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SUPPLEMENTARY METHODS 
Glomerular feature extraction 
Feature extraction is a very important component of image classification, and the two main pathways for feature 
generation are human-defined (hand-crafted) or computationally defined (via feature learning). Deep learning is a 
highly successful feature learning protocol which selects features that maximize classification accuracy. However, 
such features are poorly interpretable by humans, and their acceptability for clinical use is typically dictated by their 
intelligibility. 1 This is true because without intelligibility it is not knowable whether a model is making a decision 
because it has learned the proper problem representation or if it is simply exploiting artifacts of the data. To combine 
the strengths of both paradigms, we designed a hand-crafted set of features which target the pathological progression 
of glomerular structure in DN, and allowed a neural network to learn a non-linear representation of these features 
which determines the final diagnosis. A full list of exact feature names, precisely defined, in addition with their 
weighted importance to our neural network decisions from the Tervaert patient-level holdout analysis is available in 
supplementary Table 1 at the end of this document. 

All glomerular feature extraction was done in MATLAB (MathWorks®, Natick, MA). Textural features were 
quantified once each for the classes of nuclei, PAS+, and lumina. The pixels contained in each different component 
segmentation were transformed from RGB to grayscale, then converted to a respective gray-level co-occurrence 
matrix. Entropy, energy, correlation, and homogeneity were extracted from the respective matrices2. 

Morphological features were calculated per individual object (such as each nucleus) within each component. 
These features included the mean, median, and mode of object area, and average convexity for identified 
compartmental objects.  Summary statistics were computed along the glomerulus dimension (e.g., if a glomerulus 
contained 20 nuclei, the area of each nucleus was measured, and the mean, median, and mode of the respective set of 
20 nuclei was computed).  

Compartmental containment features defined the amount of one component object contained within the 
boundaries of another. For example, one measurement might be the measured amount of nuclear area contained within 
a detected glomerular lobule (a PAS+ object). Specifically, it is a ratio, where one part is the convex area of the 
containing component object, and the other part is the area of the contained component. This feature was calculated 
for every object in the PAS+ component and luminal component. However, it is not logical for nuclei to contain any 
other structures, so, a different form of containment was measured. Specifically, we measured the amount of pixels 
just outside the nuclear boundary which were classified as either luminal or PAS+, and took this amount and divided 
it by the total nuclear perimeter. 

Inter-compartmental distance features were comprised of averaged distances between compartments and 
other identical glomerular compartments, or glomerular landmarks. Glomerular landmarks included the estimated 
glomerular centroid and the estimated glomerular boundary points. The following distances were calculated for each 
object of each glomerulus: 1) the pairwise distance between that object’s centroid and identically labeled object’s 
centroids, 2) the pairwise distance of object centroids from glomerular boundary, and 3) the pairwise distance between 
object centroids and the glomerular centroid. From these lists of distances, averages, minimums, and maximums were 
taken to create features. 

Intra-compartmental distance features were quantified on distance transforms of component segmentations. 
They were another measurement on the morphology of each component. In particular, they were originally designed 
to target glomerular thickening in PAS+, but also are a general morphological feature for other structures. For each 
component, in addition to the whole glomerulus treated as one component, the distance transform was measured. The 
PAS+ distance transform was performed on the PAS+ precursor mask, because it more accurately reflected 
mesangium than the final mask, and we wanted to design a feature which was targeting mesangial expansion as directly 
as we could. Luminal distance transform was performed on the final luminal component mask, as was the nuclear 
distance transform. The glomerular distance transform was measured on the whole glomerular region, and was 
inverted, so that there was minimum value at the middle and maximum value at the glomerular edge. This was done 
so that the classification algorithm had a set of features that described potential spatial location information associated 
with each glomerular region. Histogram values were computed on each distance transform to create the final features, 
and the specific ranges of the histogram binning depended on the component of interest. For the PAS+ component, 
the bins went from 1 to 80 by steps of 2, with a wide final right bin edge of 2000. We denote this as [1: 2 :80,2000]. For 
the luminal component, the bins were specified as [1:1: 60,2000]. For the nuclear component, [1:1: 20,2000]. For the 
glomerular component, we first inverted the transform so that each pixel of the distance transform was describing the 
distance to the glomerular centroid. Then, on this component, the bins were specified as [2 : 25 : 600,20000].  These 
values were specifically selected to reflect the full range of values present in the distance transforms, and they would 
only be valid for other experiments if the image resolution was identical, (0.25µm per pixel). For the PAS+ distance 
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transform only, we hand crafted some additional features, by thresholding the distance transform map at specific 
values (10 and 20), creating binary objects of those value ranges, and measuring morphological statistics on them 
(such as sum total, max, mean, and median of binary areas).  

 
Watershed splitting 
The DeepLab V2 network is a semantic segmentation network, which means classification is done at the pixel level. 
When pixels of two distinct objects with identical class are located next to each other in an image (such as nuclei, or 
glomeruli), the network may fail to identify the complete boundary between them, or worse, there may actually be no 
boundary between them. Therefore, we needed to split clustered nuclei which were output by the DeepLab V2 
network. To do this, we used a distance transform-based3-5 marker controlled watershed.6, 7 Watershed has always 
been a go-to method for nuclear splitting, and has had significant success in histopathology as well.6 In our application 
of marker-controlled watershed, markers were estimated using an extended maximum transform. For this transform, 
the H-transform value was specified as 5% of the maximum value contained in a Gaussian-smoothed( 1, 5 5)σ = ×
distance transform performed on the entire glomerular image. Gaussian smoothing was performed to smooth the 
distance transform values which resulted in improved detection of unique peak regions. Next, regions containing only 
one detected peak (single nuclei) were removed from the analysis, to reduce the amount of over-segmentations 
performed by the watershed algorithm. A distance transform of the remaining nuclei was taken. The skeleton by 
influence zones8 was calculated as the watershed ridgelines of this distance transform, and was imposed as a minima 
on the distance transform, along with the estimated peaks from before. The resultant watershed-split nuclei were 
recombined with the single nuclei, and morphologically opened with a disk of 1 pixel for smoothing to form the final 
detection image. Small regions less than 10 pixels in area were also removed. 
 
STZ mouse model generation and analysis 
We chose to use a standard streptozocin (STZ) treated mouse model9 to develop murine renal tissue which reflected 
DN. C57BL/6J background mice (7 weeks old) were injected with STZ (50 mg/kg) for five consecutive days. They 
develop a mild form of diabetes mellitus type I, and after 25 weeks, mild-moderate DN. This strain of mouse was 
selected because they have kidneys which are resistant to the cytotoxic effects of STZ, allowing for more accurate 
depiction of DN related damages.10 Further, this strain of mice does not typically progress to severe disease 
phenotypes, a property we desired because we wanted a model which resembled the mild changes in early human 
disease stages where data is most scarce. Mice were at sacrificed 15, 20, or 25 weeks after STZ treatment ( 5n =  at 
each time point). Mice treated with STZ vehicle were used as control (n = 3, 3, and 4, for mice sacrificed 15, 20, and 
25 weeks after the STZ vehicle injection, respectively). After the experiment was performed, the animals were divided 
into three groups based on their fasting blood glucose levels, namely, control, mild DM, and moderate DM. Control 
mice were those who did not receive STZ treatment. Mild DM mice were mice that showed elevated fasting blood 
glucose >200 mg/dL which was not persistent when checked weekly 10 weeks post injection. Moderate DM mice 
were mice that showed elevated fasting blood glucose >200 mg/dL persistently when checked weekly starting 10 
weeks post injection. Tissue sections were cut at 2 µm thickness, stained with periodic acid-Schiff (PAS) using 
hematoxylin counterstain, and brightfield imaged at 0.25 µm/pixel resolution using a whole slide scanner (Aperio®, 
Leica). All data was sourced and prepared within the laboratory of co-author Dr. Yacoub. 

In regards to computation, a similar protocol was used as in the human analysis. Murine glomeruli were detected 
using our HAIL pipeline, and small errors in detection were corrected before feature extraction. Despite our human 
nuclear detection network having never been trained specifically on murine nuclei, the network was able to detect 
murine nuclei with surprisingly low error (supplementary Fig. 1).  To detect PAS+ regions for murine PAS+ precursor 
masks, we used adaptive thresholding of the PAS+ stain deconvolution output. This was necessary because murine 
glomeruli are not as large as human ones, and thus, there was significantly less stained material, which reduced the 
effectiveness of the HSV transform method we used for human analysis. A reduced set of histogram bins was used to 
measure distance transform features (because the distances are smaller). The bin edges for the PAS+, luminal, nuclear, 
and glomerular compartments were [1:1: 40,200], [1:1: 40,200], [1:1: 20,200], [2 :10 :300,2000],respectively. All 

remaining analysis was identical to the human protocols.  

SUPPLEMENTARY RESULTS 
Classification of murine STZ structure 
To test the power of our computational method beyond strictly defined image classes, we applied our method to murine 
glomeruli from a mouse model of STZ-induced diabetes mellitus. In total, we classified 25n = mouse kidneys by their 
DM severity, according to the classes control, mild, and moderate as defined in supplementary methods. In general, 
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our method required little modification to be applied to murine 
glomeruli. For PAS+ detection, we used color  deconvolution instead 
of the HSV method used for human analysis. This was due to less 
PAS+ stain in murine structures, resulting in less saturation and 
darkness of stain. Interestingly, our nuclear segmentation network was 
capable of accurately identifying mouse nuclei without having been 
trained on any murine nuclei. This was likely possible for two reasons, 
the first of which is that the smallest human nuclei overlapped in size 
with mouse nuclei. Secondly, nuclei in mouse tissue sections had 
significantly reduced variability in presentation. This was because it is 
possible to maximally control mouse tissue image preparation, by 
discarding red blood cells via perfusion before extracting mouse 
kidneys, controlling section thickness to be 2 µm, and using the same 
core lab for tissue staining. Glomerular component maps for several 
murine glomeruli are shown in supplementary Fig. 1. 
 As in our main manuscript, we tested classification of mouse 
tissues using a baseline classifier selecting class randomly based on 
the label distributions and our RNN using mouse-level holdout as well 
as section-level holdout. Each of the 25 mice had a total of three 
sections cut, yielding a total of 75 WSI. The only classifier which 
achieved a significant level of agreement was the RNN classifier with 
split section holdout (supplementary Table 2). However, this task was 
much harder, as the classifiers were attempting to predict the level of 
diabetes rather than the amount of renal structural damage. The hardest 
class to identify was the moderate DM class, as can be observed in 
supplementary Table 3.  
 

 

 

 

Glomerular component analysis and motivations 
Several glomerular compartments can be difficult to distinguish from each other given that the only histological 
markers are PAS and hematoxylin. What is even more difficult is finitely selecting compartment boundaries which 
can be identified in all disease phenotypes. One such example might be the decoupling of glomerular basement 
membrane from mesangium, a task which can even be difficult in some samples via manual discrimination. However, 
we wondered whether this sort of precision was absolutely necessary for computational estimation of disease class. 

Supplementary Table 3. Conditional probabilities for class assignment in mouse experiments given 
the ground truth class assignment. 

Comparison Case distribution Control Mild Moderate 

Mouse level holdout 10/8/7 0.41, [0.31, 0.51] 0.55, [0.43, 0.66] 0.09, [0.03, 0.18] 
Section level holdout 30/24/21 0.82, [0.78, 0.86] 0.83, [0.78, 0.87] 0.42, [0.36, 0.49] 
Baseline 10/8/7 0.38, [0.28, 0.48] 0.31, [0.21, 0.43] 0.34, [0.23, 0.47] 

 

Supplementary Table 2. Linear weighted Cohen’s kappa and confidence limits for mouse 
experiments. 
Comparison Case number Observed kappa Lower 0.95 limit Upper 0.95 limit 

Mouse-level holdout 25 0.13 0.04 0.21 
Section-level holdout 75 0.62 0.58 0.66 
Baseline classifier 25 <0 n/a n/a 

 

 

Supplementary Figure 1. Glomerular 
component maps for murine glomeruli. A, B) 
Control murine glomeruli. C, D) Diabetic murine 
glomeruli. Scale bars indicate 100 µm. 
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Therefore, we explored simplification of the glomerular structure into three components. The identification of the 
three components can be distilled into three compressed steps: 1) predict nuclear locations with the DeepLab V2 
network, 2) identify sparse locations of PAS+ objects and luminal objects using image thresholding, and 3) use naive 
Bayesian classification to refine the thresholding result in step 2. We chose to use a neural network to identify nuclei 
while using an unsupervised approach to identify the remaining glomerular components because of the difference in 
difficulty in detection and annotation of different glomerular compartments. At first, we wanted to use an unsupervised 
technique for all compartments, however, it soon became clear that human nuclear diversity in disease course is far 
too variable for typical techniques such as color deconvolution11 to achieve high accuracy. Conveniently, however, 
glomerular nuclear annotations, though tedious to acquire, can easily be distinguished by untrained eye in most cases, 
and typically do not require domain experts for identification. On the other hand, other structures, such as the 
mesangium and membranous layers, can be very difficult to distinguish from each other by eye because the stain does 
not provide high contrast between these boundaries. Further, these structures have more ambiguous presentation in 
images than nuclei, requiring an expert eye. This makes annotation of these compartments on PAS-stained histological 
images very difficult, but identifying them as one contiguous component is much easier. For a similar reason, we 
grouped capillary lumina into the same class as the Bowman space because they are both similar in color profile, but 
the separation of them based on morphological properties becomes increasingly difficult depending on the disease 
state and section cut direction. In less severe phenotypes (Fig. 3A, 3C, 3D) it can be very obvious which regions are 
capillary lumina and which are Bowman regions, however, it is much more ambiguous in more severe disease 
phenotypes (Fig. 3B, 3D, 3F). This decision is further obfuscated by tangentially cut white regions which can be out-
of-plane Bowman space folds, capillary lumen, or empty gaps embedded in fibrotic structures. 

Feature relevance 
Supplementary Fig. 2 demonstrates a graphical view of the raw values provided in supplementary Table 1 (feature 
ranking according to Tervaert classification). Values greater than zero indicate that the respective feature index (seen 
along the x-axis) was useful for the average diagnostic decision of the entire dataset, and values less than zero indicate 

a feature which 
was less useful for 
the average 

diagnostic 
decision. Greater 
y-axis magnitudes 
indicate a stronger 
influence of that 
particular feature. 
It is clear from this 
plot that there 
were no features 

which 
significantly 

detracted from the 
networks 

performance (no 
features which 
have large 

negative 
magnitudes). It is 
also illustrated that 
the network was 
significantly more 

dependent on color features (features indices 215-232) than any other feature class. 
 

 

Supplementary Figure 2. Deviation of network predictions as a function of dropped features. Ticks along the x-
axis represent the feature indices of each respective dropped feature according to supplementary Table 1.Ticks along 
the y-axis represent the raw amount the network prediction was deviated towards or away from the correct diagnoses, 
as compared to having no features dropped (see Eq. 1, main manuscript). A notable feature is that there are several 
features which strongly influence the network’s decision in a positive way (help the network get the correct diagnosis), 
but none that influence the network’s decision in a negative direction with the same magnitude (detract from the 
networks ability to get the correct diagnosis).  



6 
 

Complexity analysis 
Supplementary Fig. 3A shows a plot of the time 
and memory for the full algorithm on the largest 
human WSI, containing ~3.5 billion pixels and 
containing a total of 63 glomeruli. Fig. 3B shows 
time versus memory for a mouse kidney section, 
containing ~438M pixels and 83 glomeruli. Fig. 
3C shows time versus memory for the smallest 
human biopsy, containing ~470M pixels and 5 
glomeruli. Red crosshairs indicate maximum 
memory usage. Plots were generated using the 
memory profiler python module.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
Supplementary Figure 3. Memory as a function of run time 
for application of our algorithm in select cases. A) Largest 
human biopsy. B) Mouse whole-kidney section. C) Smallest 
human biopsy.  
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Supplementary Table 1. Feature list and associated network impact scores. The standardized column 
indicates values adjusted to have zero mean and unit standard deviation, the normalized column indicates 
values adjusted to be within the range 0 and 1. Abbreviations: M – morphological, C – containment, T – 
texture, Inter-C – inter-compartmental distance, Intra-C – intra-compartmental distance. 

Index Type Name Raw Standardized Normalized 

1 M Mean PAS+ object solidity 0.00033 -0.055 0.16 

2 C 
Mean lumina region contained in PAS+ object 
boundaries 

0.00049 -0.014 0.17 

3 C 
Mean nuclear region contained in PAS+ object 
boundaries 

0.00034 -0.054 0.16 

4 M Sum total PAS+ objects' areas 0.000068 -0.12 0.16 

5 M Mean of PAS+ objects' areas 0.00064 0.025 0.17 

6 M Median of PAS+ objects' areas 0.00025 -0.077 0.16 

7 T PAS+ textural contrast -0.0013 -0.48 0.13 

8 T PAS+ textural correlation 0.0091 2.2 0.37 

9 T PAS+ textural energy -0.0028 -0.86 0.09 

10 T PAS+ textural homogeneity 0.0037 0.81 0.24 

11 M Mean luminal object solidity 0.00033 -0.055 0.16 

12 C 
Mean PAS+ region contained in luminal object 
boundaries 

-0.0039 -1.2 0.062 

13 C 
Mean nuclear region contained in luminal 
object boundaries 

0.0011 0.15 0.18 

14 M Sum total luminal objects' areas 0.00013 -0.11 0.16 

15 M Mean of luminal objects' areas -0.0031 -0.95 0.082 

16 M Median of luminal objects' areas 0.0013 0.21 0.19 

17 T Luminal textural contrast -0.0014 -0.49 0.12 

18 T Luminal textural correlation -0.0016 -0.55 0.12 

19 T Luminal textural energy 0.001 0.13 0.18 

20 T Luminal textural homogeneity -0.0065 -1.8 0 

21 C 
Mean ratio of PAS+ pixels lying just outside 
nuclear perimeter to length of perimeter 

-0.0036 -1.1 0.07 

22 C 
Mean ratio of luminal pixels lying just outside 
nuclear perimeter to length of perimeter 

-0.00013 -0.17 0.15 

23 M Mean nuclear perimeter -0.00047 -0.26 0.14 

24 M Sum total nuclear area -0.00055 -0.28 0.14 

25 M Mean nuclear areas 0.0042 0.95 0.26 

26 M Mode nuclear areas -0.00049 -0.27 0.14 

27 T Nuclear textural contrast 0.0012 0.16 0.18 

28 T Nuclear textural correlation -0.0053 -1.5 0.031 

29 T Nuclear textural energy -0.0018 -0.62 0.11 

30 T Nuclear textural homogeneity -0.000041 -0.15 0.16 

31 Inter-C 
Mean distance of luminal object centroids from 
glomerular centroid 

-0.004 -1.2 0.06 

32 Inter-C 
Mean of mean distances of luminal object 
centroids from glomerular boundary 

-0.00017 -0.19 0.15 

33 Inter-C 
Mean of maximum distances of luminal object 
centroids from glomerular boundary 

0.00032 -0.058 0.16 
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34 Inter-C 
Mean of minimum distances of luminal object 
centroids from glomerular boundary 

-0.00066 -0.31 0.14 

35 Inter-C 
Mean of mean distances of luminal object 
centroids from themselves 

0.0031 0.66 0.23 

36 Inter-C 
Mean of maximum distances of luminal object 
centroids from themselves 

0.00084 0.077 0.18 

37 Inter-C 
Mean of minimum distances of luminal object 
centroids from themselves 

-0.0013 -0.48 0.13 

38 Inter-C 
Mean distance of PAS+ object centroids from 
glomerular centroid 

-0.00091 -0.38 0.13 

39 Inter-C 
Mean of mean distances of PAS+ object 
centroids from glomerular boundary 

0.0048 1.1 0.27 

40 Inter-C 
Mean of maximum distances of PAS+ object 
centroids from glomerular boundary 

-0.0033 -0.99 0.078 

41 Inter-C 
Mean of minimum distances of PAS+ object 
centroids from glomerular boundary 

0.00016 -0.099 0.16 

42 Inter-C 
Mean of mean distances of PAS+ object 
centroids from themselves 

-0.0016 -0.55 0.12 

43 Inter-C 
Mean of maximum distances of PAS+ object 
centroids from themselves 

-0.0052 -1.5 0.032 

44 Inter-C 
Mean of minimum distances of PAS+ object 
centroids from themselves 

0.00092 0.098 0.18 

45 Inter-C 
Mean distance of nuclear object centroids from 
glomerular centroid 

0.0014 0.23 0.19 

46 Inter-C 
Mean of mean distances of nuclear object 
centroids from glomerular boundary 

-0.004 -1.2 0.061 

47 Inter-C 
Mean of maximum distances of nuclear object 
centroids from glomerular boundary 

-0.0032 -0.97 0.08 

48 Inter-C 
Mean of minimum distances of nuclear object 
centroids from glomerular boundary 

-0.0015 -0.54 0.12 

49 Inter-C 
Mean of mean distances of nuclear object 
centroids from themselves 

0.0019 0.36 0.2 

50 Inter-C 
Mean of maximum distances of nuclear object 
centroids from themselves 

0.00087 0.086 0.18 

51 Inter-C 
Mean of minimum distances of nuclear object 
centroids from themselves 

-0.0009 -0.38 0.13 

52 M Total glomerular area -0.00048 -0.27 0.14 

53 M Total PAS+ object number -0.0029 -0.9 0.086 

54 M Total luminal object number 0.0012 0.16 0.18 

55 M Total nucleus number -0.00033 -0.23 0.15 

56 M/Intra-C 
Sum of PAS+ distance transform values 
0<d<=10 

0.00059 0.013 0.17 

57 M/Intra-C 
Sum of PAS+  distance transform values 
10<d<=20 

0.0015 0.26 0.19 

58 M/Intra-C 
Sum of PAS+  distance transform values 
20<d<=1000 

0.0015 0.26 0.19 

59 M/Intra-C 
Maximum PAS+ distance transform value 
10<d<=20 

0.000062 -0.13 0.16 

60 M/Intra-C 
Number of connected objects with PAS+  
distance transform value 0<d<=10 

0.0041 0.92 0.25 

61 M/Intra-C 
Number of connected objects with PAS+  
distance transform value 10<d<=20 

0.0015 0.24 0.19 

62 M/Intra-C 
Mean of PAS+ distance transform values 
0<d<=10 

0.0008 0.066 0.18 
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63 M/Intra-C 
Mean of PAS+  distance transform values 
10<d<=20 

-0.00099 -0.4 0.13 

64 M/Intra-C 
Median of PAS+  distance transform values 
0<d<=10 

0.0042 0.95 0.26 

65 M/Intra-C 
Median of PAS+  distance transform values 
10<d<=20 

-0.00014 -0.18 0.15 

66 M/Intra-C 
Mean area of objects with PAS+ distance 
transform value 0<d<=10 

0.0038 0.85 0.25 

67 M/Intra-C 
Median area of objects with PAS+ distance 
transform value 0<d<=10 

0.00054 0.00033 0.17 

68 M/Intra-C 
Maximum area of objects with PAS+ distance 
transform value 0<d<=10 

0.0017 0.3 0.2 

69 M/Intra-C 
Mean area of objects with PAS+ distance 
transform value 10<d<=20 

0.0027 0.55 0.22 

70 M/Intra-C 
Median area of objects with PAS+ distance 
transform value 10<d<=20 

0.0008 0.067 0.18 

71 Intra-C 
Count of pixels with PAS+ distance transform 
value 1<d<=3 

0.0041 0.94 0.26 

72 Intra-C 
Count of pixels with PAS+ distance transform 
value 3<d<=5 

-0.0031 -0.95 0.082 

73 Intra-C 
Count of pixels with PAS+ distance transform 
value 5<d<=7 

-0.00016 -0.18 0.15 

74 Intra-C 
Count of pixels with PAS+ distance transform 
value 7<d<=9 

0.0012 0.16 0.18 

75 Intra-C 
Count of pixels with PAS+ distance transform 
value 9<d<=11 

-0.00052 -0.28 0.14 

76 Intra-C 
Count of pixels with PAS+ distance transform 
value 11<d<=13 

-0.00051 -0.27 0.14 

77 Intra-C 
Count of pixels with PAS+ distance transform 
value 13<d<=15 

0.00025 -0.077 0.16 

78 Intra-C 
Count of pixels with PAS+ distance transform 
value 15<d<=17 

-0.0014 -0.51 0.12 

79 Intra-C 
Count of pixels with PAS+ distance transform 
value 17<d<=19 

0.00029 -0.065 0.16 

80 Intra-C 
Count of pixels with PAS+ distance transform 
value 19<d<=21 

0.0033 0.71 0.23 

81 Intra-C 
Count of pixels with PAS+ distance transform 
value 21<d<=23 

0.0025 0.51 0.22 

82 Intra-C 
Count of pixels with PAS+ distance transform 
value 23<d<=25 

0.0035 0.76 0.24 

83 Intra-C 
Count of pixels with PAS+ distance transform 
value 25<d<=27 

0.0022 0.44 0.21 

84 Intra-C 
Count of pixels with PAS+ distance transform 
value 27<d<=29 

-0.00044 -0.26 0.15 

85 Intra-C 
Count of pixels with PAS+ distance transform 
value 29<d<=31 

0.0028 0.59 0.22 

86 Intra-C 
Count of pixels with PAS+ distance transform 
value 31<d<=33 

0.0025 0.5 0.22 

87 Intra-C 
Count of pixels with PAS+ distance transform 
value 33<d<=35 

0.000045 -0.13 0.16 

88 Intra-C 
Count of pixels with PAS+ distance transform 
value 35<d<=37 

0.0014 0.21 0.19 

89 Intra-C 
Count of pixels with PAS+ distance transform 
value 37<d<=39 

0.0022 0.44 0.21 

90 Intra-C 
Count of pixels with PAS+ distance transform 
value 39<d<=41 

0.0004 -0.038 0.17 
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91 Intra-C 
Count of pixels with PAS+ distance transform 
value 41<d<=43 

0.0009 0.092 0.18 

92 Intra-C 
Count of pixels with PAS+ distance transform 
value 43<d<=45 

0.0024 0.48 0.21 

93 Intra-C 
Count of pixels with PAS+ distance transform 
value 45<d<=47 

-0.0005 -0.27 0.14 

94 Intra-C 
Count of pixels with PAS+ distance transform 
value 47<d<=49 

-0.00015 -0.18 0.15 

95 Intra-C 
Count of pixels with PAS+ distance transform 
value 49<d<=51 

0.00064 0.025 0.17 

96 Intra-C 
Count of pixels with PAS+ distance transform 
value 51<d<=53 

0.00041 -0.034 0.17 

97 Intra-C 
Count of pixels with PAS+ distance transform 
value 53<d<=55 

0.00088 0.087 0.18 

98 Intra-C 
Count of pixels with PAS+ distance transform 
value 55<d<=57 

0.0001 -0.11 0.16 

99 Intra-C 
Count of pixels with PAS+ distance transform 
value 57<d<=59 

0.001 0.13 0.18 

100 Intra-C 
Count of pixels with PAS+ distance transform 
value 59<d<=61 

0.00072 0.047 0.17 

101 Intra-C 
Count of pixels with PAS+ distance transform 
value 61<d<=63 

0.00032 -0.058 0.16 

102 Intra-C 
Count of pixels with PAS+ distance transform 
value 63<d<=65 

0.00082 0.072 0.18 

103 Intra-C 
Count of pixels with PAS+ distance transform 
value 65<d<=67 

0.00056 0.0054 0.17 

104 Intra-C 
Count of pixels with PAS+ distance transform 
value 67<d<=69 

0.0002 -0.09 0.16 

105 Intra-C 
Count of pixels with PAS+ distance transform 
value 69<d<=71 

0.00025 -0.077 0.16 

106 Intra-C 
Count of pixels with PAS+ distance transform 
value 71<d<=73 

0.00017 -0.098 0.16 

107 Intra-C 
Count of pixels with PAS+ distance transform 
value 73<d<=75 

0.00056 0.0044 0.17 

108 Intra-C 
Count of pixels with PAS+ distance transform 
value 75<d<=77 

0.00046 -0.022 0.17 

109 Intra-C 
Count of pixels with PAS+ distance transform 
value 77<d<=79 

-0.00022 -0.2 0.15 

110 Intra-C 
Count of pixels with PAS+ distance transform 
value 79<d<=2000 

0.0004 -0.037 0.17 

111 Intra-C 
Count of pixels with luminal distance transform 
value 1<d<=2 

0.0026 0.53 0.22 

112 Intra-C 
Count of pixels with luminal distance transform 
value 2<d<=3 

-0.0046 -1.3 0.046 

113 Intra-C 
Count of pixels with luminal distance transform 
value 3<d<=4 

-0.0016 -0.56 0.12 

114 Intra-C 
Count of pixels with luminal distance transform 
value 4<d<=5 

-0.0015 -0.53 0.12 

115 Intra-C 
Count of pixels with luminal distance transform 
value 5<d<=6 

-0.0025 -0.78 0.098 

116 Intra-C 
Count of pixels with luminal distance transform 
value 6<d<=7 

-0.000064 -0.16 0.15 

117 Intra-C 
Count of pixels with luminal distance transform 
value 7<d<=8 

-0.0035 -1.1 0.071 

118 Intra-C 
Count of pixels with luminal distance transform 
value 8<d<=9 

-0.0011 -0.42 0.13 
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119 Intra-C 
Count of pixels with luminal distance transform 
value 9<d<=10 

-0.0045 -1.3 0.049 

120 Intra-C 
Count of pixels with luminal distance transform 
value 10<d<=11 

0.0000046 -0.14 0.16 

121 Intra-C 
Count of pixels with luminal distance transform 
value 11<d<=12 

-0.0034 -1 0.075 

122 Intra-C 
Count of pixels with luminal distance transform 
value 12<d<=13 

0.00074 0.05 0.17 

123 Intra-C 
Count of pixels with luminal distance transform 
value 13<d<=14 

-0.00016 -0.18 0.15 

124 Intra-C 
Count of pixels with luminal distance transform 
value 14<d<=15 

-0.003 -0.93 0.083 

125 Intra-C 
Count of pixels with luminal distance transform 
value 15<d<=16 

-0.001 -0.41 0.13 

126 Intra-C 
Count of pixels with luminal distance transform 
value 16<d<=17 

-0.00067 -0.32 0.14 

127 Intra-C 
Count of pixels with luminal distance transform 
value 17<d<=18 

0.00088 0.087 0.18 

128 Intra-C 
Count of pixels with luminal distance transform 
value 18<d<=19 

0.0019 0.35 0.2 

129 Intra-C 
Count of pixels with luminal distance transform 
value 19<d<=20 

0.00046 -0.023 0.17 

130 Intra-C 
Count of pixels with luminal distance transform 
value 20<d<=21 

0.00045 -0.025 0.17 

131 Intra-C 
Count of pixels with luminal distance transform 
value 21<d<=22 

-0.0001 -0.17 0.15 

132 Intra-C 
Count of pixels with luminal distance transform 
value 22<d<=23 

-0.00038 -0.24 0.15 

133 Intra-C 
Count of pixels with luminal distance transform 
value 23<d<=24 

0.0021 0.41 0.21 

134 Intra-C 
Count of pixels with luminal distance transform 
value 24<d<=25 

-0.0003 -0.22 0.15 

135 Intra-C 
Count of pixels with luminal distance transform 
value 25<d<=26 

0.00065 0.027 0.17 

136 Intra-C 
Count of pixels with luminal distance transform 
value 26<d<=27 

-0.00089 -0.37 0.13 

137 Intra-C 
Count of pixels with luminal distance transform 
value 27<d<=28 

0.0013 0.2 0.19 

138 Intra-C 
Count of pixels with luminal distance transform 
value 28<d<=29 

0.0005 -0.011 0.17 

139 Intra-C 
Count of pixels with luminal distance transform 
value 29<d<=30 

-0.0022 -0.72 0.1 

140 Intra-C 
Count of pixels with luminal distance transform 
value 30<d<=31 

-0.0018 -0.6 0.11 

141 Intra-C 
Count of pixels with luminal distance transform 
value 31<d<=32 

-0.002 -0.65 0.11 

142 Intra-C 
Count of pixels with luminal distance transform 
value 32<d<=33 

0.0012 0.17 0.18 

143 Intra-C 
Count of pixels with luminal distance transform 
value 33<d<=34 

-0.0017 -0.57 0.12 

144 Intra-C 
Count of pixels with luminal distance transform 
value 34<d<=35 

0.0023 0.44 0.21 

145 Intra-C 
Count of pixels with luminal distance transform 
value 35<d<=36 

0.002 0.38 0.2 

146 Intra-C 
Count of pixels with luminal distance transform 
value 36<d<=37 

0.00027 -0.072 0.16 
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147 Intra-C 
Count of pixels with luminal distance transform 
value 37<d<=38 

-0.0017 -0.59 0.12 

148 Intra-C 
Count of pixels with luminal distance transform 
value 38<d<=39 

0.00042 -0.031 0.17 

149 Intra-C 
Count of pixels with luminal distance transform 
value 39<d<=40 

-0.00089 -0.37 0.13 

150 Intra-C 
Count of pixels with luminal distance transform 
value 40<d<=41 

0.00034 -0.052 0.16 

151 Intra-C 
Count of pixels with luminal distance transform 
value 41<d<=42 

0.00009 -0.12 0.16 

152 Intra-C 
Count of pixels with luminal distance transform 
value 42<d<=43 

-0.0018 -0.62 0.11 

153 Intra-C 
Count of pixels with luminal distance transform 
value 43<d<=44 

-0.00056 -0.29 0.14 

154 Intra-C 
Count of pixels with luminal distance transform 
value 44<d<=45 

-0.00001 -0.14 0.16 

155 Intra-C 
Count of pixels with luminal distance transform 
value 45<d<=46 

0.0014 0.22 0.19 

156 Intra-C 
Count of pixels with luminal distance transform 
value 46<d<=47 

-0.00067 -0.32 0.14 

157 Intra-C 
Count of pixels with luminal distance transform 
value 47<d<=48 

-0.00024 -0.2 0.15 

158 Intra-C 
Count of pixels with luminal distance transform 
value 48<d<=49 

-0.00022 -0.2 0.15 

159 Intra-C 
Count of pixels with luminal distance transform 
value 49<d<=50 

-0.0012 -0.46 0.13 

160 Intra-C 
Count of pixels with luminal distance transform 
value 50<d<=51 

0.0006 0.014 0.17 

161 Intra-C 
Count of pixels with luminal distance transform 
value 51<d<=52 

0.00012 -0.11 0.16 

162 Intra-C 
Count of pixels with luminal distance transform 
value 52<d<=53 

0.0016 0.28 0.2 

163 Intra-C 
Count of pixels with luminal distance transform 
value 53<d<=54 

-0.0017 -0.58 0.12 

164 Intra-C 
Count of pixels with luminal distance transform 
value 54<d<=55 

0.000029 -0.13 0.16 

165 Intra-C 
Count of pixels with luminal distance transform 
value 55<d<=56 

0.0022 0.42 0.21 

166 Intra-C 
Count of pixels with luminal distance transform 
value 56<d<=57 

-0.0008 -0.35 0.14 

167 Intra-C 
Count of pixels with luminal distance transform 
value 57<d<=58 

0.00046 -0.022 0.17 

168 Intra-C 
Count of pixels with luminal distance transform 
value 58<d<=59 

0.00044 -0.026 0.17 

169 Intra-C 
Count of pixels with luminal distance transform 
value 59<d<=60 

0.00053 -0.0032 0.17 

170 Intra-C 
Count of pixels with luminal distance transform 
value 60<d<=2000 

-0.00091 -0.38 0.13 

171 Intra-C 
Count of pixels with nuclear distance transform 
value 1<d<=2 

-0.0014 -0.52 0.12 

172 Intra-C 
Count of pixels with nuclear distance transform 
value 2<d<=3 

0.00026 -0.075 0.16 

173 Intra-C 
Count of pixels with nuclear distance transform 
value 3<d<=4 

-0.0032 -0.97 0.08 

174 Intra-C 
Count of pixels with nuclear distance transform 
value 4<d<=5 

0.000023 -0.14 0.16 
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175 Intra-C 
Count of pixels with nuclear distance transform 
value 5<d<=6 

0.00075 0.053 0.17 

176 Intra-C 
Count of pixels with nuclear distance transform 
value 6<d<=7 

0.0007 0.04 0.17 

177 Intra-C 
Count of pixels with nuclear distance transform 
value 7<d<=8 

0.00063 0.022 0.17 

178 Intra-C 
Count of pixels with nuclear distance transform 
value 8<d<=9 

0.0011 0.16 0.18 

179 Intra-C 
Count of pixels with nuclear distance transform 
value 9<d<=10 

0.00054 -0.001 0.17 

180 Intra-C 
Count of pixels with nuclear distance transform 
value 10<d<=11 

0.00039 -0.039 0.17 

181 Intra-C 
Count of pixels with nuclear distance transform 
value 11<d<=12 

-0.0009 -0.38 0.13 

182 Intra-C 
Count of pixels with nuclear distance transform 
value 12<d<=13 

0.00072 0.046 0.17 

183 Intra-C 
Count of pixels with nuclear distance transform 
value 13<d<=14 

-0.00039 -0.24 0.15 

184 Intra-C 
Count of pixels with nuclear distance transform 
value 14<d<=15 

-0.00063 -0.3 0.14 

185 Intra-C 
Count of pixels with nuclear distance transform 
value 15<d<=16 

-0.00041 -0.25 0.15 

186 Intra-C 
Count of pixels with nuclear distance transform 
value 16<d<=17 

0.00011 -0.11 0.16 

187 Intra-C 
Count of pixels with nuclear distance transform 
value 17<d<=18 

0.00046 -0.023 0.17 

188 Intra-C 
Count of pixels with nuclear distance transform 
value 18<d<=19 

0.00036 -0.049 0.16 

189 Intra-C 
Count of pixels with nuclear distance transform 
value 19<d<=20 

0.00044 -0.028 0.17 

190 Intra-C 
Count of pixels with nuclear distance transform 
value 20<d<=2000 

0.00043 -0.029 0.17 

191 Intra-C 
Count of pixels with glomerular distance 
transform value 2<d<=27 

0.000092 -0.12 0.16 

192 Intra-C 
Count of pixels with glomerular distance 
transform value 27<d<=52 

-0.00034 -0.23 0.15 

193 Intra-C 
Count of pixels with glomerular distance 
transform value 52<d<=77 

0.0011 0.16 0.18 

194 Intra-C 
Count of pixels with glomerular distance 
transform value 77<d<=102 

0.00093 0.1 0.18 

195 Intra-C 
Count of pixels with glomerular distance 
transform value 102<d<=127 

0.0016 0.29 0.2 

196 Intra-C 
Count of pixels with glomerular distance 
transform value 127<d<=152 

-0.00026 -0.21 0.15 

197 Intra-C 
Count of pixels with glomerular distance 
transform value 152<d<=177 

0.002 0.39 0.2 

198 Intra-C 
Count of pixels with glomerular distance 
transform value 177<d<=202 

0.00082 0.073 0.18 

199 Intra-C 
Count of pixels with glomerular distance 
transform value 202<d<=227 

-0.000087 -0.16 0.15 

200 Intra-C 
Count of pixels with glomerular distance 
transform value 227<d<=252 

0.00026 -0.072 0.16 

201 Intra-C 
Count of pixels with glomerular distance 
transform value 252<d<=277 

-0.0028 -0.86 0.09 

202 Intra-C 
Count of pixels with glomerular distance 
transform value 277<d<=302 

-0.0013 -0.47 0.13 
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203 Intra-C 
Count of pixels with glomerular distance 
transform value 302<d<=327 

0.0015 0.24 0.19 

204 Intra-C 
Count of pixels with glomerular distance 
transform value 327<d<=352 

-0.00083 -0.36 0.14 

205 Intra-C 
Count of pixels with glomerular distance 
transform value 352<d<=377 

-0.0025 -0.79 0.097 

206 Intra-C 
Count of pixels with glomerular distance 
transform value 377<d<=402 

-0.002 -0.67 0.11 

207 Intra-C 
Count of pixels with glomerular distance 
transform value 402<d<=427 

-0.0000053 -0.14 0.16 

208 Intra-C 
Count of pixels with glomerular distance 
transform value 427<d<=452 

-0.00088 -0.37 0.14 

209 Intra-C 
Count of pixels with glomerular distance 
transform value 452<d<=477 

0.00038 -0.043 0.17 

210 Intra-C 
Count of pixels with glomerular distance 
transform value 477<d<=502 

0.00058 0.0093 0.17 

211 Intra-C 
Count of pixels with glomerular distance 
transform value 502<d<=527 

0.00028 -0.069 0.16 

212 Intra-C 
Count of pixels with glomerular distance 
transform value 527<d<=552 

0.000046 -0.13 0.16 

213 Intra-C 
Count of pixels with glomerular distance 
transform value 552<d<=577 

0.00021 -0.086 0.16 

214 Intra-C 
Count of pixels with glomerular distance 
transform value 577<d<=20000 

0.0005 -0.011 0.17 

215 Color Mean of red values in PAS+ regions 0.0026 0.53 0.22 

216 Color Mean of green values in PAS+ regions -0.0023 -0.74 0.1 

217 Color Mean of blue values in PAS+ regions 0.017 4.3 0.56 

218 Color Std of red values in PAS+ regions 0.035 9 1 

219 Color Std of green values in PAS+ regions 0.013 3.2 0.46 

220 Color Std of blue values in PAS+ regions 0.019 4.9 0.62 

221 Color Mean of red values in luminal regions 0.0046 1.1 0.27 

222 Color Mean of green values in luminal regions -0.0019 -0.63 0.11 

223 Color Mean of blue values in luminal regions 0.0012 0.16 0.18 

224 Color Std of red values in luminal regions -0.0031 -0.94 0.083 

225 Color Std of green values in luminal regions -0.00097 -0.39 0.13 

226 Color Std of blue values in luminal regions 0.0045 1 0.26 

227 Color Mean of red values in nuclear regions 0.007 1.7 0.32 

228 Color Mean of green values in nuclear regions 0.0082 2 0.35 

229 Color Mean of blue values in nuclear regions 0.02 5 0.63 

230 Color Std of red values in nuclear regions -0.0059 -1.7 0.014 

231 Color Std of green values in nuclear regions 0.0019 0.36 0.2 

232 Color Std of blue values in nuclear regions 0.0019 0.36 0.2 
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