminal distance transfmJ
value 6<d<=7

Count of pixels with luminal distance transfor,m
value 7<d<=8

Count of pixels with luminal distance transfm]
value 8<d<=9

0.0009

0.0024

-0.0005

-0.00015

0.00064

0.00041

0.00088

0.0001

0.001

0.00072

0.00032

0.00082

0.00056

0.0002

0.00025

0.00017

0.00056

0.00046

-0.00022

-0 0046

0.0016

0.0025

0.0035

Mo.0011

10

-0 000064

0.092

0.48

-0.27

-0.18

0.025

-0.034

0.087

-0.11

0.13

0.047

-0.058

0.072

0.0054

-0.09

-0.077

-0.098

0.0044

-0.022

-0.037

0.53

-1.3

-0.56

-0.53

-0.78

-0.16

-1.1

-0.42

0.18

0.21

0.14

0.15

0.17

0.17

0.18

0.16

0.18

0.17

0.16

0.18

0.17

0.16

0.16

0.16

0.17

0.17

0.15

0.17

0.22

0.046

0.12

0.12

0.098

0.15

0.071

0.13



119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

Intra-C

Intra-C

Intra-C

Intra-C

Intra-C

Intra-C

Intra-C

Intra-C

Intra-C

Intra-C

Intra-C

Intra-C

Intra-C

Intra-C

Intra-C

Intra-C

Intra-C

Intra-C

Intra-C

Intra-C

Intra-C

Intra-C

Intra-C

Intra-C

Intra-C

Intra-C

Intra-C

Intra-C

| Count of pixels with luminal distance transfoqm
value 9<d<=10

Count of pixels with luminal distance transfmj.
value 10<d<=11

Count of pixels with luminal distance transfoqm
value 11<d<=12 |J
Count of pixels with luminal distance transfor,

value 12<d<=13 nb 00074
Count of pixels with luminal distance transfoqm
value 13<d<=14

Count of pixels with luminal distance transfm]
value 14<d<=15

Count of pixels with luminal distance transfoqm
value 15<d<=16 |J
Count of pixels with luminal distance transfo
value 16<d<=17 '0 00067
Count of pixels with luminal distance transfoq

value 17<d<=18 nb 00088
Count of pixels with luminal distance transfmJ

value 18<d<=19 nb 0019
Count of pixels with luminal distance transfoq

value 19<d<=20 t]nb 00046
Count of pixels with luminal distance transfor,
value 20<d<=21 ﬂb 00045
Count of pixels with luminal distance transfoqm
value 21<d<=22 |J
Count of pixels with luminal distance transfo
value 22<d<=23 0.00038
Count of pixels with luminal distance transfoq

value 23<d<=24 "0.0021
Count of pixels with luminal distance transfoﬂm0 0003
value 24<d<=25

Count of pixels with luminal distance transfo

value 25<d<=26 ﬂb 00085
Count of pixels with luminal distance transf0|J
value 26<d<=27

Count of pixels with luminal distance transfoq

value 27<d<=28 IJ”E) 0013
Count of pixels with luminal distance transfo,
value 28<d<=29 | 0.0005
Count of pixels with luminal distance transfor,m
value 29<d<=30

Count of pixels with luminal distance transf0|J
value 30<d<=31

Count of pixels with luminal distance transfoqm
value 31<d<=32

Count of pixels with luminal distance transfoﬂnb 0012
value 32<d<=33

Count of pixels with luminal distance transfor,m
value 33<d<=34

Count of pixels with luminal distance transfoﬂnb 0023
value 34<d<=35

Count of pixels with luminal distance transfoqnb 002
value 35<d<=36

Count of pixels with luminal distance transfm],
d.00027

-0.0045
-0.0034
-0.00016

-0 003

-0.001

0.0001

-0 00089

0.0022
-0 0018

0.002

|
|
|
|
|
|
|
|
|
|
|
|
i
|
i
|
|
|
|
i
|
i
|
|
|
|
|
|
|
|
|
|
|
|
i
| 0.0017
|

|

|

|

| value 36<d<=37

11

\'0.0000046

-1.3

-0.14

0.05

-0.18

-0.93

-0.41

-0.32

0.087

0.35

-0.023

-0.025

-0.17

-0.24

0.41

-0.22

0.027

-0.37

0.2

-0.011

-0.72

-0.65

0.17

-0.57

0.44

0.38

-0.072

0.049

0.16

0.075

0.17

0.15

0.083

0.13

0.14

0.18

0.2

0.17

0.17

0.15

0.15

0.21

0.15

0.17

0.13

0.19

0.17

0.1

0.11

0.11

0.18

0.12

0.21

0.2

0.16



147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

Intra-C

Intra-C

Intra-C

Intra-C

Intra-C

Intra-C

Intra-C

Intra-C

Intra-C

Intra-C

Intra-C

Intra-C

Intra-C

Intra-C

Intra-C

Intra-C

Intra-C

Intra-C

Intra-C

Intra-C

Intra-C

Intra-C

Intra-C

Intra-C

Intra-C

Intra-C

Intra-C

Intra-C

| Count of pixels with luminal distance transfoqm

i value 37<d<=38
i value 38<d<=39
E value 39<d<=40
E value 40<d<=41
E value 41<d<=42
i value 42<d<=43
E value 43<d<=44
i value 44<d<=45
E value 45<d<=46
i value 46<d<=47
E value 47<d<=48
i value 48<d<=49
E value 49<d<=50
i value 50<d<=51
E value 51<d<=52
i value 52<d<=53
E value 53<d<=54
i value 54<d<=55
E value 55<d<=56
i value 56<d<=57
E value 57<d<=58
i value 58<d<=59
E value 59<d<=60
i value 60<d<=2000
E value 1<d<=2

i value 2<d<=3

E value 3<d<=4

| value 4<d<=5

Count of pixels with luminal distance transfmj.
Count of pixels with luminal distance transfoqm

Count of pixels with luminal distance transfmj.

Count of pixels with luminal distance transfm]
Count of pixels with luminal distance transfoqm

Count of pixels with luminal distance transfmJ
Count of pixels with luminal distance transfoﬂm
Count of pixels with luminal distance transfoqm
Count of pixels with luminal distance transforj

Count of pixels with luminal distance transfoqm

Count of pixels with luminal distance transfoﬂ
Count of pixels with luminal distance transfoqm
Count of pixels with luminal distance transfmj.
Count of pixels with luminal distance transfmJ
Count of pixels with luminal distance transfmj.

Count of pixels with luminal distance transf0|J

Count of pixels with nuclear distance transfof
10.000023

12

10.0017
'0.00042
10.00089

'0.00034

Count of pixels with luminal distance transfoqnb 00009

-0 0018

-0.00056

-0 00001

Count of pixels with luminal distance transfoqnb 0014

-0.00067
0.00024
M0.00022
0.0012

”E) 0006

Count of pixels with luminal distance transfoqnb 00012

Count of pixels with luminal distance transfoﬂnb 0016

0.0017

”b 000029

Count of pixels with luminal distance transfoqnb 0022

-0 0008

Count of pixels with luminal distance transfoqnb 00046

”b 00044

Count of pixels with luminal distance transfoqnb 00053

-0 00091

Count of pixels with nuclear distance transfom0 0014
Count of pixels with nuclear distance transfo}rB 00026

Count of pixels with nuclear distance transfom0 0032

-0.59

-0.031

-0.37

-0.052

-0.12

-0.62

-0.29

-0.14

0.22

-0.32

-0.46

0.014

-0.11

0.28

-0.58

-0.13

0.42

-0.35

-0.022

-0.026

-0.0032

-0.38

-0.52

-0.075

-0.97

-0.14

0.12

0.17

0.13

0.16

0.16

0.11

0.14

0.16

0.19

0.14

0.15

0.15

0.13

0.17

0.16

0.2

0.12

0.16

0.21

0.14

0.17

0.17

0.17

0.13

0.12

0.16

0.08

0.16



175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

Intra-C

Intra-C

Intra-C

Intra-C

Intra-C

Intra-C

Intra-C

Intra-C

Intra-C

Intra-C

Intra-C

Intra-C

Intra-C

Intra-C

Intra-C

Intra-C

Intra-C

Intra-C

Intra-C

Intra-C

Intra-C

Intra-C

Intra-C

Intra-C

Intra-C

Intra-C

Intra-C

Intra-C

| Count of pixels with nuclear distance transfoi‘rB 00075
value 5<d<=6 e
Count of pixels with nuclear distance transfoE
value 6<d<=7 !
Count of pixels with nuclear distance transfo;rB 00063
value 7<d<=8 v
Count of pixels with nuclear distance transfoE
value 8<d<=9 :
Count of pixels with nuclear distance transfoy

value 9<d<=10 'r6'00054
Count of pixels with nuclear distance transfoE
value 10<d<=11 !
Count of pixels with nuclear distance transfoy

value 11<d<=12 In-]O.OOOQ
Count of pixels with nuclear distance transfo}
value 12<d<=13 I
Count of pixels with nuclear distance transfo
value 13<d<=14

Count of pixels with nuclear distance transfo
value 14<d<=15

Count of pixels with nuclear distance transfo
value 15<d<=16

Count of pixels with nuclear distance transfoE
value 16<d<=17 !
Count of pixels with nuclear distance transfoy

value 17<d<=18 !%'00046
Count of pixels with nuclear distance transfo}
value 18<d<=19 :
Count of pixels with nuclear distance transfoy

value 19<d<=20 \'B.00044
Count of pixels with nuclear distance transfo
value 20<d<=2000

Count of pixels with glomerular distance

"0.0007
"B.0011
8.00039
"B.00072
B.00011
"8.00036

|
|
|
|
|
|
|
|
|
|
|
|
i
|
|
|
|
|
|
i
|
i
! 8.00043
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

| transform value 277<d<=302

13

Mh.00039
f”—b.oooes

Mh.00041

v

|

|
transform value 2<d<=27 i 0.000092
Count of pixels with glomerular distance '
transform value 27<d<=52 | -0-00034
Count of pixels with glomerular distance i 0.0011
transform value 52<d<=77 i '
Count of pixels with glomerular distance .
transform value 77<d<=102 | 0.00093
Count of pixels with glomerular distance i 0.0016
transform value 102<d<=127 i '
Count of pixels with glomerular distance .
transform value 127<d<=152 I -0.00026
Count of pixels with glomerular distance i 0.002
transform value 152<d<=177 v
Count of pixels with glomerular distance ! 0.00082
transform value 177<d<=202 | =
Count of pixels with glomerular distance i
transform value 202<d<=227 , “0.000087
Count of pixels with glomerular distance ! 0.00026
transform value 227<d<=252 | =
Count of pixels with glomerular distance i -0.0028
transform value 252<d<=277 i '
Count of pixels with glomerular distance .

| -0.0013

0.053

0.04

0.022

0.16

-0.001

-0.039

-0.38

0.046

-0.24

-0.25

-0.11

-0.023

-0.049

-0.028

-0.029

-0.12

-0.23

0.16

0.1

0.29

-0.21

0.39

0.073

-0.16

-0.072

-0.86

-0.47

0.17

0.17

0.17

0.18

0.17

0.17

0.13

0.17

0.15

0.14

0.15

0.16

0.17

0.16

0.17

0.17

0.16

0.15

0.18

0.18

0.2

0.15

0.2

0.18

0.15

0.16

0.09

0.13



203

204

205

206

207

208

209

210

211

212

213

214

215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232

Intra-C

Intra-C

Intra-C

Intra-C

Intra-C

Intra-C

Intra-C

Intra-C

Intra-C

Intra-C

Intra-C

Intra-C

Color
Color
Color
Color
Color
Color
Color
Color
Color
Color
Color
Color
Color
Color
Color
Color
Color
Color

| Count of pixels with glomerular distance
transform value 302<d<=327

Count of pixels with glomerular distance
transform value 327<d<=352

Count of pixels with glomerular distance
transform value 352<d<=377

Count of pixels with glomerular distance
transform value 377<d<=402

Count of pixels with glomerular distance
transform value 402<d<=427

Count of pixels with glomerular distance
transform value 427<d<=452

Count of pixels with glomerular distance
transform value 452<d<=477

Count of pixels with glomerular distance
transform value 477<d<=502

Count of pixels with glomerular distance
transform value 502<d<=527

Count of pixels with glomerular distance
transform value 527<d<=552

Count of pixels with glomerular distance
transform value 552<d<=577

Count of pixels with glomerular distance
transform value 577<d<=20000

Mean of red values in PAS+ regions
Mean of green values in PAS+ regions
Mean of blue values in PAS+ regions
Std of red values in PAS+ regions

Std of green values in PAS+ regions
Std of blue values in PAS+ regions
Mean of red values in luminal regions

Mean of blue values in luminal regions
Std of red values in luminal regions
Std of green values in luminal regions
Std of blue values in luminal regions
Mean of red values in nuclear regions

Mean of blue values in nuclear regions
Std of red values in nuclear regions
Std of green values in nuclear regions

Std of blue values in nuclear regions

Mean of green values in luminal regions

Mean of green values in nuclear regions

0.0015

-0.00083

-0.0025

-0.002

-0.0000053

-0.00088

0.00038

0.00058

0.00028

0.000046

0.00021

0.0005

0.0026
0230
0.017
0.035
0.013
0.019
0a®
0.0019
0012
a30
.06097
029
0®.0
.008p
020.
06D
00m
009

0.24

-0.36

-0.79

-0.67

-0.14

-0.37

-0.043

0.0093

-0.069

-0.13

-0.086

-0.011

0.53
-0.74
4.3

3.2

4.9
1.1
-0.63
0.16
-0.94
-0.39

1.7

-1.7

0.36
0.36

0.19

0.14

0.097

0.11

0.16

0.14

0.17

0.17

0.16

0.16

0.16

0.17

0.22
0.1
0.56

0.46
0.62
0.27
0.11
0.18
0.083
0.13
0.26
0.32
0.35
0.63
0.014
0.2
0.2

14
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