
SUPPLEMENTARY DIGITAL CONTENT BACKGROUND 

Principal component analysis (PCA), first proposed by Karl Pearson in 1901, is a classic method 

for extracting and distilling the inter-relationships among a large number of correlated variables.1  

PCA is often regarded as the first true ‘multivariate’ statistical method.  PCA’s essential purpose 

is to understand the best fit plane through a system of points in multidimensional space, thereby 

distilling complex interactions among variables to essential unifying relationships represented by 

this lower dimensional plane (technically known as a ‘hyperplane’).  In this sense, PCA can be 

thought of as a multivariable form of the Pearson correlation, where the best-fit line has been 

replaced by a best fit, hyperplane.  PCA is closely related to the technique of exploratory factor 

analysis (EFA) developed by Charles Spearman in 1904 for developing psychometric scales, and 

the two approaches are often used interchangeably.2  Both PCA and EFA have been used 

extensively in human test and measurement theory, and paved the way for most modern 

neuropsychological testing batteries and standardized educational tests.3  PCA and related data-

driven pattern-detection methods have also been used extensively in other fields that require 

integration of numerous variables such as meteorology, economics, physics, , physiology, and 

molecular biology.4-7 

 

However, PCA has not been exploited to its full potential in medicine for the purpose of patient 

classification and disease taxonomy.  Doing so requires a close collaboration among applied 

statisticians, biologists and physicians.  The present paper represents the fruit of one such 

collaboration.  The goal of the paper is not to provide a definitive review of PCA, as numerous 

other resources are available: as of 1 January 2013, over 21,000 Pubmed-indexed PCA-related 



papers exist in biomedicine alone (for an in-depth primer, see Vyas et al.8).  Rather, the goal of 

the present paper is to understand and categorize coagulopathy as a multivariate pattern derived 

directly from clotting factor level data.  The rationale for taking this approach is that it provides 

the first step toward a data-defined (i.e. human decision-free) syndromic definition of what it 

means to be ‘coagulopathic’.  For a theoretical overview of a data-intensive syndromic approach 

in traumatic disorders, we refer interested readers to prior work from members of our team..9  

The findings reported in the main body of the present text set the stage for ongoing work to 

develop robust diagnostic tests to improve biological mechanism-level understanding as well as 

outcome-level prediction in management of critically injured patients.  In this supplement we 

provide a brief primer on the historical development of PCA, additional methodical 

considerations, and provide further details of the results that could not be included in the main 

text due to space limitations. 

 

SUPPLEMENTARY DIGITAL CONTENT METHODS 

Mathematics of the approach 

Linear PCA is achieved through the linear algebraic approach of singular value decomposition 

(SVD) applied to the cross-correlation matrix of all variables;10 (see Supplementary Figure 1, 

Supplemental Digital Content 2,  http://links.lww.com/TA/A241).  When SVD is applied to a 

symmetrical square matrix such as the correlation matrix it is known as eigenvalue 

decomposition; PCA is therefore also referred to as eigenvector decomposition.  In the context of 

the current paper, the variables analyzed consisted of numerous clotting factors measurements 

from trauma patients.  The inter-relationships among the clotting factors were first distilled to 



their cross correlations in a set of the 163 patients in the dataset.  PCA then shuffled the 

correlation matrix such that variables that are highly correlated (both positively and negatively) 

were clustered together.  The function determining this clustering was constrained to maximize 

the variance explained within the original correlation matrix, yielding the first solution: this is 

labeled as principal component 1 (PC1).  This procedure was then repeated a second time with 

the additional constraint that this second solution be uncorrelated with (i.e., orthogonal to) the 

first, yielding PC2.  This procedure was then repeated iteratively and each successive solution 

labeled sequentially as PC3, PC4, et cetera until 100% of the variance in the dataset was 

accounted for.  In non-linear variants of PCA, the variance-maximization is coupled to an 

optimal scaling transformation through an alternating least squares method that simultaneously 

linearizes the variables and maximizes the variance explained in the PCs.11 

 

PC extraction rules 

In essence, PCs can be conceptualized as synthetic multivariables that capture the majority of the 

meaningful variance in the original variables—in our case, variance in coagulation factors and 

their inter-relationships.  Note from Supplementary Figure 2 (Supplementary Digital Content 

3, http://links.lww.com/TA/A242)  that each successive PC accounts for an ever-diminishing 

additional percentage of the variance from the original correlation matrix.  At a certain point, the 

value-added by additional PCs diminishes below a level that provides meaningful understanding 

of the original variables and their inter-relationships.  Based on this point of asymptotic 

diminishing returns, a number of prominent 20th-century statisticians proposed rules for PC 

extraction, retention, and interpretation.  The first rule, proposed by Kaiser,12 is based on the 



concept that eigenvalues > 1.0 indicate that a multivariate solution provides more information 

(variance explained) than considering each individual variable as a solitary, unrelated unit.  This 

“Kaiser rule” is embedded as a default in many popular statistical software packages.  In our 

dataset, the Kaiser rule suggests retention of the first 3 PCs (see Figure 2A, Supplemental 

Digital Content Figure 3, http://links.lww.com/TA/A242).  A second rule, proposed by 

Cattell,13 involves plotting the PCs in rank order by eigenvalue and retaining those above the 

elbow of this so-called ‘scree plot’; examination of the Scree plot for this dataset suggests 

retention of the first 2-3 PCs (see Supplementary Figure 2B, Supplemental Digital Content 

Figure 3, http://links.lww.com/TA/A242).  Monte Carlo studies have identified the Kaiser rule 

as overly liberal and scree plot-based selection as overly conservative as approaches for 

determining the number of PCs to retain for interpretation and use in subsequent analyses.14  In 

this case, a plot of the total variance explained by the PCs indicates that the top 3 PCs together 

account for 67% of the variance in the dataset (see Supplementary Figure 2C, Supplemental 

Digital Content Figure 3, http://links.lww.com/TA/A242).  Based on these results we opted to 

retain PCs 1-3 for further interpretation, naming, and inclusion in predictive modeling (see main 

body Results section).  More recent literature has introduced additional proposed selection rules 

not utilized here, such as component saturation, iterative cross-validation, and shrinkage 

methods.10,15 

 

PC interpretation and naming 

Once PCs are mathematically determined, researchers can explore their conceptual meaning by 

examining PC loadings—which are equivalent to Pearson correlations between each original 



variable and the PC multivariable (see main text, Table 1).  In addition, the PC scores can be 

calculated for each patient by multiplying the raw variable values by the PC loadings and then 

summing these weighted variables.  In the context of the current paper, PC scores for each 

patient can be thought of their position along composite metrics reflecting the different types of 

coagulopathy (global clotting factor depletion vs. fibrinolytic vs. consumptive coagulopathy).  

These scores can be leveraged in prediction models (e.g, Tables 2-5 and Figure 1 in main body 

of the paper). 
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