

Appendix E. Quality assessment using the Effective Public Health Practice Project Quality Assessment Tool (EPHPP)

AUTHOR AND YEAR	COMPONENT RATING						GLOBAL RATING
	Selection bias	Study design	Confounding	Blinding	Data collection method	Withdrawals and dropouts	
Bushnell et al. (2003) ⁴²	Moderate	Moderate	Weak	Weak	Strong	Not applicable	Weak
Geerdink et al. (2009) ³⁸	Moderate	Moderate	Weak	Weak	Strong	Not applicable	Weak
Kruse et al. (2014) ²⁸	Moderate	Moderate	Weak	Weak	Strong	Not applicable	Weak
Mangunkusumo et al. (2005) ⁴⁰	Moderate	Moderate	Strong	Weak	Strong	Not applicable	Moderate
Mangunkusumo et al. (2006) ⁴⁴	Moderate	Moderate	Strong	Weak	Strong	Not applicable	Moderate
Mellor et al. (2020) ³⁰	Moderate	Moderate	Weak	Weak	Strong	Weak	Weak
Minard et al. (2016) ³¹	Moderate	Moderate	Weak	Weak	Strong	Weak	Weak
Nitikman et al. (2017) ⁵⁴	Moderate	Moderate	Weak	Weak	Strong	Weak	Weak
Ogden et al. (2011) ¹⁸	Moderate	Moderate	Weak	Weak	Strong	Not applicable	Weak
Raat et al. (2007) ³³	Moderate	Moderate	Strong	Weak	Strong	Not applicable	Moderate
Raat et al. (2007) ³⁴	Moderate	Moderate	Strong	Weak	Strong	Not applicable	Moderate
Rajmil et al. (2014) ⁵⁵	Moderate	Moderate	Weak	Weak	Strong	Weak	Weak
Robles et al. (2015) ⁵⁶	Moderate	Moderate	Weak	Weak	Strong	Weak	Weak
Toucheque et al. (2016) ³⁹	Weak	Moderate	Weak	Weak	Strong	Weak	Weak
Varni et al. (2008) ⁴³	Moderate	Moderate	Weak	Weak	Strong	Weak	Weak
Vinney et al. (2012) ³⁵	Weak	Moderate	Weak	Weak	Strong	Weak	Weak
Young et al. (2009) ³⁶	Moderate	Moderate	Weak	Weak	Strong	Weak	Weak
Yu et al. (2021) ³⁷	Moderate	Moderate	Weak	Weak	Strong	Weak	Weak