

Supplementary Table 1. Detailed statistic results.**Table 1-A.** Two-way measure repeated ANOVA for **Figure 1B, D.**

Test	Time*Injury	Time*Treatment	Time*Injury*Treatment
von Frey	$F_{(5,135)} = 1.99, P=0.084$	$F_{(5,135)} = 4.122, P=0.002$	$F_{(5,135)} = 4.122, P=0.002$
Pin	$F_{(5,135)} = 10.967, P<0.001$	$F_{(5,135)} = 6.938, P<0.001$	$F_{(5,135)} = 6.938, P<0.001$

Table 1-B. Two-way ANOVA for **Figure 1C, E.**

Test	Vehicle vs WIN	Sham vs SNI	Interaction
Pin test	$F_{(1, 27)} = 4.851, P=0.0383$	$F_{(1, 27)} = 222.4, P<0.0001$	$F_{(1, 27)} = 4.745, P=0.0383$
von Frey	$F_{(1, 27)} = 4.523, P=0.0427$	$F_{(1, 27)} = 75.7, P<0.0001$	$F_{(1, 27)} = 4.523, P=0.0427$

Table 1-C. Two-way ANOVA for **Figure 2D.**

	Vehicle vs WIN	Sham vs SNI	Interaction
DH SA	$F_{(1, 17)} = 7.574, P=0.0136$	$F_{(1, 17)} = 13.35, P=0.002$	$F_{(1, 17)} = 9.372, P=0.00071$

Table 1-D. Two-way ANOVA for **Figure 3D, E, F, G, and H.**

Figure 3.C	Vehicle vs WIN	Sham vs SNI	Interaction
	$F_{(1, 96)} = 108.3, P<0.0001$	$F_{(1, 96)} = 153, P<0.0001$	$F_{(1, 96)} = 71.01, P<0.0001$
Figure 3.D	Vehicle vs WIN	Sham vs SNI	Interaction
	$F_{(1, 87)} = 28.79, P<0.0001$	$F_{(1, 87)} = 0.1093, P=0.7418$	$F_{(1, 87)} = 12.29, P=0.0007$
Figure 3.E	Vehicle vs WIN	Sham vs SNI	Interaction
	$F_{(1, 73)} = 11, P=0.0014$	$F_{(1, 73)} = 1.761, P=0.1886$	$F_{(1, 73)} = 4.73, P=0.0329$
Figure 3.F	Vehicle vs WIN	Sham vs SNI	Interaction
	$F_{(1, 66)} = 12.05, P=0.0009$	$F_{(1, 66)} = 1.863, P=0.1769$	$F_{(1, 66)} = 1.097, P=0.2987$
Figure 3.G	Vehicle vs WIN	Sham vs SNI	Interaction
	$F_{(1, 91)} = 31, P<0.0001$	$F_{(1, 91)} = 8.025, P=0.0057$	$F_{(1, 91)} = 17.55, P<0.0001$

Table 1-E. Two-way repeated ANOVA for **Figure 4B, D, F, H.**

Test	Time	Treatment	Interaction
Pin test	$F_{(4.002, 164.1)} = 83.44, P<0.0001$	$F_{(3, 41)} = 122, P<0.0001$	$F_{(15, 205)} = 32.54, P<0.0001$
von Frey	$F_{(2.418, 99.14)} = 16.69, P<0.0001$	$F_{(3, 41)} = 49.28, P<0.0001$	$F_{(3, 41)} = 49.28, P<0.0001$
Brush	$F_{(2.927, 120)} = 17.07, P<0.0001$	$F_{(3, 41)} = 107.3, P<0.0001$	$F_{(15, 205)} = 11.32, P<0.0001$

Acetone	$F_{(3,857, 158.1)} = 21.10, P < 0.0001$	$F_{(3, 41)} = 61.08, P < 0.0001$	$F_{(15, 205)} = 8.634, P < 0.0001$
---------	--	-----------------------------------	-------------------------------------

Table 1-F. Two-way repeated ANOVA for **Figure 4C, E, G, I.**

Test	Time*Injury	Time*Treatment	Time*Injury*Treatment
von Frey	$F_{(5,205)} = 16.744, P < 0.001$	$F_{(5,205)} = 5.853, P < 0.001$	$F_{(5,205)} = 5.658, P < 0.001$
Pin	$F_{(5,205)} = 81.098, P < 0.001$	$F_{(5,205)} = 8.584, P < 0.001$	$F_{(5,205)} = 11.283, P < 0.001$
Brush	$F_{(5,205)} = 16.72, P < 0.001$	$F_{(5,205)} = 7.748, P < 0.001$	$F_{(5,205)} = 8.368, P < 0.001$
Acetone	$F_{(5,205)} = 21.582, P < 0.001$	$F_{(5,205)} = 1.913, P = 0.093$	$F_{(5,205)} = 1.909, P = 0.094$

Table 1-G. Two-way ANOVA for **Figure 5C.**


	Vehicle vs WIN	Sham vs SNI	Interaction
DH SA	$F_{(1, 18)} = 7.204, P = 0.0152$	$F_{(1, 18)} = 19.01, P = 0.0004$	$F_{(1, 18)} = 2.706, P = 0.1173$

Table 1-H. Two-way ANOVA for **Figure 6C, D, E, F, and G.**

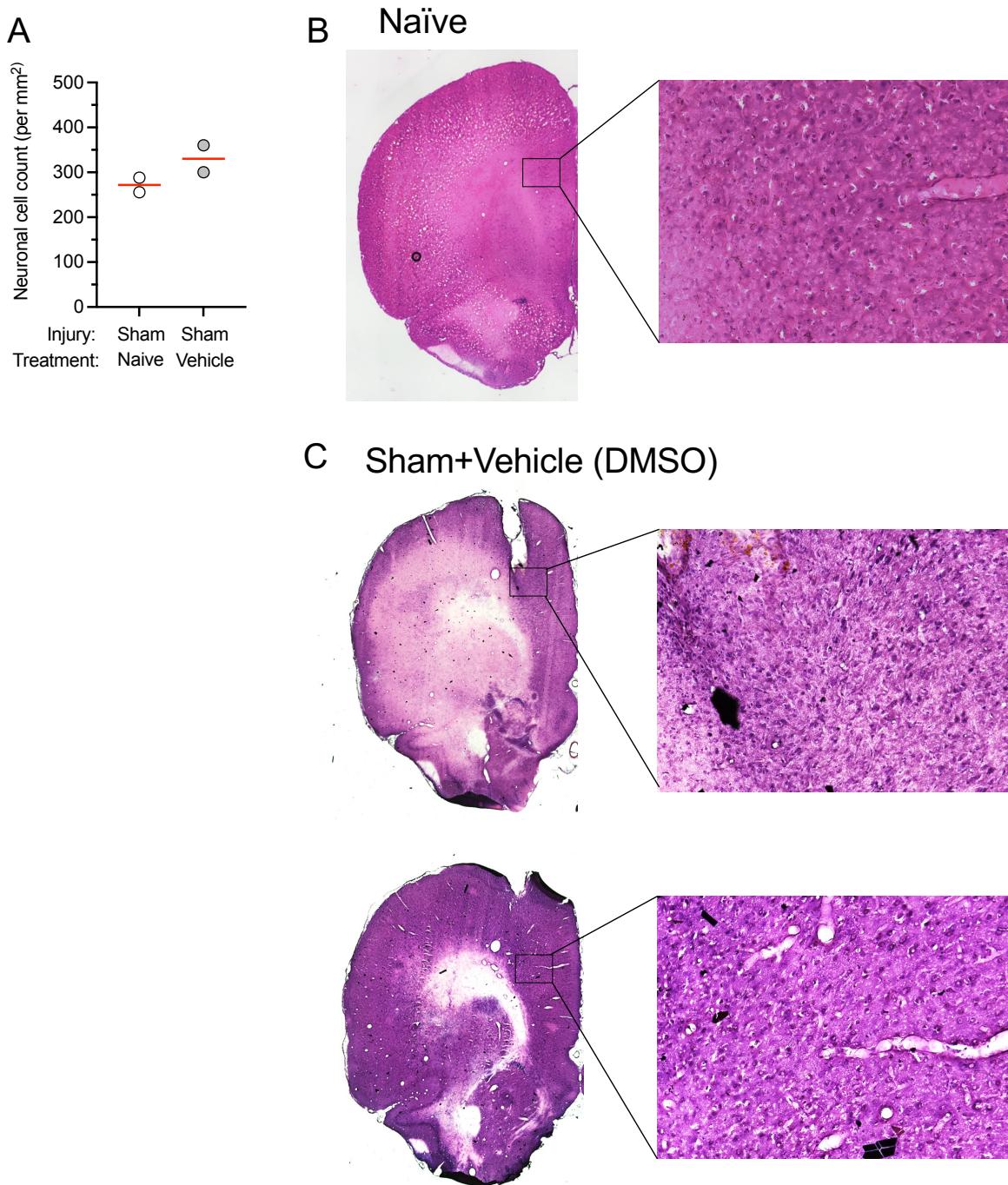
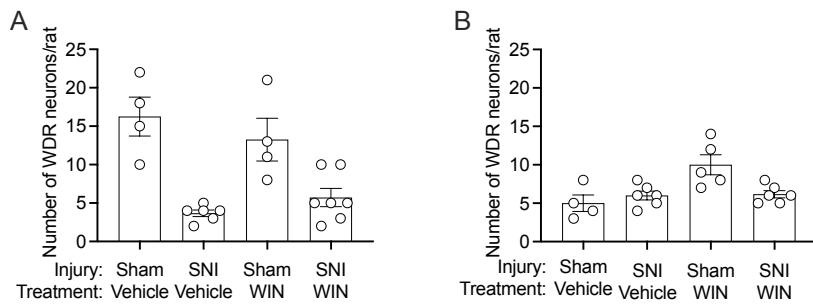
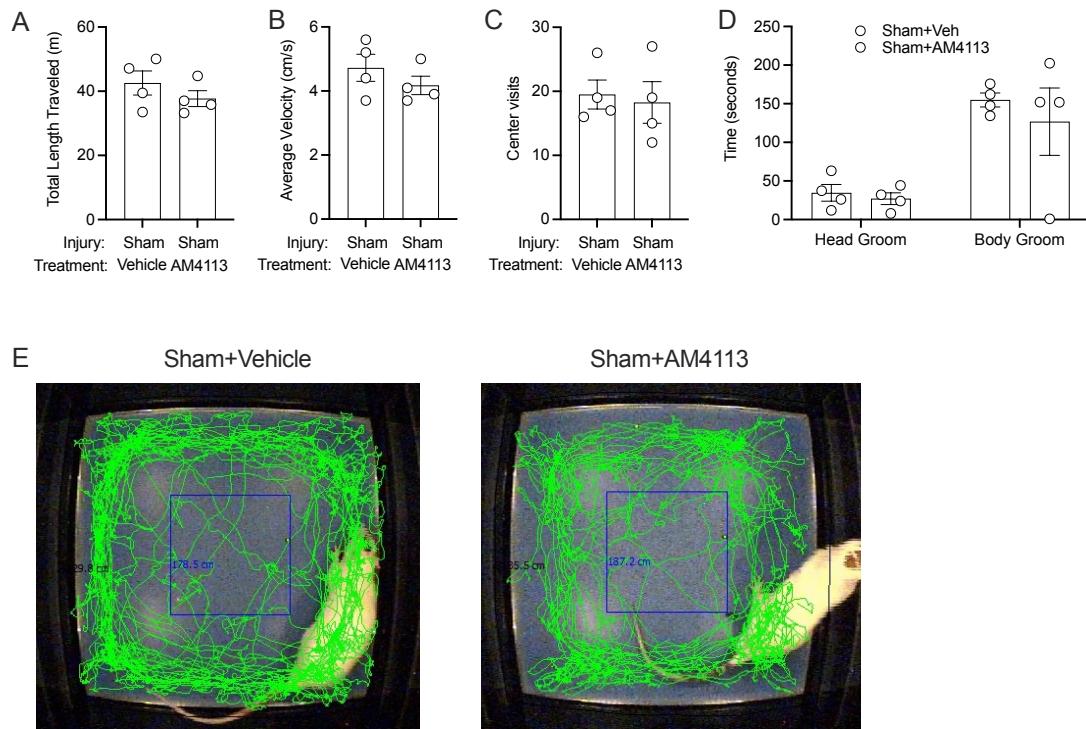
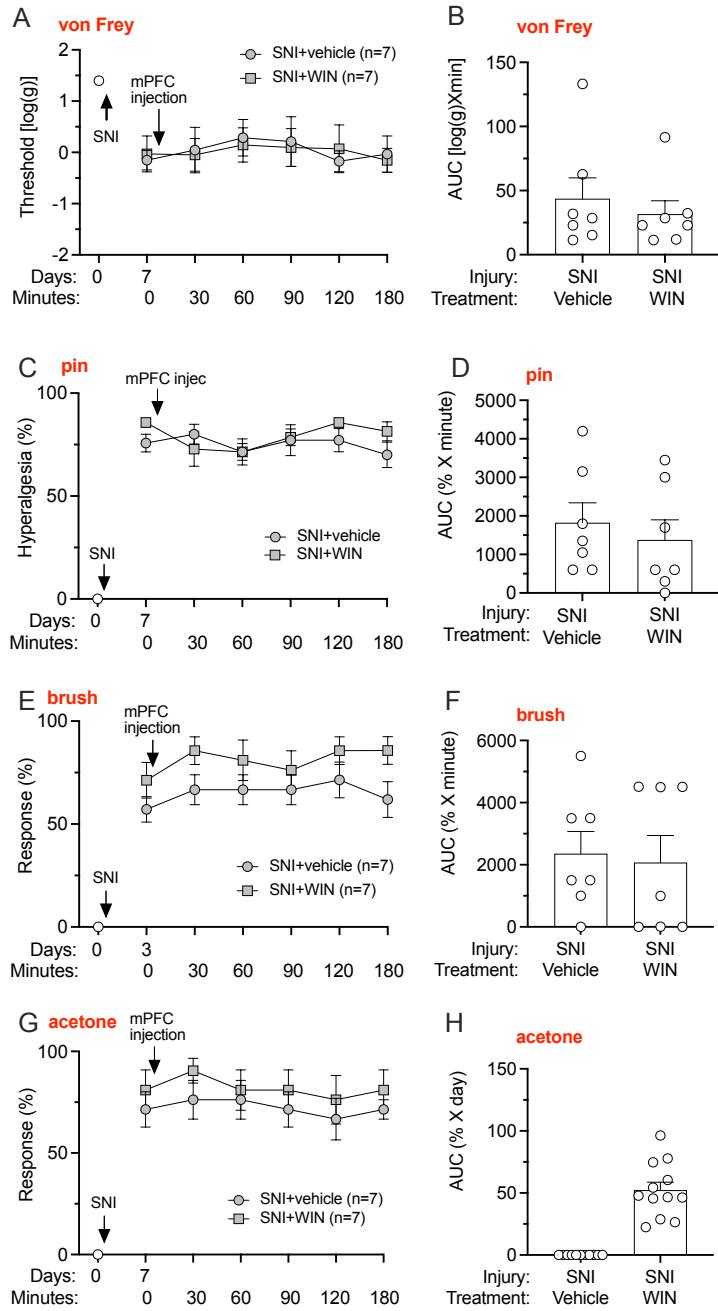

Figure 6.B	Vehicle vs AM4113	Sham vs SNI	Interaction
	$F_{(1, 91)} = 23.02, P < 0.0001$	$F_{(1, 91)} = 120.9, P < 0.0001$	$F_{(1, 91)} = 71.83, P < 0.0001$
Figure 6.C	Vehicle vs AM4113	Sham vs SNI	Interaction
	$F_{(1, 91)} = 12.44, P < 0.3856$	$F_{(1, 91)} = 5.958, P = 0.0166$	$F_{(1, 91)} = 12.44, P = 0.0007$
Figure 6.D	Vehicle vs AM4113	Sham vs SNI	Interaction
	$F_{(1, 77)} = 2.523, P = 0.1163$	$F_{(1, 77)} = 0.07366, P = 0.7868$	$F_{(1, 77)} = 13.1, P = 0.0005$
Figure 6.E	Vehicle vs AM4113	Sham vs SNI	Interaction
	$F_{(1, 91)} = 0.6612, P = 0.4183$	$F_{(1, 91)} = 1.953, P = 0.1657$	$F_{(1, 91)} = 11.42, P = 0.0011$
Figure 6.F	Vehicle vs AM4113	Sham vs SNI	Interaction
	$F_{(1, 93)} = 1.875, P = 0.1742$	$F_{(1, 93)} = 0.4209, P = 0.5181$	$F_{(1, 93)} = 111.51, P = 0.001$

Table 1-I. One-way ANOVA for **Figure 7C and E.**


Figure 7.B	$F_{(3, 20)} = 46.52, P < 0.0001$
Figure 7.E	$F_{(3, 20)} = 73.22, P < 0.0001$


Supplementary Figure 1. Histological verification of intra-mPFC injection. The micrograph shows cresyl violet stained coronal section of typical intra-mPFC cannulae placement. Arrow indicates the cannula tip. Bar, 1mm.


Supplementary Figure 2. The effect of DMSO on mPFC neurons was evaluated using histology with hematoxylin and eosin staining. The number of neurons was compared between rats with and without DMSO injection (**A**), and examples of mPFC histology from a control rat (**B**) and a rat with the chronic intra-mPFC injection of DMSO (**C**, top: the tip of the cannula; bottom: nearby brain area of the cannula) are shown. Each dot represents one rat in **A**.

Supplementary Figure 3. The recorded number of dorsal horn WDR neurons from each rat in experiments for Figure 2 (A) and Figure 5 (B).

Supplementary Figure 4. Effects of intra-mPFC injection of AM4113 in the early phase of neuropathic pain on locomotor activity (**A, B**) or anxiety levels (**C, D**) of rats. (**E**) Sample tracks recorded from ShamSNI rats with intra-mPFC injection of vehicle (left) and intra-mPFC injection of vehicle (right). Each dot represents one rat.

Supplementary Figure 5. Effects of intra-mPFC injection of CB1R agonist WIN-55,212-2 in the early phase of neuropathic pain on evoked pain-like behaviors. The time course of sensory behavior tests is shown in the left panels, and AUC analysis in the right panels of intra-mPFC injection of CB1R agonist, WIN-55,212-2 acutely alleviate hypersensitivity to mechanical stimuli (von Frey, **A, B**), noxious mechanical stimuli (pin, **C, D**), brush (**E, F**), and cold (acetone, **G, H**) after SNI (n=7 rats/group). Each dot represents one rat. Data represent means \pm SEM.